
Department of Computer Science

Lund Institute of Technology
Lund University

Box 118, S-221 00 Lund, Sweden

APPLAB User’s Guide
Version 1.2

Elizabeth Bjarnason

LU-CS-IR:96-01

APPLAB
User’s Guide

(version 1.2 April 1996)

The Software Development Environments Group
Department of Computer Science

Lund University, Sweden

The Software Development Environments Group
Department of Computer Science
Lund University
Box118
S-221 00 Lund, Sweden
Email: orm@dna.lth.se

© 1996 by Elizabeth Bjarnason

APPLAB - Application Language Laboratory - is the result of continued work on the Orm system
which was first developed as part of the Mjølner project.

Contents

1.0 Introduction 1

1.1 System Requirements 1
1.2 Scope and Usage 1
1.3 How to Use This Guide 2
1.4 More Literature 2
1.5 Important Notice on Copying, Removing, and Renaming Documents 2
1.6 Acknowledgments 3

2.0 Grammar Editing. A Guided Tour. 4

2.1 Enter the Application Language Lab and a Demo Grammar 4
2.2 The Target Window 4
2.3 The Abstract Grammar Window 5
2.4 The Concrete Grammar Window 5
2.5 Make a Small Modification of the Concrete Grammar 6
2.6 Extend the Grammar With a New Statement 8
2.7 The Parse Grammar Window 9
2.8 Changing the Precedence of Operators 10
2.9 The OOSL Grammar Window 10
2.10 TheNames-menu 13
2.11 Things That May Go Wrong 13
2.12 Leave the Application Language Lab 14

3.0 Basic Interaction 15

3.1 Windows 15
3.2 The Mouse 15
3.3 Popup Menus 15
3.4 Basic Commands on Windows 16
3.5 Additional Menu Commands on Windows 17
3.6 Text 17

3.6.1 Positioning and Selection 17
3.6.2 Cut, Copy and Paste 17
3.6.3 Scrolling 17

3.7 Textprompts 17
3.8 The “broom” 17
Contents i of iv

4.0 The Grammar Editor 19

4.1 Window Structure 19
4.2 Entering, Exiting, and Saving a Grammar 19
4.3 Creating a New Grammar 19
4.4 Editing In the Target and Grammar Aspect Windows 20

4.4.1 Placeholders 20
4.4.2 Selection 20
4.4.3 Expansion 20
4.4.4 Cut, Copy, Paste 21
4.4.5 Some Hints 21
4.4.6 Text Editing 21
4.4.7 Semantic Editing 22
4.4.8 Other Editor Commands in Grammar Aspect Windows 22
4.4.9 Short-cuts 23
4.4.10 Short-cuts to the Expand Menu 24

4.5 Editing In the Text Link Window 24
4.6 Editing In the Grammar Window 25

4.6.1 Inserting and Deleting Grammar Aspects and Targets 25
4.6.2 Other Commands 25

4.7 Restoring a Crashed Grammar 26

5.0 The Grammar Formalisms 28

5.1 The Structure of Abstract Grammars 28
5.2 The Structure of Concrete Grammars 29
5.3 The Structure of Parse Grammars 31

5.3.1 The Lexical Syntax 32
5.3.2 Configure Text Editing 33

5.4 The Structure of OOSL Grammars 33
5.4.1 Compiling an OOSL Grammar 34
5.4.2 Demand-Attribute Evaluation 35
5.4.3 Defining theNames Menu 35
5.4.4 Predefined Lexeme Classes 35
5.4.5 Predefined Abstract Data Types 36
5.4.6 The Implemented Subset of Door AG 36
5.4.7 ListNodes in OOSL 37

5.5 Editing Metagrammars 37

6.0 Grammar Tools 38

6.1 The Pretty Printer 38
6.2 The OOSL Generator 38
ii of iv Contents

7.0 The Version Handling System 39

7.1 Introduction 39
7.2 Terminology 39
7.3 Relations 39

7.3.1 Look-up of PBOId 40
7.3.2 Explicit Binding of Relations 41
7.3.3 Evaluation of Relations at Binding time 41

7.4 Window Structure 42
7.5 PBO Window 42

7.5.1 Commands 42
7.5.2 Undocumented Features 43

7.6 Evolution Graph Window 43
7.6.1 Interactive Selection of Alternatives and Revisions 44
7.6.2 Selection of Revisions by Rule 45
7.6.3 Open 46
7.6.4 Delete 47
7.6.5 Rename 47
7.6.6 Attribute Support 47
7.6.7 Other Commands 48
7.6.8 Undocumented Features 48

7.7 Revision window 48
7.7.1 Save 48
7.7.2 Quit 49

7.8 Grammar Document Characteristics 49
7.8.1 Revision Commands 49
7.8.2 Undocumented Features 49
7.8.3 Binding of Relations 50

7.9 Predefined Attributes 50
7.9.1 PBO Attributes 51
7.9.2 Revision Attributes 51

8.0 Unix Level 52

8.1 The “applab” Script 52
8.2 The “ormmessage” Script 52
8.3 Grammar Files 53
8.4 Environment Variable 53
8.5 Files in the Release 54

9.0 Trouble Shooting 55

9.1 Problems With Starting APPLAB 55
Contents iii of iv

9.1.1 APPLAB Prints Error Message on Standard Output 55

9.2 Problems With Saving a Revision 55
9.3 “Dead” Windows 55
9.4 Problems With Editing 55

9.4.1 Confusing Behaviour at Expand 55
9.4.2 The System Hangs 55

9.5 Frequent “brooms” 56
iv of iv Contents

Introduction

n
l)
e de-
e re-
y
c-

ruc-
 of
ram
uage

 be

ute
ruc-

ing

an

 it
r lan-

ns
 re-
1.0 Introduction

APPLAB (Application Language Laboratory) is a system that supports language desig
in an integrated, interactive way making it especially suitable for prototyping (smal
domain-specific languages; application languages. The system allows the languag
signer to work on the language definitions and, simultaneously, experiment with th
sulting language. Changes made to the grammars of the language are immediatel
effective in any program written in that language. APPLAB includes the following fun
tionality:

■ Hybrid grammar-driven structure-oriented editing.The APPLAB editor is structure-
oriented and based on a technique for interpreting grammars. Text editing of st
tures is supplied by a grammar-interpreting parser component. The interpreting
grammars gives great flexibility and allows the syntax for a language and a prog
in that language to be edited at the same time. The effects of changing the lang
are immediately made visible in the program and new language constructs can
tried out immediately.

■ Static semantics. The support for static semantics is supplied by a demand-attrib
evaluator for Door Attribute Grammars. The attributes defined for a language st
ture of a document can be listed and evaluated by a menu command.

■ Grammar tools. A set of grammar tools are available to support the user in defin
new grammars and editing programs.

1.1 System Requirements

Machines Sun SPARC workstations

Operating system Solaris version 2.3 or later
or SunOS release 4.1 or later

Window-system OpenWindows 3.0 or later
or X-11 release 4 or later

It is recommended (but not necessary) to use “mouse-moved” focus rather th
“click-to-type” focus in the setup of OpenWindows. The cut/copy/paste functionality
will then work better. Consult the installation guide for details.

1.2 Scope and Usage

APPLAB is an evolving research system rather than a supported product. Although
contains several bugs it is a working system and can be used for designing smalle
guages.

We do not guarantee any correction of bugs or compatibility with future versio
of APPLAB. We are, however, very interested in comments on the system and bug
ports (mail to <Elizabeth.Bjarnason@dna.lth.se>).
APPLAB User’s Guide (version 1.2) 1 of 56

Introduction

atch,

 de-
, etc.
e
 7.0
ribes

ow to

t
re-

are
und

mar

e
geth-
d not
se
1.3 How to Use This Guide

Go through the guided tour of chapter 2.0, and then create a new grammar from scr
following the instructions in section 4.3.

This guide also contains chapters of reference manual character. Chapter 3.0
scribes basic interaction techniques used, i.e. how to interact with windows, menus
in the system. Chapter 4.0 describes the grammar editor. Chapter 5.0 describes th
grammar formalisms. Chapter 6.0 describes the available grammar tools. Chapter
describes the version handling system which applies to grammars. Chapter 8.0 desc
how grammar documents are stored as files on the Unix level, and variations on h
start the APPLAB system.

Finally, there is a chapter 9.0 on troubleshooting.

1.4 More Literature

APPLAB is the result of further development of the Orm Programming Environmen
that was initially developed as part of the Nordic research project Mjølner. The main
search results from the Mjølner project are summarized in a book:

Object-Oriented Environments: The Mjølner Approach.
Editors: Jørgen Lindskov Knudsen, Mats Löfgren, Ole Lehrmann Madsen, Boris
Magnusson.
PRENTICE HALL, the object-oriented series, 1994.
ISBN: 0-13-009291-6

More detailed account of the techniques used in developing the Orm system
available in Ph.D. theses and research reports from Dept. of Computer Science, L
University. Many of the reports are available electronically via anonymous ftp:

mjolner.dna.lth.se

or via world wide web:

http://www.dna.lth.se/Research/ProgEnv/ProgEnv.html

1.5 Important Notice on Copying, Removing, and Renaming Documents

APPLAB document filenames have the extension “.gram”. However, for each gram
document basefile “lang.gram” there are a number of additional revision files with
names “.lang.gram_n”.

In copying, removing, or renaming grammar documents all these files must b
treated consistently. It is important that the basefile and the revision files are kept to
er in the same directory and that they are consistently named. Therefore, you shoul
move, copy, or remove any of these files using normal UNIX commands. Instead, u
the following scripts:

> ormmv lang.gram x.gram to change the name of a grammar
2 of 56 APPLAB User’s Guide (version 1.2)

Introduction

n-
ld

on

ders
> ormmv lang.gram dir to move a grammar to another directory

> ormcp lang.gram x.gram to copy a grammar

> ormcp lang.gram dir to copy a grammar to another directory

> ormrm lang.gram to remove a grammar

These scripts work similarly to the standard UNIXmv, cp , andrm, but they do not take
options or multiple arguments.

1.6 Acknowledgments

I would like to thank Görel Hedin for introducing me to the concept of application la
guages, and for guiding me through the implementation work with APPLAB. I wou
also like to thank Klas Nilsson and Mats Nyberg for useful comments and questions
APPLAB.

