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Abstract - Computer graphics plays an important role in modern engineering of manufacturing systems, both during
design using virtual engineering environments and also as part of user interfaces to various machines. Existing and
emerging systems today make use of software components, usually providing a graphical view to the user. In
manufacturing, 3D graphics is desirable to visualize geometries of equipment and work pieces, sometimes also via
small dedicated user interfaces. The established industrial technology does, however, neither scale down very well to
such small platforms, nor do they scale up to safe operation of large systems. We put forward a notion of executable
visualization and propose a solution based on the Java platform, using Java3D for 3D visualization in combination
with VRML for external representation. Fully implemented prototypes including both real and virtual industrial robots,
and industrial case studies, have verified the scalability which appears to be unique.

1. Introduction

Virtual manufacturing environments are emerging to
meet the demands of rapid planning and reconfiguration
in production systems. That in turn is driven by the need
to rapidly respond to product changes, thereby
achieving shorter time to market and increased
profitability.

The similarities between factory automation and
both virtual reality and enterprise computing have been
observed [19]. There are, however, also important
differences. In the world of factory automation, as well
as in other areas such as autonomous systems etc., we
have to cope with the differences between the real and
the virtual world, not only during creation but also
frequently during tuning, operation, and maintenance of
the system. This imposes additional requirements on the
user interaction, which may take place first in an
engineering environment and later in a production
environment (using the same software component).
Furthermore, software components may be used for, or
tightly together with, the control of physical machines.
In order for this to scale up to large, as well as down to
small systems, we will first have to find a sound
software technology. Secondly, we need an appropriate
technique for supporting graphical user interfaces. As
the most challenging case, we focus on the need for 3D
graphics, which clearly applies to many programmable
machines such as industrial robots.

We propose the notion of executable visualization
graphics as a term for the encapsulation of graphics and
renderer together in a software component. The
immediate advantage is that one may use a high-level
graphical description language but still be able to render

on systems providing only low-level rendering
capabilities. Other advantages are customized
navigation and animation capabilities, easy management
and customization of graphical descriptions, possibility
to use template software components for creation of a
whole class of visualizations, and construction of
visualization components for heterogenous
environments. We believe this approach will be highly
useful when dealing with small application specific
visualizations.

After presenting some related approaches, we will
first look at the issue of scalability and its implications
for manufacturing software. That points out some
unsolved issues concerning software components and
graphics.  The main part of the paper is the subject of
executable visualizations. A prototype implementation
using Java technology is presented followed by a
discussion with application examples. Finally,
conclusions are drawn.

2. Related work

Web visualization is a field which is in the
beginning of its development. This work has largely
been inspired by the efforts of Dr. Mikael Jern to create
componentbased web visualizations [18]. Visualizing
medical data on the web is a problem because most
medical examinations produce huge amounts of data.
The low bandwidth of Internet produces the need for
data reduction techniques reducing the amount of data
being sent to the web visualization client. Dr. Jern is
considering client-server solutions based on intelligent
component clients containing rendering, custom
navigation, and visualization functionality to assist the



user in searching the dataspace while minimizing the
data transfer rate.

The German Institute of Space Flight lead by Dr.
Hirzinger has made an early attempt to use web-based
visualization for telepresence [17]. Their group has
developed virtual robots used for online prediction of
robot movements in teleoperating environments.

Most notable within manufacturing visualization is
the field of digital manufacturing, creating large scale
visualizations covering entire plants. The production
shall be suited to the product: the goal of digital
manufacturing is to connect manufacturing control to
the product planning process. By simulating the entire
production process in a virtual environment shorter
product cycle times are achieved, as well as lowered
costs, guaranteed quality and shorter product-to-
production time spans [20].

Robot visualization is being used in simulation and
control software for robot manufacturing [26]. The field
of digital manufacturing rely on plant visualization [20].
Visualizations are put to use in various situations
including control, monitoring and offline programming
tasks. The typical visualization is part of a large system
running on a dedicated workstation. However, the
Internet has created a demand for light-weight
visualizations capable of running on low-end, low-cost
personal computers to form the backbone of new types
of user interfaces.

3. Scalability

Within automation, there is currently a clear trend
towards creating application software by graphically
composing available software components. The issue
now is to select the most promising approach to
accomplish the concept of executable visualization.