The following people were involved in the implementation of the Mjølner Orm
system from which APPLAB evolved: Boris Magnusson, Görel Hedin, Sten Minör,
Mats Bengtsson, Magnus Taube, Lars-Ove Dahlin, Dan Oscarsson, Göran Fries, An
Gustavsson, Pär-Anders Aronsson, Roger Henriksson, and Torsten Olsson.
APPLAB User’s Guide (version 1.2) 3 of 56

Grammar Editing. A Guided Tour.

nt
ri-
-

u-

e

or-

t
ture

the
 con-
-
s of
d-

rete
 func-

o-

2.2-
2.0 Grammar Editing. A Guided Tour. 1

The Application Language Laboratory, APPLAB, is a structure-oriented environme
used for editing grammars and programs based on those grammars. It allows expe
menting with grammars in an explorative fashion. This guided tour will give an intro
duction to APPLAB.

Please refer to chapter 4.02 for more information on the commands used. For tro
ble shooting see chapter 2.11.

2.1 Enter the Application Language Lab and a Demo Grammar

■ Log on to a SUN sparc and start Open Windows or X windows.

■ Copy the APPLAB demo grammar “toy.gram” to a directory of your own, using th
ormcp script:

> ormcp ApplabDir /demo/toy.gram .
whereApplabDir is the location of the APPLAB installation directory

■ Start APPLAB on the grammar document “toy.gram”.
> applab toy.gram -latest

A grammar window for the latest revision of “toy.gram” appears on the screen.

■ Resize the window to fill most of the screen by dragging the lower right window c
ner with the left or middle button on the mouse.

The different icons contain grammars describing different aspects of the targe
language. “ABSTRACT” contains the abstract grammar defining the syntactic struc
of the target language. “CONCRETE” contains the concrete grammar, which defines
syntactic sugar and screen layout of different constructs in the language. “PARSE”
tains the parser grammar which defines the priorities of the different language con
structs. “OOSL” contains the semantic grammar, which defines the static semantic
the language. Finally, “TARGET” is a target structure which can be edited in accor
ance with the abstract, concrete and parse grammars.

(To leave APPLAB, see section 2.12.)

2.2 The Target Window

The target window is used for editing the program according to the abstract and conc
grammars in a structure-oriented fashion. For a more thorough presentation of the
tionality of the structure-oriented editor, please refer to Section 4.4.

■ Double-click on the “TARGET” icon. The target window is opened showing a pr
gram fragment.

1. Users acquainted with the grammar editor of the Mjølner/Orm system can skip sections
2.6.

2. A more technical description can be found in Minör, S., “On Structure-Oriented Editing”,
Ph.D. thesis, Dept. of Computer Science, Lund University
4 of 56 APPLAB User’s Guide (version 1.2)

Grammar Editing. A Guided Tour.

use
ars

 is
tate-

cal

nts of
 ex-

target
 It is
eta-)

ur
hey

ords
ed in

g a

s, de-
so

ach
ption
■ Make the window a little larger. Pin up the editor menu by pressing the right mo
button inside the window and select the “pin” at the top of the menu. Add scrollb
to the window by selecting theScrollbars on/off entry under theMisc entry in the
menu.

■ Make some minor modifications of the program. A new statement, for instance,
created by selecting one statement by repeatedly clicking at it until the whole s
ment is selected, and then choosing theExpand after entry. A new placeholder is
inserted which may be expanded to a new statement chosen from the hierarchi
menu under theExpand entry. If an “if statement” is selected a template for that
statement is inserted containing placeholders for the predicate and the stateme
the then part and the else part respectively. These placeholders may be further
panded by choosing the desired entries in the menu under the Expand menu.

2.3 The Abstract Grammar Window

The abstract grammar defines the structure of the language of the program in the
window. The abstract grammar itself is also represented and edited as a structure.
edited by means of the same editor as in the target window, just using different (m
grammars.

An abstract grammar is similar to a conventional BNF grammar. It contains fo
different production types; construction, list, alternation, and lexeme productions. T
have the following form:

Stmt::* Stmt List
Stmt::!Block!IfStmt!WhileStmtAssignStmt Alternative
IfStmt ::= Exp&Stmt&Stmt Construction
Exp::!IdUse!Constant!Add!Mult!Greater!.... Alternative
IdUse::= ID Construction
ID ::LEXEM Lexeme
Add::= Exp&Exp Construction
Block::=Decls&Stmts Construction

Notice that the productions do not contain any concrete syntax such as keyw
and delimiters and that different types (such as construction and list) cannot be nest
one production.

■ Open the “ABSTRACT” window by double-clicking.

■ Resize the window and add scrollbars as described in the previous section.

■ Pin up the editor menu.

■ Scroll down to the productions for statements (IfStmt, AssignStmt, etc.). Scrollin
page is done by clicking at the small box at the bottom of the scroll “elevator”.

2.4 The Concrete Grammar Window

The concrete grammar specifies the surface syntax of a language, i.e. the keyword
limiters and formatting information. It is edited in the concrete grammar window, al
by means of the structure-oriented editor.

A concrete grammar consists of productions of different types, one type for e
production type in the abstract grammar; constructions, lists, and lexemes. An exce
APPLAB User’s Guide (version 1.2) 5 of 56

Grammar Editing. A Guided Tour.

con-
g ap-

he
ion
 sube-
duc-

 in-
re-

n to

difi-

hile
is the alternation productions, which are not specified in the concrete grammar. A
crete grammar corresponding to the above abstract grammar may have the followin
pearance:

Stmts::= List
 before:_
 in:”;”<nl>
 after:_

IfStmt::= Construction
 “if “
 @1” then “
 @2” else “
 @3

IdUse::= Construction
_
@1_

ID::= Lexeme
 before:_
 after:_

Add::= Construction
 _
 @1” +“
 @2_

Block::= Construction
“begin”>>><nl>
@1<nl>
@2<<<<nl>”end”

A list production contains specification of the concrete syntax tokens before t
first list element, between the elements, and after the last list element. A construct
production contains first the leading concrete syntax, and then a reference to each
lement (@n) together with the concrete syntax after that subelement. A lexeme pro
tion contains the concrete syntax before and after the lexeme contents.

The concrete syntax is expressed using text (“a text”), indentation (>>>), end
dentation (<<<), and newline (<nl>). An empty sequence of concrete syntax is rep
sented with an underscore (_).

■ Open the “CONCRETE” window by double-clicking on it.

■ Make the window larger and add scrollbars. Pin up the editor menu. Scroll dow
the productions for statements.

After this step the screen will look something like figure 1.

2.5 Make a Small Modification of the Concrete Grammar

The program in the target window is edited in accordance with the grammars. A mo
cation of the grammars will affect the target program. A simple modification is to
change the keywords of a statement. To start with, let us change the keywords of a w
statement from “while -do” to, for example, “when-do”.
6 of 56 APPLAB User’s Guide (version 1.2)

Grammar Editing. A Guided Tour.

or

-

Do the following in the CONCRETE window:

■ Find the while-stmt production in the concrete grammar by scrolling the window,
by selecting ‘WhileStmt’ from the menuFind->Find names->.

■ Select the “while “ token at the second line of the production by clicking at it.

■ ChooseExpand -> Edit lexeme from the editor menu. A one-line text editor ap-
pears. Change the text from “while “ to “when “ and press return.

Move to the TARGET window.

■ Click anywhere in the TARGET window and the program display will change ac
cording to the modified concrete grammar.

■ Select a statement by clicking on it. ChooseExpand after to get a new placeholder
for a statement. Check that the hierarchical menu underExpand has changed to the
new syntax and create a new “when-do” statement by selecting it.

FIGURE 1
APPLAB User’s Guide (version 1.2) 7 of 56

Grammar Editing. A Guided Tour.

ill
 there
hall

o-

-

state

e

ntax

n
 se-
2.6 Extend the Grammar With a New Statement

In the previous section only the surface syntax of the language was modified. We w
now extend both the abstract and concrete grammars with a new statement. Since
is a while-statement but no repeat-statement in the language, let us make one. It s
have the following abstract syntax:

RepeatStmt ::= Stmt & Exp

Do the following in the ABSTRACT window:

■ Select a (whole) production and chooseExpand after. A placeholder for a produc-
tion appears. The left-hand side is automatically selected.

■ ChooseExpand -> Edit lexeme and enter the name of the production (e.g. “Re-
peatStmt”) followed by Return. The right-hand side of the production is now aut
matically selected.

■ Choose the =...&... entry underExpand, which states the production type is a con
struction. A placeholder appears. DoExpand -> Edit lexeme and fill in “Stmt”.

■ Do Expand after andExpand -> Edit lexeme and fill in “Exp”. We are now
ready with the abstract production for the repeat-statement, but we also have to
that the repeat-statement is a statement.

■ Scroll the ABSTRACT window upwards until the “Stmt” production is found. It is a
fairly long alternation production stating the names of all statements.

■ Select one name and doExpand after. Fill in “RepeatStmt” using
Expand -> Edit lexeme. Be careful to spell the name right. You could also use th
sub menuAll names-> and selectRepeatStmt from it. The text ‘RepeatStmt’ is
then inserted into the current lexeme.

The abstract grammar is now complete and we have to specify the concrete sy
of the repeat-statement. We suggest the following concrete production:

RepeatStmt::=
“repeat ”
@1 “ until ”
@2 _

Do the following in the CONCRETE window:

■ Select a whole production and doExpand after. A Template for a concrete produc-
tion appears.

■ Fill in the production name “RepeatStmt” usingExpand -> Edit lexeme. Be care-
ful to spell it in the same way as in the abstract grammar

■ Expand the right-hand side of the production to “? ?” representing a constructio
production. A template is inserted in which the first placeholder automatically is
lected.

■ Expand the placeholder to ““” ” and then chooseExpand -> Edit lexeme to fill in
“repeat ”. The second line of the production is now complete.

■ Select the “@@”3placeholder and doEdit lexeme. Fill in “1”. Expand the follow-
ing placeholder to ““” ”, do Expand -> Edit lexeme, and fill in “ until ”. The third
line of the production is now complete.
8 of 56 APPLAB User’s Guide (version 1.2)

Grammar Editing. A Guided Tour.

ove.

with
e-

 and
d with
..;...
e fol-

Do

insert

g of
e pre-

sso-
r the

 is a
■ Select the whole third line by repeatedly clicking at some part of it. DoExpand af-
ter and a new line appears.

■ Select the “@@” placeholder andExpand -> Edit lexeme to “2”. Select the fol-
lowing “?” placeholder and chooseCut from the menu.

■ Save the grammar on file, just to be on the safe side. SelectSave in the popup menu
of the grammar document window.

The concrete production is now ready and should look like the production ab
We are now ready to use the new language construct in the target program.

Move to the TARGET window.

■ Select a statement in the program and doExpand after.

■ Check that the hierarchical menu underExpand is extended with the new state-
ment.

■ Select it and a template is inserted in the program. If you are not fully satisfied
it, modify the concrete production, click in the TARGET window and watch the r
sult of the modification.

You can now use the new statement as any other statement. The expression
statement in the repeat statement may be further expanded. If you are not satisfie
a single statement inside the repeat statement (which can be expanded to “begin .
end” to get a list of statements) you can change that in the abstract grammar. Do th
lowing:

■ Select the “Stmt” part of the “RepeatStmt” production in the abstract grammar.
Expand -> Edit lexeme to change it to “Block”.

■ Cut the statement parts of the repeat-statements in the program. You can now
several statements in the repeat-statement usingExpand after.

2.7 The Parse Grammar Window

The parse grammar contains specifications needed to correctly perform text editin
the language. It is edited in the parse grammar window, using the same editor as th
viously described grammar windows.

A parse grammar contains a list of productions of the abstract grammar. An a
ciativity and precedence is defined for each line of productions. A parse grammar fo
above abstract and concrete grammars may have the following appearance:

Priorities:
 nonassoc: Greater, Less (1)
< left: Add (2)
< left: Mult (3)

Configuration:
String Quote: “‘” (4)
Comment: “(*” ... “*)” (5)

3. The first @ is part of the unparsing scheme for concrete grammars, while the second @
placeholder for an unexpanded lexeme.
APPLAB User’s Guide (version 1.2) 9 of 56

Grammar Editing. A Guided Tour.

dence,
oci-
ions

ing
d as

og-

nu.

text.
e se-
e of
d to.

-

n-
to a

ture

.

s
e
uiva-

OOSL
ure-
(1) The production Greater and Less are non associative and have the same prece
which is lower than that for the productions Add (2) and Mult (3) which are left ass
ative. Left, right, nonassociative and no associativity can be defined for the product
of the abstract grammar.

The configuration part of the parse grammar is used to configure the text edit
for programs based on the current grammar. In the example, (4) a string is specifie
being enclosed by the quote character “‘”, (5) a comment is specified as being rec
nized by beginning with the token “(*”, and ending with “*)”.

■ Open the “PARSE” window by double-clicking on it.

■ Make the window large enough to show its entire contents. Pin up the editor me

2.8 Changing the Precedence of Operators

Any structure of the program in the TARGET window can be selected and edited as
The system translates the edited text into a structure which is then inserted into th
lected focus of the TARGET window. When text editing expressions the precedenc
the different productions determine which structure the edited text will be translate

Do the following in the TARGET window:

■ Click at the expression ‘i+4*x>0’ of the assignment statement until the whole ex
pression is chosen.

■ ChooseEdit as text... from the editor menu. A one-line text editor appears contai
ing the text of the current editor focus. Press return. The string is now translated
structure and inserted into the program.

■ Clicking at the + and * symbols of the expression reveals that the resulting struc
is equivalent to (i+(4*x))>0.

Now, do the following change in the PARSE window:

■ Give Add higher precedence than Mult. Select Add and doCut. Now select Mult
and doPaste after. Select Mult, doCut. Select the empty marker on the line above
Do Expand list, and thenPaste.

Return to the TARGET window:

■ Repeat the text edit of the ‘i+4*x>0’ expression. The text presented for editing i
now ‘i+(4*x)>0’, representing the underlying structure of the expression. Remov
the parenthesis and press Return. Investigate the resulting structure. It is now eq
lent to ((i+4)*x)>0 since Add has been given higher priority than Mult.

2.9 The OOSL Grammar Window

The static semantics of a language can be defined as an attribute grammar in the
window. It is edited in the OOSL grammar window, by the means of the same struct
oriented editor as the previously described grammar windows.
10 of 56 APPLAB User’s Guide (version 1.2)

Grammar Editing. A Guided Tour.

ach
es.
llow-

class-
erited
tive

e
ll the

lared

s to

 at it
An OOSL grammar consists of node classes of different types, one type for e
production type in the abstract grammar; constructions, alternation, lists and lexem
An OOSL grammar corresponding to the abstract grammar above may have the fo
ing appearance.

ANYNODE: node ::! Alternation
{ inh env: ref Set;

syn undeclaredEnv: ref Set;
eq son ANYNODE.env := env;
eq undeclaredEnv := new Set;
eq son Exp.names := env

};

Exp: node ANYNODE::! Alternation
 { inh names: ref Set
 };

Mult: node Exp::= Construction
 (a_Exp1: ref Exp,
 a_Exp2: ref Exp)
 { eq undeclaredEnv :=
 a_Exp1.undeclaredEnv.union(a_Exp2.undeclaredEnv)
 };

Stmts: node ANYNODE::*Stmt List
 { eq undeclaredEnv :=

AC $X := (new Set | $X.union(son .undeclaredEnv))
 };

ID: node ::(val: string); Lexeme

Attributes, and equations for those attributes, can be defined in the different node
es. OOSL is an object-oriented specification language so each node class may inh
attributes and equations from an alternation class. This corresponds to the alterna
productions in the abstract grammar. E.g. theExp-production of the abstract grammar
above is an alternative production listing all the different kinds of expressions for th
language. In the OOSL aspect this corresponds to an alternation class containing a
common attributes and equations forExp, and each specific expression (Add, Mult ,
etc.) is represented by a construction class withExp as its superclass.

The OOSL aspect of the demo grammar defines that variables need to be dec
in the local or in an outer block to be used. The attributeenv contains the names of the
declared variables at the current node class while the attributeundeclaredEnv con-
tains the names of all the used but undeclared variables.

The OOSL attributes and equations need to be compiled to internal structure
be available in the TARGET window. When they are, the attributes are accessible
through a submenu.

Do the following in the OOSL window:

■ First we need to update the OOSL aspect with a node class for theRepeatStmt we
added to the grammar earlier. Select a whole node class by repeatedly clicking
and chooseExpand after. A placeholder for a OOSL declaration appears.
APPLAB User’s Guide (version 1.2) 11 of 56

Grammar Editing. A Guided Tour.

ct-

a

ehol-

 by
d if
rted

er
press
ages
s
efore

e

■ Choose the?: node ???? entry underExpand, which inserts a placeholder for a
node class. The node class-name placeholder is automatically selected.

■ ChooseExpand->Edit lexeme and enter the name of the node class (i.e.Re-
peatStmt) followed by return. The prefix placeholder is now automatically sele
ed. Choose the? entry underExpand, and thenExpand->Edit lexeme and fill in
“Stmt”. TheRepeatStmt appears on the right-hand side of theStmt production
in the abstract grammar.

■ Now choose the::= ? entry underExpand, which states the node class type to be
construction. A placeholder for a son now appears. TheRepeatStmt has two sons,
Stmt andExp. Define the first son by doingExpand->Edit lexeme and enter
“a_Stmt”, the name of the son-variable. Define its type by doingExpand->Edit
lexeme at the placeholder afterref , and enter “Stmt”.

■ To insert another declaration of a son select theStmt -son and doExpand After.
Let the second son be calleda_Exp and be of typeExp. Specify it in the same man-
ner as theStmt -son.

■ If the OOSL window is a bit garbled by now, do aMisc->Reunparse to refresh it.

■ The comment placeholder should now be (automatically) selected.Expand it to
NO_comment.

■ The next placeholder contains the body of the node class. Choose the{ ? } entry un-
derExpand. A declaration body of the node class appears with a selected plac
der.

■ Enter an equation by choosing theeq ? := ? entry underExpand. Define the left
hand side of the equation to be the attributeundeclaredEnv . Choose? from the
Expand-menu, thenExpand->Edit lexeme and enter “undeclaredEnv”.

■ Enter the right-hand side of the equation by text editing. ChooseEdit as text. A
one-line text editor now appears. Enter the text “a_Stmt.undeclaredEnv.un-
ion(a_Exp.undeclaredEnv)” and press Return. (You can enlarge the text window
pulling its corners with the left mouse button.) The text will now be processed, an
you have entered it correctly the corresponding structure should have been inse
into the OOSL window. The resulting node class should look like this:

RepeatStmt: node Stmt::=
 (a_Stmt: ref Stmt,

a_Exp: ref Exp)
 { eq undeclaredEnv :=

a_Stmt.undeclaredEnv.union(a_Exp.undeclaredEnv)
 };

■ ChooseCompile OOSL. The (changed) OOSL grammar is now compiled. If any
errors where detected they are marked in the OOSL window with a dotted mark
and a message will appear stating the number of errors found. If this happens,
OK to acknowledge that there are compilation errors and look at the error mess
by choosingExplain next error from the menu. If you have entered the node clas
as described the only possible error should be that the new node class appears b
the node classesStmt and/orExp have been defined. If this is the case then mov
the node class (withCut andPaste after) to appear after the declarations ofStmt
andExp. RedoCompile oosl.

Switch to the TARGET window:
12 of 56 APPLAB User’s Guide (version 1.2)

Grammar Editing. A Guided Tour.

e

t-
the

ar

oose

c-

ared
ses

rget
d to

 into

OSL

L is
■ Select the expression of thewhile -loop. DoShow Attributes->. A list of all
available attributes at that point in the program is shown.

■ ChooseShow Attributes->env. The value of the attribute is calculated and dis-
played in a window. It should contain all the declared variables at this point in th
program. Remove the window by doingKill.

■ Change the declaration ofi to declare a variablex . Re-evaluate theenv attribute of
the expression as before. Note that the variablex is now contained in theenv -at-
tribute instead ofi .

2.10 The Names-menu

In the menu of the TARGET window there is a submenu calledNames->. The contents
of this submenu is defined by the OOSL aspect of the base-grammar. The OOSL a
tributenames is used to define the contents of this submenu. In the demo grammar
node classExp has anames attribute that defines all (semantically) visible names at
the currentExp-node in the TARGET window.

■ Select the expression of thewhile -loop and chooseNames-> from the menu. A
submenu containing all visible names will then be displayed. (If the OOSL gramm
needs to be recompiled a menu optionRecompile OOSL grammar is given. If so,
perform the needed compilation by choosing the given menu option, and then ch
Names-> again.) Choosing one of the presented names, e.g.OK, inserts it into the
current selection.

In a similar fashion, variables that are used but not declared, in the demo, can be a
cessed in a declaration structure.

■ Click twice on the OK in the declaration of OK. ChooseNames-> and a list of all
used, but undeclared variables is presented.

Note! The demo only has support for limited static semantics. For example, the decl
types of the variables are not taken into account. This will be possible in future relea
of APPLAB.

See sections 4.4.7 and 5.4.3 for further details on theNames-menu facility.

2.11 Things That May Go Wrong

One mistake resulting in the changes of a grammar not coming into effect in the ta
window is misspelling of the production name. Be careful not to add extra blanks an
use the same upper/lower case letters. (Use theAll names facility to avoid this.)