Components used in industry today are mostly
written in C/C++ by programmers well acquainted with
the ’restart-the-computer culture’ which they have
learned to accept; believing in the utopia that you will
finally find that last error. Of course finding all faults
can be done in theory, but in practice the use of an
unsafe language like C/C++ implies that the engineering
effort is too high. This means, for example, that even if
only one out of 50 used components at some time
contains a bad pointer (due to manual memory
management) or an array index out of bound, that can
affect data which in turn may cause the entire
application to crash.

As applications get larger and more complex, and
considering that components are more frequently used
in safety critical application (such as hazardous
chemical processes), we need to worry about safe and
dependable operation. That involves several issues such
as redundancy, supervisory control, error handling, etc.
But more logically, to make sure those features really
work, we need to ensure proper program execution. This
implies that the use of unsafe languages, for other than
well restricted/encapsulated local interfaces or drivers,

will have to be abandoned for control systems. This is a
necessary but not sufficient condition for safe operation.

For a language to be called safe, we use the
definition that all possible executions are defined in
terms of the language itself. This implies, for example,
that it has to be abandoned to: use absolute memory
addresses, create dangling pointers, index outside an
array, cast-away type checking, or reference
uninitialized memory. If any of this would be allowed,
execution can result in something that is neither
expressible as a program nor desired. We talk about
core dumps, ‘blue screens’, and the like. A program
written in a safe language can also crash, but only in a
controlled way; for instance by throwing an exception to
the invoking application, which cannot be damaged by
illegal memory access. Instead, measures can be taken
to manage the application in an appropriate way.

When it comes to the actual control of industrial
processes and manufacturing equipment, special care is
needed to obtain real-time performance, and also to
maintain operator interaction on the factory
floor. Automatic memory management, or garbage
collection, which is part of the Java program execution
and a cornerstone of the scalability of Java, is often
referred to as an obstacle for real-time performance.
That is, however, not true. In our group it has been
proved in theory, and demonstrated in practice on a real
industrial robot, that well designed automatic memory
management works fine and predictable even in hard
real-time systems [23].

Encouraged by these results, and realizing that
Internet and enterprise computing techniques are
applicable even down to the field-bus level [21, 24], we
have focused on operator interaction and graphical user
interfaces which play a key role in programming,
configuration, and operation of manufacturing equip-
ment. As the most challenging case, we consider
industrial robots and the need to handle description and
presentation of geometries. We then need a technique
that provides both scalable/safe operation, and visual-
ization that scales well from powerful workstations
down to dedicated devices on the factory floor.

The natural choice today is the Java language. Java
has already made its way into enterprise computing, and
since the same requirements show up in factory
automation, Java appears to be very well suited for the
task. Thus, we try to use Java for its safety, which is
required to obtain scalability, and history has taught us
that in the long run it is the scalable techniques that
survive.

4. Executable visualization

We would like to put forward the notion of executable
visualization as a term for software components
containing a graphical description and customized code
to render the description.



4.1 Four aspects of usability

A hard coupling between rendering and description
provides a number of possible advantages for the user
such as customized graphical descriptions, customized
rendering, self-contained graphical descriptions and
platform-independent execution and behaviour.

Customized graphical descriptions. A problem
that has existed during a long time, but has exploded
with the introduction of Internet, is the large number of
existing file formats. It is not feasible to equip each
computer with readers for every file. One solution to
this problem is to introduce generic file formats and
have generic file viewers. This is the normal approach
on the Internet today (Adobe Public Document Format
for WEB publishing, HTML for browsing and VRML
for 3D graphics). This solution is, however, not feasible
for specialized situations needing customized
functionality. The normal approach is to develop
specialized software tools. We propose another way; by
focusing on the data and enhancing it with custom
functionality we achieve a essentially self-contained
data format. It will be possible to directly export CAD
geometry with enhanced functionality without worrying
if the target computer has the ability to render the
enhanced CAD format.

Customizable renderers. The property of
customization is important as it allows executable
visualizations to be customized for special tasks, with
special demands on navigation, control and feedback
functionality. An executable visualization has the ability
to modify its renderer to incorporate customized
behaviour, for instance to enhance a static graphical
description with animation capabilities, to provide
customized navigation capabilities for user interaction,
and to incorporate external control interfaces. It is to be
expected that demands on functionality will vary
extremely depending on situation.

Software component packaging of graphics. A
system might be heterogenous from several different
points of view: different processing power and memory
capacities, different capabilities for visualizing graphics
and different platforms. An executable visualization
should be able to render and produce reliable results in a
heterogenous environment. Our prototype
implementation achieves platform- and environment-
independence by utilizing the Java and Java Beans
component technology.