Grammar changes of the abstract, concrete or parse grammars will not come
effect until an operation (click,Expand,...) is performed in the TARGET window.
Changes of the OOSL grammar need to be compiled to come into effect. When O
attributes are accessed (Names, Show attribute) the system checks if the OOSL
grammar needs to be recompiled. If so, a menu command for recompiling the OOS
presented. Recompilation of the current OOSL grammar is only performed ifRecom-
pile OOSL grammar is chosen.
APPLAB User’s Guide (version 1.2) 13 of 56

Grammar Editing. A Guided Tour.

re-

b-
the
sup-
the
s,

ects.
ion

evi-

ge
ge

mar
nd
e”
v-

nt.
Unexpanded placeholders in the grammars can sometimes give unexpected
sults. Check that all placeholders are expanded in the grammar.

Inconsistencies may occur between abstract grammars and programs. If an a
stract production is modified and the program contains constructs generated from
old production the program is inconsistent with its grammar. The system does not
port program transformations from old to new abstract grammars. You have to cut
inconsistent parts manually. However, the system is fairly tolerant to inconsistencie
and does not crash for this reason in general.

Inconsistencies may also occur between abstract and concrete grammar asp
This may cause the system to crash. E.g. if the abstract aspect contains a product
WhileStmt::= Exp&Stmt, and the concrete aspect contains a production

WhileStmt ::=
“while ”
@1 “ do ”
@3 _

trying to edit a While-statement will cause the unparser to crash.

If the display of any grammar window gets garbled do aMisc->Reunparse in
that window.

If the system should crash while you are working on a grammar revision that r
sion will be ”locked”. Unlock it by restarting APPLAB (without the option-latest)
and doMisc->Restore all keys in the Evolution Graph Window.

If the system ‘freezes’ for no apparent reason (no working message, or garba
collection) it may be that the Caps Lock or Num Lock have been engaged. Unenga
them for APPLAB to correctly respond to mouse actions.

2.12 Leave the Application Language Lab

■ Do Quit in the grammar window. If any changes have been made since the gram
document was last changed a prompt box with the alternatives “Save”, “Quit”, a
“Cancel” will appear asking you if you wish to save the changes. Choosing “Sav
will save the changes and then quit the program, while “Quit” will quit without sa
ing. The “Cancel” option will neither save nor quit the current grammar docume
14 of 56 APPLAB User’s Guide (version 1.2)

Basic Interaction

 how

n-

ent
elps

it

lar
3.0 Basic Interaction

This chapter explains how to interact with windows, menus and promptboxes, and
to use the mouse

3.1 Windows

A window is eitheropenedor closed. An open window has the following parts: anicon,
a title, aframe, and acontents part. The icon and title parts are optional. When the wi
dow is closed, only the icon and title parts are shown.

3.2 The Mouse

The mouse has three buttons: left (LB), middle (MB), and right (RB).
General usage:

LB Moving windows and selecting items of the window contents.

MB Resizing windows, initiating text editing.

RB Bringing up popup menu

In addition to this general usage, there may be specialized behaviour in differ
windows. The mouse cursor changes shape depending on what it points to. This h
when pointing to small or narrow things, e.g. the window frame.

Note! Donot try to “click-ahead”. If the response of the system is not immediate
is better to wait a little while. Otherwise strange things may happen.

3.3 Popup Menus

Different parts of a window may be associated with different popup menus. In particu
there is

icon menu on the icon of a closed window

title menu on the title of a closed window

frame menu on the icon and frame of an open window

icon
title

frame

contents
APPLAB User’s Guide (version 1.2) 15 of 56

Basic Interaction

nd

e pin
RB).
ag

se

g.
se
s.
contents menu on the contents part of an open window

The icon and frame menus contain general window commands whereas the title a
contents menus are application menus are application specific.

Some menus are “stay-up”-able. These menus have a “pin” at the top. Choosing th
makes the menu stay up. A pinned up menu disappears when clicking on the pin (
Some menu alternatives are “pull-right”-able, indicated by an arrow to the right. Dr
the mouse to the right and a new menu appears.

To refer to menu commands we will use the following notation:

choice select “choice” in a popup menu.

window -> choice select “choice” in a popup menu of “window”

choice -> subchoice pull right at “choice” and select “subchoice” in
the appearing submenu.

choice -> “txt” select “choice” in a menu and answer “txt” in a
textprompt.

3.4 Basic Commands on Windows

Open Open window by double clicking (LB) on the icon or title of a
closed window, or chooseopen in the icon menu.

Close Close window by click on the icon of an opened window, or choo
close in the frame menu.

Move Move window by dragging title or frame (LB). (Dragging the icon
works only for closed windows.)

Resize Resize window by holding on to the window frame (MB) and dra
The cursor turns into a lower right corner shape. You may also u
the LB for resizing if you start dragging close to one of the corner
Resizing an interior window will automatically resize outer win-
dows as well if this is needed to make all of the window visible.

Front Bring window to the front by clicking on title or frame (LB). The
window is placed in front of sibling windows. Instead of clicking,
thefront command in the frame or icon menu can be used.

“stay-up”-pin “pull-right”-arrow
16 of 56 APPLAB User’s Guide (version 1.2)

Basic Interaction

w

t

popup

nu.

key

the

es
ck on
rbage
Back Bring a window to the back of all its sibling windows by the back
command in the frame or icon menu.

3.5 Additional Menu Commands on Windows

Visible Resizes outer windows to make sure all of the items of the windo
contents are applicable

Scrollbars Adds or removes scrollbars. Only applicable to windows with tex
contents.

Refresh Redraws the window or icon.

3.6 Text

Text based interaction is only possible in textprompts.

3.6.1 Positioning and Selection

LB click position the text cursor

MB click extend the selection

Keyboard arrow keys (up, down, left, right) change the position of the text cursor.

3.6.2 Cut, Copy and Paste

Use the cut, copy, and paste keys on the keyboard or the menu commands in the
menu.

3.6.3 Scrolling

Add scrollbars to the window by the command in the popup menu or the frame me

3.7 Textprompts

Textprompts usually contain an OK and a CANCEL button. Pressing the RETURN
on the keyboard is a short-cut for clicking on the OK button.

Some hints:

■ If the text is too large to be completely visible in the prompt you need to resize
promptbox. (Scrolling in promptboxes is currently not implemented.)

■ The textprompt can be resized by dragging one of its corners.

■ The textprompt can be moved by holding on to its frame and dragging it.

3.8 The “broom”

The APPLAB implementation depends on garbage collection which sometim
takes a few seconds and slightly disturbs user interaction. To give the user feedba
when this happens, the mouse cursor changes shape to a “broom” each time the ga
APPLAB User’s Guide (version 1.2) 17 of 56

Basic Interaction

p-
n AP-
collector is started, as shown below. If the “broom” appears, simply wait until it disa
pears again. In case the broom shows up very frequently, you probably need to ru
PLAB with a larger heap. This may be the case if you are working with larger
grammars. See section 8.1 on how to start APPLAB with a larger heap.
18 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Editor

t

led

 as-

O
w
ick-

 a

ve

m-
r

ally.
 be

u-
4.0 The Grammar Editor

4.1 Window Structure

The window hierarchy in the grammar editor is the following:

PBO window Represents all the revisions of the grammar

Evolution Graph window

Contains the Evolution graph for the grammar documen

Grammar window Contains the parts of a revision of the grammar, so cal
aspect

Grammar aspects Contains one part of a grammar, e.g. abstract
grammar, concrete grammar, etc.

Target window Contains a target structure which is edited
according to the abstract, concrete and parse grammar
pects.

Text Link window Similar to a target window but its contents is linked to a
text file.

4.2 Entering, Exiting, and Saving a Grammar

Entering Enter a grammar document “lang.gram” by typing

applab lang.gram

in a shelltool in the OpenWindows system (or in X windows). The PB
window containing the Evolution Graph of the grammar document no
appears. Each “box” represents a revision of the grammar. Double cl
ing on one of them opens a grammar window for that revision.4

Exiting Exit a grammar revision by grammar window -> Quit. If any chang-
es have been made since the grammar document was last changed
prompt box with the alternatives “Save”, “Quit”, and “Cancel” will ap-
pear asking if you wish to save the changes. Choosing “Save” will sa
the changes and then quit the program, while “Quit” will quit without
saving. The “Cancel” option will neither save nor quit the current gra
mar document. To finish an APPLAB session each opened gramma
window has to be exited and then doPBO window->Quit.

Saving Save the grammar bygrammar window -> Save. It is recommended
to save the grammar rather often since the system crashes occasion
Each save creates a new revision of the program. A revision cannot
changed.

4.3 Creating a New Grammar

A new grammar document is created by starting APPLAB with a new grammar doc
ment name with the extension “.gram”, e.g. “applab newlang.gram ”. A PBO win-

4. See Section 7.0 for further details on the version control system.
APPLAB User’s Guide (version 1.2) 19 of 56

The Grammar Editor

g it
w as
dow
he

 syn-

can
ers
enu.
or-

ate-

ues-

hole
est

g.
dow with an Evolution Graph containing one (empty) revision node appears. Openin
reveals an empty grammar window. Add an abstract, a concrete, and a target windo
described in section 4.6.1. Do not forget to set the startproduction in the target win
before editing in the target window (see section 4.4.8). If no startproduction is set t
first production of the abstract window is chosen.

4.4 Editing In the Target and Grammar Aspect Windows

Grammars and programs edited in APPLAB are represented internally as abstract
tax trees,ASTs. The basic editing technique used isstructure editing where constructs
are inserted into the grammar aspects by selecting them in a menu. The program
contain placeholders, which represent incomplete parts of the aspect. The placehold
can be replaced by syntactically correct language constructs by choosing from a m
This means that it is impossible to construct documents which are syntactically inc
rect. APPLAB also supports text editing of structures.

4.4.1 Placeholders

There are three kinds of placeholders.

? The questionmark denotes a placeholder for a language construct, e.g. a st
ment or an expression. E.g.

while ? do
?

Here the first questionmark is a placeholder for any expression. The second q
tionmark is a placeholder for any statement.

_ The underscore denotes an empty list. E.g.
while ? do
begin

_
end

Here the underscore denotes an empty list of statements

@ The at-sign denotes a placeholder for alexeme in the program. A lexeme place-
holder must be replaced by a sequence of characters.

4.4.2 Selection

Language constructs are selected by clicking with the left mouse button. Repeated
clicks at the same position extends the selection to the enclosing construct. If the w
AST is selected, a repeated click starts from the “beginning” and selects the small
construct at the click position.

Unfortunately, there is currently no mechanism for selecting a part of a list, e.
two statements out of three in a list.

4.4.3 Expansion

A placeholder can be replaced, orexpanded, by the menu command

Expand ->...
20 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Editor

on-

This
fortu-

ce-

of

ct-

-

n the
 the
cting
ther
lace-
l not
y re-

ing,
 and

ture
then
 cur-
What appears in the submenu depends on the current selection.

Non-placeholder cannot be expanded

? placeholder the submenu contains syntactically correct language c
structs

_ placeholder Expand -> Expand list will insert an element into
the list.

@ placeholder Expand -> Edit lexeme will produce a text prompt
box where you can type in the new lexeme.

A list can be expanded by selecting one of its elements and selecting
Expand after or Expand before.

4.4.4 Cut, Copy, Paste

The system has an internal “paste buffer” which can hold any language construct.
paste buffer can be used to move language constructs within a grammar aspect. Un
nately, the paste buffer does not work across different grammar aspects.

Cut Removes the current selection and replaces it with a pla
holder. The removed language construct is placed in the
internal paste buffer.

Copy Copies the current selection into the paste buffer.

Paste Replaces the currently selected placeholder with a copy
the paste buffer.

Paste after Inserts a copy of the paste buffer after the currently sele
ed list element.

Paste before Inserts a copy of the paste buffer before the currently se
lected list element.

4.4.5 Some Hints

One source of confusion is that some language constructs have the same extent o
screen. This means that one cannot tell which one of them is selected. This is e.g.
case for some lists with one element. One cannot see the difference between sele
the only element and selecting the whole list with the only element. This can be ra
confusing. E.g. if you have selected a list with one element where the element is a p
holder, you may think that the placeholder is selected. But the expand command wil
work as if you actually have selected the list. In these situations you can find out b
peated selections which construct you have actually selected.

4.4.6 Text Editing

The “expand” command is usually rather tedious to use for constructing and chang
e.g. expressions. Therefore, text editing facilities are also provided for expressions
all other language construct. To edit a structure as text, select it and chooseEdit as
text... from the menu. A promptbox appears in which you can edit the selected struc
as text. When you are ready, press the RETURN key on the keyboard. The text is
processed, and if it is syntactically correct, the corresponding AST will replace the
APPLAB User’s Guide (version 1.2) 21 of 56

The Grammar Editor

 con-
 for
 ap-
To
ar

e

-

 do
pe

port

-

isi-
e ac-
ar

ntics

ror
osen

t is

.

rent selection. If any syntax errors where encountered an error window will appear
taining a report on the detected errors, and the edited text is presented to the user
further text editing. Sometimes a window containing grammar errors and warnings
pears. E.g. when text editing in the CONCRETE window such a window appears.
avoid it popping up every time a text edit is performed iconize it and it will only appe
again if any further grammar errors are detected.

There is a convenient short-cut to text editing. Click on the middle button of th
mouse instead of choosing theEdit as text menu command.

See section 5.3 on how to configure the text editing facilities for a specific lan
guage.

4.4.7 Semantic Editing

As a complement to structure-oriented editing and text editing it is also possible to
semantic editing. Semantic editing can utilize static semantic information such as sco
rules, properties of declared identifiers, and context of the current selection to sup
high-level editing. At the moment such semantic support is limited to theNames menu,
but in future releases of APPLAB will contain more support for configuring and per
forming semantic editing of grammars and programs.

TheNames menu is designed to give a submenu of all names (semantically) v
ble at the current selection (cmp the Names menu in the Mjølner/Orm system). Th
tual contents of theNames menu is defined by the OOSL aspect of the base-gramm
and can be configured by the language designer. If the contents of theNames menu has
not been defined in the OOSL aspect the current selection it is said to have no sema
defined for it.

See section 5.4.3 for further details on how to define the contents of theNames
menu.

When the user selects a name from theNames menu the system tries to insert it
into the current selection. If the text can not be correctly matched to a structure, er
messages are given and the user is presented with a text editing prompt with the ch
text.

The submenuAll names works in the same way asNames except that it contains
a list of all current lexemes in the grammar aspect window. I.e. when a lexeme tex
chosen from theAll names-list the system tries to insert it at the current selection.

4.4.8 Other Editor Commands in Grammar Aspect Windows

Edit as text...... Edit the current focus as text.

Import text...... Import the contents of a text file into the current focus.

Find-> Tries to locate a lexeme matching a given search string

Find... Asks the user for a search string.

Find pastebuffer Uses the current contents of the pastebuffer.

Find next Continues a previous successful search.
22 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Editor

n-

.

r

of

ot
he
n

-
at-
Find names-> Presents a list of all lexeme-texts of the current window.

Misc->

Scrollbars on/off Add or remove scrollbars to the window

Redisplay Redisplay the text in the window.

Reunparse Reunparses the contents of the window according to the
concrete grammar and displays it. Used in the target wi
dow when the display has been garbled.

Rebuild menus Recreates the contents of the expand menu.

Save As Text Saves a grammar aspect or target structure on a text file
You will be prompted for the filename.

Save Interface Not documented.

Save As Tree Not documented.

Delete Fork Deletes this TARGET or grammars aspect window, afte
confirmation.

Set Title-> Allows the title if a target or grammar aspect window to be
changed.

Set Startprod-> Allows a production to be chosen as the start production
the abstract syntax tree in the window. This is typically
used when a target window just has been created. The ro
node of the tree is set to the desired start production of t
abstract grammar. Use the “Edit...” alternative to enter a
arbitrary production name

Binding Rule-> Not documented.

Show attribute-> Contains the available OOSL attributes at the current fo
cus. Choosing an attribute from the menu evaluates that
tribute and displays the result.

Print attribute-> The same asShow attribute but the value of the attribute
is displayed to a textfile. You will be prompted for the
filename.

Special-> Contains a few utilities. It varies slightly depending on
which aspect it appears in. It basically has the following
entries:

Debug-> Undocumented.

Check Grammar Undocumented.

4.4.9 Short-cuts

There are a number of short-cuts when editing grammar aspect windows.

Mouse short-cuts

■ Middle mouse button works asEdit as text...

Keyboard short-cuts

■ The arrow keys move the selection.
APPLAB User’s Guide (version 1.2) 23 of 56

The Grammar Editor

key-
entry
sert-
,

bols

not
and

ar
e in
ry
l con-
op-

ts
UP moves the selection one level up in the AST

DOWN moves the selection to the first son node in the AST

RIGHT moves the selection to the next node in a preorder traversal

LEFT moves the selection to the previous node in a preorder
traversal

■ Control keys (hold down the CTRL key while typing another character)

^E Expand list or Expand lexeme

^M (or RETURN) Expand after

^B Expand before

■ Function keys

Copy

Paste

Cut

Find

■ The TAB key works asEdit as text...

4.4.10 Short-cuts to the Expand Menu

Instead of selecting syntactic constructs from the Expand menu with the mouse, the
board can be used. Type the keywords of an entry and press <TAB>. The keyboard
will be matched with the expand menu entries and the matching construct will be in
ed in the program. Each word of the menu entry may be abbreviated. For instance
“while <TAB>“, “while do<TAB>”, “wh d <TAB>”, and “wh<TAB>” will all result in
that a while-do template is inserted in the program. Notice that the placeholder sym
(“?” and “...”) in the menu entries should not be typed.

These short-cuts are still at an experimental level in the system. They are thus
yet fully supported. The keyboard input is not echoed on the screen, for instance,
the input can not be edited using <DELETE>.

4.5 Editing In the Text Link Window

Working in a text link window is basically the same as working in a target or gramm
aspect window. All the editing operations described in section 4.4 are also availabl
text link windows. The only difference is that a text link window is of a more tempora
nature. Each text link window is edited according to a base grammar and its actua
tents is linked to a text file. The menu of a text link window contains the additional
tions

Save & Quit Saves the contents of the window on the text file and qui
APPLAB

Save Saves the contents of the window on the text file

Quit Quits APPLAB without saving any changes on the text
file.
24 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Editor

hen
m-
ding
of the
text
 -
.

the

ision
the
 get
ar

truc-
hich

f

n

t us-
Text link windows appear when APPLAB is used for socket communication, and w
the system is started with the-text option. The name of a text file and the base gra
mar to be used is given. The text is then imported and translated into its correspon
structure according to the given base grammar. The user can then edit the contents
text file in the structure-oriented editor and save the result, as text, on the original
file. This option is useful for integrating APPLAB in an environment with other (text
based) tools. See section 8.0 for further details on how to use APPLAB in this way

4.6 Editing In the Grammar Window

4.6.1 Inserting and Deleting Grammar Aspects and Targets

New target and grammar aspect windows can be inserted by menu commands in
grammar window.

Add Abstract Inserts a new abstract grammar aspect

Add Concrete Inserts a new concrete grammar aspect

Add Parse Inserts a new parse grammar aspect

Add OOSL Inserts a new OOSL grammar aspect

Add Target Inserts a new target structure

EDIT Insert an unnamed grammar aspect

After having selected one of these entries, the system prompts for the name and rev
of the meta grammar. Usually you can use the meta grammar name suggested in
prompt box by just pressing return. The revision is selected in a revision graph. To
the latest revision, double-click in the right most box of the graph. The meta-gramm
“<SELF>” is suggested when a target window is opened. It means that the target s
ture is edited using the abstract and concrete grammar aspects in the grammar of w
the target window itself is part (this is usually what you want).

A target or grammar aspect window is removed using:

Delete fork Delete a target or grammar aspect window. The name o
the window to be deleted is specified in a prompt box.
N.B. Be careful to spell the name exactly as it appears i
the title of the window.

4.6.2 Other Commands

The grammar window menu also contains the following entries. We recommend no
ing the undocumented ones.

Change Meta Grammars

Not documented.

Revision Not documented.

Miscellaneous Not documented.

Import text... Imports a program from a textfile to a new grammar as-
pect.
APPLAB User’s Guide (version 1.2) 25 of 56

The Grammar Editor

t
n oc-
ed
ut of

es-
 is

B

oving

w
ex-

old-
ine.
w.
 prob-
edy

he

vi-
Import text as... Same asImport text, but a new metagrammar can be
specified

Pretty Print Generates a pretty print list of the current grammar.

Debug Not documented.

4.7 Restoring a Crashed Grammar

If APPLAB crashes while you have an opened grammar, you will normally have los
only the changes you made since the last Save command. However, a complicatio
curs if the system crashesduringopening or saving the grammar. In this case, the stor
grammar may be left in an inconsistent state. Such crashes may occur if you run o
disk quota, heap space, or swap space during these operations.