Template software components. Using the notion
of executable visualization, it will be possible to speed
up development of similar visualizations by creating a
template software component containing a customized
renderer and use it with all graphical descriptions. For
instance, it will be possible to create a renderer
providing custom functionality for rendering robot
geometry and use this renderer to create executable
visualizations for a whole product range of robots.

4.2 Approach to building

When building executable visualizations established
technologies should be used as much as possible in
order to achieve rapid development, low maintenance,
and high platform independence. We therefore propose

an implementation in three stages as shown in Figure 1.
The first stage consists of a graphical description

of the visualization, for instance CAD geometry
resembling an industrial robot. It is important that the
file format of the description in this stage conforms
directly to the source of the graphical descriptions. In
our robot example, we want to use CAD geometry also
for the robot that is to be used in the manufacturing task.
The executable visualization should store the geometry
in a CAD format, for instance VRML.

The second stage consists of the renderer together
with customization code. The available range of
renderers today goes from API-accessible renderers to
pure standalone rendering applications. A problem is the
customization code. Customization may potentially be
provided through three sources; through changes to the
graphical description file, through customization by
developing a renderer based on a rendering API, or
through customization of a standalone renderer. That is,
there are three approaches:

The first approach involves a modifier that
annotates the description file with customization code.
This demands, however, that the language used to
express the graphical description contains the power
necessary to provide demanded functionality. Most
CAD systems of today are able to export static
geometry to VRML. Built into the language of VRML
is the possibility of script-driven animation, something
CAD systems do not utilize. The creation of a moving
robot from a static robot model could, in the second
layer, involve the annotation of the VRML description
with scripts driving an animation. A standard renderer
of VRML might then be invoked. As a counterexample,
VRML is not able to express all kinds of functionality.
We might want to express a customized navigation
capability like semantic zooming, which is a technique
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for chosing the wanted detail level in a visualization. In
the VRML this might only be achieved with great
difficulty because the language lacks constructs for
handling such functionality [16].

The second approach relies on the availability of a
rendering API, preferably able to read the file format to
be rendered. The advantage of having a renderer
available through an API is that it provides a high
degree of freedom for customization; you are essentially
free to develop your own custom renderer on top of the
API. The VRML workgroup has developed a VRML
rendering API running on top of Java 3D, a software
package available for the Java 2 platform [2, 3, 4, 14].

The third approach uses standalone renderers with
customization ability. The Cosmo player [12] (a VRML

viewer) uses a link called the External Authoring
Interface [13] to enable the Java language to connect to
the viewer and affect the VRML model.

The third stage encapsulates the visualization into
a common component technology. This enables the
executable visualization to be incorporated as a
component into the application, with a component tool
like Microsoft VisualBasic and Java Beanbox.

The conclusions to be drawn from this section is
that the implementation of executable visualizations as
we propose them will not state a problem. However, the
preferred way to do it is the second approach, using a
rendering API, which provides most customization
power. Some experiences from using that approach now
follows.
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5. Implementation

Component technologies such as ActiveX, JavaBeans,
CORBA, COM, DCOM provides the infrastructure
upon which executable visualizations may reside as
natural extensions. Tools for dealing with components
are quite common [10, 11]. There exists a lot of
renderers (Java 3D, Cosmo, OpenInventor, OpenGL++),
converters between different file formats, and a few
neutral file formats for the exchange of geometry
between different systems. As mentioned, have chosen
to use VRML.

The core Java 2 platform from Sun Microsystems
Inc. may be extended with a package called Java3D also
available from Sun. Java3D is an API capable of
rendering high-level 3D graphical descriptions onto
OpenGL and DirectX platforms. Java3D is closely
related to VRML. In fact, Java 3D was designed to
allow easy transitions from VRML to Java 3D. By using
Java 3D it is possible to encapsulate VRML graphics
with a VRML renderer into a component and customize
the rendering through the Java language. We have
utilized this for creating virtual industrial robots
available as Java Bean components or ActiveX
components, executable in a number of user interface
environments such as Visual Basic, Internet Explorer
(HTML) and Java standalone application. Most notable
is that the component due to Java runs in these different
environments without modification.

5.1 An industrial robot implementation

Our prototype implementation of an executable
visualization for visualizing industrial robots. The
prototype is based on the Java 3D renderer enhanced
with VRML. The robot is encapsuled as a JavaBean
component and is able to run in an ActiveX
environment through a ActiveX-JavaBeans bridge, see
Figure 3.