If the program is in an inconsistent state, APPLAB will crash or give an error m
sage when you start it on the grammar again. Usually, the following error message
given in the Unix shell window:

Warning: Wrong version of bytestring

In this case, press <CTRL>-C, or press <RETURN> a few times until APPLA
crashes.

To be able to open the grammar again, consistency must be restored by rem
the latest revision of the grammar. To do this, proceed as follows.

Save a backup copy of the grammar (in case this cure does not work) by

ormcp lang.gram lang-backup.gram

(If you are out of disk quota this might not be possible).

Open the grammar with revision handling by the following command in a unix
shell window:

applab lang.gram

A revision handling window for the grammar appears. The revision handling windo
contains an “Evolution Graph” window showing small boxes which represent all the
isting revisions of the grammar.

1. The revisions are organized in a tree-structured graph of “alternative lines” with
er revisions to the left and newer to the right. Often, there is only one alternative l
Each alternative has a “key” which is also displayed in the Evolution Graph windo
Since the system crashed the previous time the grammar was edited, the key is
ably crossed over, indicating that the key has not been returned properly. To rem
this, do the menu commandEvolution Graph Window -> Misc -> Restore all
Keys. A promptbox asks if you want to restore all keys. Click on the Yes button.T
cross over the key now disappears.

2. The rightmost small box in the Evolution Graph window represents the latest re
sion. Click on it and it becomes marked. Then delete it byEvolution Graph Win-
26 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Editor

r by

rou-
tors.
dow -> Delete.

A promptbox asks if you want to delete the revision. Click on the Yes button.

3. Check if the cure worked by opening the latest remaining revision of the gramma
double clicking on the rightmost small box of the Evolution Graph Window. If the
grammar opens normally you may remove the backup copy. If not, refer to the t
ble shooting section in the chapter on version handling, or contact the implemen
APPLAB User’s Guide (version 1.2) 27 of 56

The Grammar Formalisms

s.
the
truc-

 as-
xed

fines
the
ar.
e.

 be-

on
eci-
of
n (“...
d,
, an
pro-

uc-
he
mars.
wn

ab-
5.0 The Grammar Formalisms

The grammar aspects in the different windows are expressed in different formalism
The underlying language of the structure in the target window is typically defined by
abstract and concrete grammar aspects in the same grammar. Text editing of the s
tures in the target window is defined by the abstract, concrete and parse grammar
pects. The abstract, concrete, parse, and oosl aspects are edited according to a fi
metagrammar for each aspect respectively.

5.1 The Structure of Abstract Grammars

An abstract grammar (or more accurately, the abstract aspect of a grammar) only de
the structure of a language. It is similar to a conventional BNF grammar, but since
concrete syntax is omitted it only contains the nonterminals of a conventional gramm
A production can be of four different types: construction, alternation, list, and lexem
The different types cannot be nested in one production. Some examples are given
low:

(1) StatementList ::* Statement List
(2) Statement ::! If ! While ! Assign Alternation
(3) If ::= Expression & Statement & Statement Construction
(4) Expression ::! ID ! Add ! Sub ! Mult ! Div Alternation
(5) Plus::= Expression & Expression Construction
(6) ID::= LEXEME Lexeme

(1) A StatementList consists of a number of statements, specified in a list producti
(“... ::* ... ”).(2) A statement can either be an If, a While, or an Assign statement, sp
fied in an alternation production (“... ::! ... ! ...”); (3) An If statement is an aggregation
an Expression, a Statement, and a Statement, specified in a construction productio
::= ... & ...”). (4,5) The productions state that an Expression is an alternation if ID, Ad
Sub, Mult, and Div, and that a Plus is a construction of two Expressions. (6) Finally
ID(identifier) has a textual contents filled in by the user. This is stated in a lexeme
duction (“... ::= LEXEME”).

In the ABSTRACT window, the abstract grammar is edited by means of the str
ture-oriented editor. It is edited according to the language of abstract grammars. T
structure of abstract grammars is defined by an abstract grammar for abstract gram
Below the structure of abstract grammars is shown. The grammar is written in its o
formalism5:

(1) AbstractGrammar::* Production
(2) Production::= Id & Definition
(3) Definition ::! Alternation ! Construction ! List ! Lexeme
(4) Alternation::* Id
(5) Construction::* Id
(6) List ::= LEXEME
(7) Id ::= LEXEME
(8) Lexeme::=_

5. This is actually the grammar interpreted by the structure-oriented editor while editing an
stract grammar in the ABSTRACT window
28 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

ists
ight
 Al-
r of
e of
re of

mber
 con-
duc-
mar.

elim-
ture-
 in

on-
e the
. The
he ab-

duc-
with
e be-
t is
nta-
y

he
a semi-
last
text
(1) An abstract grammar consists of a number of productions. (2) A production cons
of an Id containing the production name at the left hand side and a definition at the r
hand side. (3) The definition states the production type, which can be chosen from
ternation, Construction, List, and Lexeme. (4) An alternation is specifying a numbe
alternatives. Its structure is a list of Identifiers, each containing the production nam
an alternative. (5) A construction consists of a number of descendants. The structu
the construction definition is thus a list of identifiers, each specifying the production
name of a descendant. (6) A list specifies that a construct can have an arbitrary nu
of descendants, all of the same type. The structure of the list definition is a lexeme
taining the production name of the construct to be repeated. (7) An Id contains a pro
tion name and is thus a lexeme. (8) A lexeme definition is a terminal node in a gram

5.2 The Structure of Concrete Grammars

A concrete grammar (or the concrete aspect of a grammar) adds syntactic sugar, d
iters, and formatting information to the abstract grammar. This is used by the struc
oriented editor for presentation of the edited program or grammar. Each production
the abstract grammar, except for alternation productions, has a production in the c
crete grammar. The production name in the concrete grammar production has to b
same as in the abstract grammar. An example of a concrete grammar is given below
grammar describes the concrete aspect of the same language as the example of t
stract aspect in the previous section.

(1) StatementList ::= List
before:”begin” >>> <nl>
in:”;” <nl>
after:<<< <nl> “end”

(2) If ::= Construction
“if “
@1 “then” >>> <nl>
@2 <<< <nl> “else” >>> <nl>
@3 <<<

(3) Plus::= Construction
_
@1 “+”
@2 _

(4) ID::= Lexeme
before:_
after:_

(1) The production in the abstract grammar describing a StatementList is a list pro
tion. In the concrete grammar, the presentation is also specified in a list production
the same name. A list production has three parts, the before, in, and after part. Th
fore part specifies the text and formatting information before the first descendant. I
expressed in a list of templates chosen from text (“...”), indentation (>>>), end inde
tion (<<<), and newlines (<nl>). In this case the text “begin” is presented followed b
increasing the indentation level (>>>) and a new line (<nl>). The in part specifies t
concrete syntax separating the descendants of the StatementList, in the example
colon followed by a new line. The after part specifies the concrete syntax after the
descendant. In the example, decreasing the indentation level, a new line, and the
“end”.
APPLAB User’s Guide (version 1.2) 29 of 56

The Grammar Formalisms

ists
s to
e de-

dition
n
llowed
ta-

ction
emp-

ion

”.
s. The
t. In

-

tifi-
) A

on-
dants.
) A
g in-
at-
be
e in-
 lex-

nList
ons)
ing

rs in
(2) An If statement is a construction production. The concrete production cons
of the concrete syntax before the first descendant, “if “, and a number of reference
the presentation of the descendants (@...), followed by the concrete syntax after th
scendant. In the example “@1” results in presentation of descendant one, the con
expression of the if statement, followed by the text “then”, increasing the indentatio
level, and a new line. The second descendant, the then-statement, is presented fo
by decreasing the indentation level, a new line, the text “else”, increasing the inden
tion level, and a new line. (3) The Plus production is another example of a constru
production. It has no concrete syntax before the first descendant represented by an
ty template list (_). The first descendant is followed by the text “+” and the presentat
of the second descendant. No concrete syntax follows the second descendant.

(4) Finally, the ID is a lexeme production. It has two parts, “before” and “after
The before part specifies the concrete syntax presented before the lexeme content
lexeme contents is then presented followed by the concrete syntax of the after par
the example no concrete syntax is preceding or following the identifier.

The structure-oriented editor has knowledge of the structure of concrete gram
mars. It can be expressed in an abstract grammar for concrete grammars6:

(1) ConcreteGrammar::* Production
(2) Production ::= Id & Definition
(3) ID ::= LEXEME
(4) Definition ::! Construction ! List ! Lexeme
(5) Construction ::= TemplateList & SonList
(6) TemplateList::* Template
(7) Template ::! Text ! NewLine ! Indent ! EndIndent
(8) Text ::= LEXEME
(9) NewLine ::= _
(10)Indent ::= _
(11)EndIndent ::= _
(12)SonList ::* Son
(13)Son::= SonNumber & TemplateList
(14)SonNumber ::= LEXEME
(15)List ::= TemplateList & TemplateList & TemplateList
(16)Lexeme ::= TemplateList & TemplateList

(1) A concrete grammar is a list of productions. (2) A Production consists of an iden
er, Id, and a definition. (3) An ID contains a production name and is thus a lexeme. (4
definition is either a construction, a list, or a lexeme. (5) A construction definition c
sists of a TemplateList describing the concrete syntax presented before the descen
The concrete syntax of the descendants is described in the SonList production. (6
TemplateList consists of a number of templates containing keywords and formattin
formation. (7) A Template either is a text containing a keyword or delimiter, or form
ting information Newline, Indent, or Endindent. NewLine means that a new line is to
inserted, Indent that the indentation level is to be increased, and EndIndent that th
dentation level is to be decreased. (8) A Text contains the text to be presented in a
eme. (9,10,11) The Newline, Indent, and Endindent production do not have any
descendants or text contents. They are thus terminals in the grammar. (12) The So
(in the construction definition) specifies the concrete syntax for the descendants (s
of a construction. (13) A Son consists of a SonNumber and a TemplateList contain

6. This is the grammar used by the structure-oriented editor when editing concrete gramma
the CONCRETE window
30 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

ld be

ment
ents,
me
e

ent,
t to
level
er-
he

ion

rete)
mbi-
 prec-
r also
pects

e.
ions
ple
.

 the

in an

 and

in the
the concrete syntax to be presented after the son. (14) A SonNumber contains the
number of the son that is part of a construction. It is a lexeme and its contents shou
1 for the first son, 2 for the second, etc. (15) A List definition has three parts. One
TemplateList that specifies the concrete syntax to be presented before the first ele
of the list, one TemplateList that specifies the concrete syntax separating list elem
and one TemplateList for the concrete syntax after the last list element. (16) A lexe
definition contains a TemplateList containing the concrete syntax before the lexem
contents, and one TemplateList for the concrete syntax after it.

The “bread and butter” of the concrete grammars are the Text, Indent, EndInd
and NewLine templates. A Text template will cause the lexeme contents of the Tex
be presented. The Indent and Endindent will increase and decrease the indentation
respectively. The Indent and Endindent will not come into effect until a NewLine is p
formed. A NewLine results in a new line in the presentation and an indentation to t
current indentation level.

5.3 The Structure of Parse Grammars

A parse grammar (or the parse aspect of a grammar) specifies additional informat
needed to correctly perform textual editing of a grammar aspect. AGrammar-Interpret-
ing Parser7-component is used to allow textual editing of any selected structure of a
grammar aspect within the structure-oriented editor. The same (abstract and conc
syntax as is used in the structure-oriented editor is recognized by the parse. Any a
guities of the abstract grammar are resolved in a parse grammar by specifying the
edence and associativity of ambiguant productions (operators). The parse gramma
partly specifies the lexical syntax of the defined language and configures certain as
of the parsing component. An example of a parse grammar is given below.

Priorities:
left: Add, Sub
< left: Mult, Div

Configuration:
Comment: “(*” ... “*)”
String Quote: “‘”

Each line of the “priority” part contains a list of productions of the same precedenc
They are either right, left, or non-associative, or have no associativity. The product
are listed from the lowest to the highest level of precedence. I.e. in the given exam
Add and Sub, which are left associative, have lower precedence than Mult and Div

The “configuration” part of the parse grammar is used to specify certain aspects of
lexical syntax, i.e. comments and strings, and to configure the parser component.

APPLAB has knowledge of the structure of the parse grammar. It can be expressed
abstract grammar for the parse grammar8.

7. See “A Grammar-Interpreting Parser in a Language Design Laboratory” by E. Bjarnason
G. Hedin, To be presented at the poster session of CC’96

8. This is the grammar used by the structure-oriented editor when editing parse grammars
PARSE window.
APPLAB User’s Guide (version 1.2) 31 of 56

The Grammar Formalisms

fig-
(3)

left,
oduc-
tion
n:s.
,
ap-
ord
gs,

ud-
d-to-

o-

be
ters
a lan-
c-
xeme-
 key-
(1) ParseGrammar::= priorities&configuration
(2) priorities ::* priority_level
(3) priority_level ::= assoc_kind&prod_list
(4) assoc_kind ::! left!right!nonassoc!NO_assoc
(5) left ::= _
(6) right ::= _
(7) nonassoc ::= _
(8) NO_assoc ::= _
(9) prod_list ::* production
(10)production ::LEXEM
(11)configuration ::* C_config_option
(12)C_config_option::!StringQuote!Comment!ExtendedFocus!NOStri

ngs!NO_left_factor!NO_priorities
(13)StringQuote ::LEXEM
(14)Comment ::= Keyword&EndComment
(15)Keyword ::LEXEM
(16)EndComment ::! Keyword ! EOLToken
(17)EOLToken ::= _
(18)ExtendedFocus ::= _
(19)NOStrings ::= _
(20)NO_left_factor ::= _
(21)NO_priorities ::= _

(1) A parse grammar consists of two parts: one for defining priorities and one for con
uring the parser component. (2) The priorities are defined as a list of priority_level:s.
Each priority_level has an assoc_kind and a prod_list. (4) An assoc_kind is either
right, nonassoc or NO_assoc. (5, 6, 7, 8) the left, right, nonassoc and NO_assoc pr
tions do not have any descendants. (9) prod_list is a list of production:s. (10) produc
contains the name of a production. (11) The configuration is a list of C_config_optio
(12) C_config_option is either StringQuote, Comment, ExtendedFocus, NOStrings
NO_left_factor or NO_priorities. (13) StringQuote contains a character used to enc
sulate strings. (14) Comment contains a Keyword and an EndComment. (15) Keyw
is the text of a keyword. (17, 18, 19, 20, 21) the EOLToken, ExtendedFocus, NOStrin
NO_left_factor and NO_priorities productions do not have any descendants.

5.3.1 The Lexical Syntax

In the current version of APPLAB the definition of lexical items are hand-coded, incl
ing identifiers, keywords, numerical constants, strings and comments. Start- and en
kens of strings and comments can be specified in the configure part of the parse
grammar.

When doing textual editing in APPLAB special note is taken of the lexeme pr
ductions ID, NUM, INT, REAL, and ANYLEX of the abstract grammar. The ID pro-
duction matches an identifier, the NUM, INT and REAL productions are expected to
used for numerical constants, while ANYLEX represents any combination of charac
and should be used for strings and comments. Thus, when defining a grammar for
guage which is to be editable as text, the ID, NUM, INT, REAL and ANYLEX produ
tions should be defined as lexeme-productions and used instead of user-defined le
productions. Internally, the predefined lexeme productions, comments, strings, and
words, are implemented as follows:

(1) NUM -> INT | REAL
(2) INT -> Integer
(3) REAL -> RealNumber [Exponent]
(4) ID -> Letter {Letter|Digit|’_’}*
(5) ANYLEX -> (Chars)*
32 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

by
 on

rge a
allow
 of
t be
s in-

ified

the
n

,

ntics

na-
l-
class
mar.

ce,
(6) Comment-> CommentBeginToken ANYLEX CommentEndToken
(7) String -> QuoteChar ANYLEX QuoteChar
(8) Keyword -> (Non-blank)+
(9) RealNumber -> Integer.Integer
(10)Exponent -> (E | e)[+|-]Integer
(11)Integer -> Digit*
(12)Digit -> {0..9}
(13)CommentBeginToken -> (Specified in PARSE)
(14)CommentEndToken ->(Specified in PARSE)
(15)QuoteChar -> (Default: ‘”’, specified in PARSE)
(16)Chars -> {All printable ASCII characters}
(17)Non-blank -> {All printable non-blank ASCII characters}
(18)Letter -> {‘A’..’Z’, ‘a’..’z’}

5.3.2 Configure Text Editing

The text editing facilities of APPLAB can be configured for each language described
a grammar in APPLAB. The parser component that performs the text editing works
an internal representation of the current grammar. In order to correctly parse as la
set of grammars as possible this internal grammar representation is restructured to
the parser to perform correctly. Sometimes, it may be desirable to limit the amount
restructuring done to the grammars but that means that the original grammar mus
suitable for parsing without those grammar transformations. The configuring option
clude:

No left factoring Common prefixes are not factored out; the grammar
should be LL(1)

Do not use priorities The precedence and associativity of productions spec
in the parse grammar should not be used; the grammar
must be unambiguous

Extended focus When selecting a structure for textual editing match to
most general language construct with the same extent o
the screen. E.g. for the grammar Exp ::! Add ! ... ! NUM
NUM::LEXEM. Selecting the lexeme-structure of a NUM
production is equal to text editing an Exp-structure.

5.4 The Structure of OOSL Grammars

The OOSL grammar (or the oosl aspect of a grammar) is used to define static sema
defined as Door Attribute Grammars9. Each production in the abstract grammar has a
node class in the OOSL grammar. There are different types of node classes, Alter
tion(::!), Construction(::=), List(::*) and Lexeme(::LEXEM). They correspond to the a
ternation, sequence, list and lexeme productions of the abstract grammar. The node
name in the OOSL grammar production has to be the same as in the abstract gram
An example of an OOSL grammar is given below.

Expr: node ANYNODE::! Alternation
 { inh expectedType : integer ;

loc myType : integer ;
loc sonError : boolean ;

9. See Hedin, G., “Incremental Semantic Analysis”, Ph. D. thesis, Dept. of Computer Scien
Lund University, for a more detailed description of the grammar formalism.
APPLAB User’s Guide (version 1.2) 33 of 56

The Grammar Formalisms

an be
e ex-

ne

cked
nd-at-
he

e
ing

s-

 with it.
ror
t is
loc locTypeError : boolean ;
eq locTypeError :=

if expectedType = anyType or
myType = anyType then

false
else

expectedType = myType;
eq error := locTypeError or sonError;

};

WhileStmt: node Stmt::= Construction
 (a_Expr: ref Expr,
 a_Stmt: ref Stmt)
 { eq error :=
 a_Expr.error or
 a_Stmt.error;

eq a_Expr.expectedType :=
 boolType
 };

 Less: node Expr::= Construction
 (a_Expr1: ref Expr,
 a_Expr2: ref Expr)
 { eq sonError :=
 a_Expr1.error or
 a_Expr2.error;

eq son Expr.expectedType :=
 numType;

eq myType :=
 boolType
 };

For each node class attributes and equations defining the value of those attribute c
specified. APPLAB has knowledge of the structure of the OOSL grammar. It can b
pressed in an abstract grammar for the OOSL grammar.

5.4.1 Compiling an OOSL Grammar

In order to benefit from the entered OOSL grammar it must be compiled. This is do
by choosing the menu alternativeCompile oosl in the menu of the OOSL window, or,
the menu alternativeRecompile OOSL grammar, which appears when the system
discovers the need to recompile. During compilation the OOSL aspect is read, che
for semantic errors and compiled to internal data structures used to perform dema
tribute evaluation. A message is given upon completion of compilation to indicate t
outcome of the compilation.

When compiling by issuing the menu alternativeCompile oosl in the menu of the
OOSL window an error marker is set at the corresponding language construct in th
OOSL window whenever an error is detected. Focusing on this marking and choos
the menu alternativeExplain error gives a short explanation of the error. It is also po
sible to scroll through the errors with the menu alternativeExplain next error. The
system then focuses on the next error and presents the error message associated
The error markers remain in the window until the next compilation. I.e. even if the er
is corrected the error marking will remain in the window (unless the whole construc
deleted) until the grammar construct is correctly compiled.
34 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

SL
es is

ult
on,
ot
e list
g. If

t
 up

the
o se-

eval-

in
hich
prede-
ram):
5.4.2 Demand-Attribute Evaluation

As the user edits a program in the TARGET window it is possible to evaluate the OO
attributes defined for the current language construct. A list of the accessible attribut
presented when the user choosesShow Attributes in the menu of the TARGET win-
dow. By choosing one of the attributes of this menu it will be evaluated and the res
presented in a window on the screen. If something goes wrong during the evaluati
e.g. an attribute does not have an equation defined for it or the target grammar is n
complete, then the attribute is said to have an erroneous value. Before presenting th
of accessible attributes the system checks if the OOSL grammar needs recompilin
so, the menu optionRecompile OOSL grammar is given.