The prototype expects static geometry in VRML as
directly exported by one specific off-line programming
system1, but should handle VRML exported from other
systems with no problem. Our example robot (ABB Irb-
6) is shown in Figure 2. The VRML describing the
robot is annotated with named nodes in order for the

component to recognize rigid robot parts among the
geometry, see Figure 4.

At the initial stage of our project there were no
VRML loaders available for Java3D. However, several
efforts are being made to create VRML loaders, the
most notable being the formation of a Java3D and
VRML Working group within the Web3D Consortium2.
As we saw that several implementations were on their
way but were not quite ready when we needed them, we
wrote a simple tool, translating VRML geometry into its
Java3D equivalent. This was easily accomplished as

�����������������������������������������������������
1 The IGrip System, http://www.deneb.com/
2 http://www.web3d.org/WorkingGroups/vrml-java3d/

most CAD systems only utilize a small subset of VRML
when exporting geometry. The disadvantages of this
solution is that we do not retain the original file format
within the component and we have to recompile the
component in order to change geometry.

The renderer has enhanced the original static view
with animation capability. The robot is able to move its
individual joints, according to data supplied at runtime.
This is accomplished by "hooking" the identified rigid
robot parts onto a linked structure of Java3D transform
objects. Finally, the resulting objects are made into a
JavaBean and transformed into an ActiveX component
using the available JavaBean-ActiveX bridge from Sun
Microsystems Inc.

The prototype is well suited to act as a template
component to create similar visualizations for other
robots, for instance an ABB Irb-2000 robot, which is
also available in our laboratory. The geometry used for
creating the robots may be as simple as the VRML
geometry available on the ABB product page3. A spin-
off usage of the component is to visualize motion data
recorded from the real Irb-6 robot.

Both the robot models and the software platform
(Java 2) are freely available on the Internet.

6. Applications & Discussion

The use of computer graphics in the personal
computer market is, as mentioned, affecting the
manufacturing market. Soon the use of graphics and
particularly 3D graphics is not going to be a nice feature
but a demand from the customer. The use of graphics in
the manufacturing industry today is mostly concentrated
towards large-scale visualization (digital manufacturing)
and CAD system design. Since that is more or less
established technology, we will now see how this scales

�����������������������������������������������������
3 http://www.abb.se/robotics/product/index.html

#VRML V1.0 ascii
Separator {
DEF IRB-6 Separator {
        DEF IRB-6:IRB_6-0 Separator {
            MatrixTransform {
                matrix 1 0 0 0
                       0 0 -1 0
                       0 1 0 0
                       0 0 0 1
            }
            Separator {
                Material {
                    diffuseColor 1 0.38 0
                }
                Coordinate3 {
                    point [
                        0 0.28125 0.17,
                        -0.27 0.28125 0.17,
                        -0.27 0.225 0.17,
                        -0.27 -0.225 0.17,
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down to dedicated end-user interfaces for use on the
plant floor.

Whether or not we need a powerful online interface
to a machine or robot very much depends on the
manufacturing task. For instance, assembly of circuit
boards is in most cases well specified from an CAD/off-
line model, which among other things uses a data-base
with descriptions of the physical components to
assemble. In such case, an initial calibration of the robot
relative to some fixtures may be enough, and only a
very simple on-line interface is needed.

In other application areas, accurate off-line
modeling is much harder, for instance due to unmodeled
dynamics of the manufacturing process.  This is often
the case within large application areas such as welding
and deburring [22].  Therefore, such robots are often
handled via a small user interface that the operator can
carry around close to the manufacturing process, see
Figure 5. There is of course also a tradeoff to be done
between a hand-held simpler interface and a more
powerful interface via, for instance, a PC connected
directly to the machine. We leave that decision to the
industrial development. Instead, we consider the
techniques that can be applied in a flexible manner. An
interesting alternative is to have a complete Windows
platform even in the hand-held device. That may,
however, not be the most efficient solution, but it can in
any case be used beneath the principles we propose. As
an example, let us consider an arc-welding application.

6.1 Arc-welding example

Assume manufacturing a product includes, among
other things, welding two metal pieces together.  Due to
tolerances of the work-pieces and the difficulties to
exactly predict the outcome of welding operation, there
is a need for an appropriate end-user interface by which
the production engineer can tune the welding operation.
Such tuning may need to be different for different parts
of the seam. Furthermore, there is a desire to let the

)LJXUH���Robot operator/programmer at Volvo, using a hand-held terminal for on-line changes.
(With permission from Volvo and ABB).
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operator adjust the welding in terms of the geometry of
the welding seam, rather than on some less
understandable voltage or wire-feed parameter. For this
purpose, there is a trend towards having knowledge
about the welding process stored in databases that can
be accesses via the factory network.

To our knowledge, there are no really good such
interface today. Instead, we base this discussion on
want-lists from production engineers. Given the
specifications for the user interface needed for a certain
application, one could of course implement it directly
in, for example, C++ on the Win32 platform utilizing
available ActiveX/DCOM components written the same
way. That would, however, impose restrictions on safety
and flexibility. Instead, we suggest a Java-based
implementation. To further explain our approach, each
of the input sources depicted in Figure 7 will now be
reviewed.

The purpose of the CAD data input is to obtain up-
to-date coordinates on which the machine/robot
operations can be defined. For brevity, retrieval of
calibrated coordinates back to the CAD system [22] is
not treated here. A variety of existing CAD data formats
exist today, but many of them are too limited for 3D-
description, internal/proprietary, platform specific, etc.
Therefore, we have chosen  the VRML format; most
systems can export the object geometry in VRML. The
VRML format is an platform neutral ISO/IEC standard
designed for the Internet.

Visualization is today mainly used for off-line
programming; in on-line programming the physical
equipment and work-pieces are there, so why visualize
it? Reasons include:

1. To make referencing and description of
coordinates during programming more user
friendly.

2. To make monitoring of ongoing machine
operations more understandable.

3. To tune and optimize the manufacturing
process.

Items 1 and 2 are obvious but let us see what the
third item could mean in arc-welding. Examples:

The welding technician may want to study the
weld-seam profile along the path, both the CAD-model
and the actual work-pieces, and confirm the generated
welding settings from the engineering department.
Figure 8 shows the end of seam having a small gap.

In case of deviations between the model and the
real world objects, there should be a way of calibrating

the model, and to simulate the effect of using the
welding settings (such as currents, wire-feed, path
speed, and weaving amplitude). Since the seam
properties changes along the seam, one can easily
imagine the benefits of having a customized
visualization and navigation along the track. Using
Java3D with imported VRML models, in combination
with a customized rendering and navigation tool appears
to be very useful.

The input from the application knowledge database
may concern guidelines and rules how different settings
effect each other, but also specific rules and restrictions
how the welding has to be performed to meet certain
quality requirements [1]. Today, such functionality is
data driven from tables and special data formats. This
limits flexibility and complicates the implementation of
end-user tools since parsing and data conversions
between different formats often have to be done.
Instead, we suggest the use of Java objects, for the same
reasons as in enterprise computing. The advantages of
obtaining not only data but also methods add a new
degree of freedom in the way application know-how can
be expressed. Clearly, to have embedded systems
running methods dynamically loaded via the network
requires a safe language.

The Java technology we use appears to be very
flexible and scalable, and systems can be built more
easily based on well-designed APIs and software that
are freely available on the Internet. The Java objects and
beans that make up a scalable application can of course
also be compiled or wrapped into current Windows
technology for usage in systems available today.
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7. Conclusions

The use of computer graphics in user interfaces today
poses some problems. Graphical description languages
are either too low-level (OpenGL) or lack the
expressiveness (VRML) needed for use in user
interfaces. The diversity of description languages is
another problem that causes compatibility problems
between systems. This may be solved by creating
customized visualization components containing both
graphical description and executable code, what we call
executable visualizations. The major benefit of using the
notion of executable visualization is that it exploits the
large body of CAD geometry to provide cheap
visualizations that are easy to create, to maintain and to
update by customizing the component rather than the
geometry itself.

We have shown on the Java platform that it is
possible to create executable 3D visualizations which
animates robots exported as static geometry objects
from an object library while making minimal intrusion
into the robot geometry description, thus providing
cheap domain controlled animation to a whole product
range of robots. The resulting visualization is packaged
as a software component and is directly executable in a
Microsoft environment, as well as in a Java
environment and a browser environment. Also, the Java
platform has the additional advantage of being free
software. This makes it possible to freely create and
distribute computer graphics in the form of Java
software components.

The arc-welding example illustrates the need for
this type of visualization in the industry. The need to
incorporate domain specific information in user
interfaces is essential for advanced control applications,
and our prototype implementation shows that the
proposed techniques accomplishes that in a feasible
way.

Together with the portability and scalability of the
Java 2 platform, our approach appears to have unique
benefits, which should be of great value within the field
of manufacturing.
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