5.4.3 Defining the Names Menu

If the current selection has an OOSL attribute with the namenames the contents of this
attribute is presented in theNames menu. This facility is intended to be used to presen
a list of all names (semantically) visible at the current selection of the program. It is
to the language designer to define thenames attribute defining the current names to be
presented in theNames menu. Such an attribute can be defined for any node class of
grammar. If no such attribute is defined for the current selection it is said to have n
mantics defined for it. See sections 2.10 and 4.4.7 for a description of theNames menu
facility.

When requesting theNames menu the system checks if anynames attribute is
defined in the OOSL aspect for the node class of the current selection and if so it is
uated and its contents presented in aNames menu in the TARGET window. The system
also checks if the OOSL grammar needs to be recompiled. If so, the menu optionRec-
ompile OOSL grammar is given.

5.4.4 Predefined Lexeme Classes

The predefined lexeme-productions, ID, NUM, INT, REAL and ANYLEX, described
Section 5.3.1, are implemented as predefined lexeme classes in OOSL through w
the contents of the actual lexeme text can be accessed in the OOSL grammar. The
fined lexeme classes are defined as follows (also found in the LIB aspect of oosl.g

ID: node ::!
 { syn val: string ;

syn lex: string
 };

 NUM: node ::!
 { syn val: real ;

syn lex: string
 };

 REAL: node ::!
 { syn val: real ;

syn lex: string
 };

 INT: node ::!
 { syn val: integer ;

syn lex: string
 };
APPLAB User’s Guide (version 1.2) 35 of 56

The Grammar Formalisms

e im-
 sym-

ed

n at-
 ANYLEX: node ::!
{ syn lex: string };

5.4.5 Predefined Abstract Data Types

In order to more efficiently express static semantics of a language using the OOSL
grammar a number of abstract data types have been predefined. The only data typ
plemented at the moment is a set of strings, but in the future lists, dictionaries and
bol tables are to be predefined. The set is defined as follows (also found in the LIB
aspect of oosl.gram):

Set: class
 { (* Returns true if the set is empty *)

empty: func boolean ;

(* Returns true if the set contains item *)
 contains: func boolean
 (item: string);

(* Adds item to the set *)
 add: func ref Set
 (item: string);

(* Returns the union of this set and s *)
 union: func ref Set
 (s: ref Set);

(* Returns true if this set contains exactly the same
strings as s *)

 equal: func boolean
 (s: ref Set)
 }

5.4.6 The Implemented Subset of Door AG

The OOSL compiler and demand attribute evaluator of APPLAB are presently limit
to handling only a subset of Door AG constructs. This subset includes

■ alt- and cons-classes with (single) inheritance,

■ list classes extended with the predefined attributes cardinal and son.pos, and a
tribute construction expression. SeeList Nodes in OOSL on page 37 for a descrip-
tion of the added features.

■ local, inherited and synthesized attributes,

■ virtual functions with parameters,

■ classes without parameters,

■ types: integer, real, boolean, string, object references

■ logical operations: not, or, and, ==, <>, if-then-else,

■ arithmetic operations: +, -, *, **, function calls,

■ string operations: concat, blanks

■ attribute equations,

■ collective equations.
36 of 56 APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

ndi-

e

ns

an at-

p>
te re-
xp>.
e

d by
, i.e.

gram-
nd
g
 case
g

-
the
 ::= ...

ile
le re-

m.
ing
Doors and semantic objects have been left out, as well as iterators, collections, co
tions, and fix attributes.

5.4.7 List Nodes in OOSL

The list node-construct of OOSL has been extended with the predefined attributescar-
dinal andson.pos, and an attribute construction expression. The predefined attribut
cardinal can be described as follows:

cardinal attribute of list nodes denoting the current number of so

In order to construct attribute values based on attributes of the sons of a list node
tribute construction expression has been added. It has the following syntax:

AC $<Id> := (<Start-Exp> | <Loop_Exp>)

TheAC-expression iterates over all the sons of the list node, evaluating <Loop_Ex
for each one of them. The temporary variable $<Id> is used to store the intermedia
sults and can be accessed in <Loop_Exp>. $<Id> is initiated by evaluating <Start-E
Attributes of the current son are accessed through the predefined reference-variablson
which can only be used in a <Loop_Exp> of anAC-expression. The left-to-right posi-
tion of the current son can be accessed byson.pos. The result of evaluating theAC-ex-
pression is the resulting value found in $<Id>.

5.5 Editing Metagrammars

All grammars in APPLAB are represented as abstract syntax trees. They are edite
means of the structure-oriented editor according to grammars describing grammars
metagrammars. All abstract grammars are defined by a grammar defining abstract
mars, containing one abstract and one concrete aspect specifying their structure a
presentation respectively. All concrete grammars are defined by a grammar definin
concrete grammars, containing an abstract and a concrete aspect. This is also the
for the parse and oosl grammars. The metagrammars, i.e. the grammars specifyin
grammars, are in turn defined in terms of themselves.

Since the metagrammars are ordinary grammars they can be edited using AP
PLAB. The concrete aspects of the metagrammars can be edited freely changing
presentation of grammars, e.g. the way an abstract grammar is presented with “...
& ... & ...”. The abstract aspects of the metagrammars maynot be changed, since they
define the structure of the grammars which is the language APPLAB interprets wh
editing. Changing the abstract aspects of the metagrammars will cause unpredictab
sults.

The metagrammars are named abs.gram, con.gram, par.gram, and oosl. gra
They are located in the “grammars” directory. The grammars may be inspected us
APPLAB, but we strongly recommend you tonot edit them.
APPLAB User’s Guide (version 1.2) 37 of 56

Grammar Tools

the
 sim-

of
n

con-
ar.
-
 pro-
nd at
de-
rma-

 is

t and
ode
g the
e. In-
hese

enu

ill be
com-
de

pro-
iffer-
mar
atch

equa-
refix
6.0 Grammar Tools

When defining new languages in APPLAB it is useful to have a few tools that help
language designer in editing and debugging the grammar specifications. Two such
ple, rudimentary, tools are included in this release of APPLAB; aPretty Printer and an
OOSL generator. ThePretty Printercompiles the abstract, concrete and parse aspects
a grammar into one list. The OOSL generator is used to generate the outlines of a
OOSL grammar aspect corresponding to the abstract aspect.

6.1 The Pretty Printer

The grammar for a language is entered production by production, and information
cerning each production is spread over a number of different aspects of the gramm
ThePretty Printer collects information about each production from the abstract, con
crete and parse aspect, and produces a tree-listing of the grammar. Any undefined
ductions are marked in the produced list. Defined, but unused, productions are fou
the root of a separate tree in the listing. This helps to identify misspelled and/or un
fined productions. It also gives a better overview of the defined language since info
tion from the abstract, concrete and parse aspect is compiled into one list. The list
written to a text file specified by the user.

Invoke the pretty printer by the menu commandPretty Print in the pop-up menu
of the grammar window.

6.2 The OOSL Generator

When entering a grammar for a language one usually begins by defining the abstrac
concrete aspects. Later on an OOSL aspect may be added. The structure of the n
classes has then already been defined in the abstract grammar aspect and enterin
corresponding structures once again in OOSL syntax is both tedious and error pron
stead the OOSL Generator can be used to automatically generate and/or update t
structures from the current abstract aspect. The OOSL Generator is invoked by the m
commandSpecial->Generate from ABSTRACT in the OOSL window. The user is
asked to give the name of a general prefix class, i.e. an alternation node class that w
the superclass of all the node classes in the grammar. It is often useful to declare a
mon node class containing attributes and equations which are general to all the no
classes. If no prefix is given, non will be used in the generated structures.

When using the OOSL Generator to update an OOSL aspect messages will be
duced in a message-window for any node classes that already exist. If they have a d
ent structure, prefix, or number/type of sons, than is derived from the abstract gram
aspect this is also reported and the node class of the OOSL window is changed to m
its abstract aspect. The bodies of existing node classes, containing attributes and
tions, are always left intact. The sons of a construction node are named with the p
”a_” added to the qualification of the son.
38 of 56 APPLAB User’s Guide (version 1.2)

The Version Handling System

 of
ons
for

c
s of
multa-

 ver-
 han-
ms
may

ns.

i-

e. A

vi-
 is
n

e-
 con-

nd
on
7.0 The Version Handling System

This chapter introduces how to use the finer details of the version handling system
APPLAB and it explains how the version handling system affects the basic operati
for entering, exiting and saving grammars. It is not necessary to read this chapter
normal use of APPLAB.

7.1 Introduction

All grammars within APPLAB are uniformly version controlled using the same basi
mechanisms. The version handling system supports the user in organizing version
grammars and maintains relations between those stored objects. Two users may si
neously work on the same revisions of the same grammar.

The operations for entering, exiting, and saving grammar documents use the
sion handling system for storing the information. These operations use the version
dling system in a straightforward way similar to the traditional way in which progra
are stored in a file system. This chapter describes how the version handling system
be used in order to extend the function of the entering, exiting and saving operatio

7.2 Terminology

A grammar document, including all its revisions is called aProgram Base Object or
PBO for short. ThePBOId is used for identification of a PBO. The revisions of a PBO
are organized in an evolution graph which describes the development order of the rev
sions. A series of consecutive revisions in this graph is called analternative. New alter-
natives may be created by making a branch from a revision in an existing alternativ
RevisionId is used for identification of a revision and consists of three names; thealter-
native name, the revision name and therevision number. Two PBO:s can be connected
by arelationwhich describes a dependency between the PBO:s or between two re
sions of the PBO:s. A typical example is a program that depends on a grammar. It
possible to store information inattributesconnected to the revisions and to the PBO. A
attribute has anattribute nameand anattribute content. Automatic purge is an example
of a facility controlled by an attribute.

7.3 Relations

A relation is used in order to describe a relationship between two PBO:s or even b
tween specific revisions within the PBO:s. The information connected to a relation
sists of three parts, therevision description which describes the current value of the
relation, the binding type which is used to describe how the relation should be rebou
and thebinding rulewhich describes how a revision should be selected in the evoluti
graph.

■ Revision description

The revision description consists of the PBOId and an Internal number which
uniquely identifies a revision within the selected PBO.
APPLAB User’s Guide (version 1.2) 39 of 56

The Version Handling System

e

is

evi-

vi-

ith
PBOId File name of the PBO or ‘<SELF>’. ‘<SELF>’ is used in
order to refer to an open revision despite it not yet being
inserted in the evolution graph.

Internal no Undocumented description.

■ Binding type

The binding type defines how the relation will be rebound.

Explicit Rebind the relation by letting the user interactively choos
PBO and revision.

Fixed Do not rebind the relation.

Uses the revision identification in order to bind the rela-
tion.

If the revision can not be found the user is prompted to
bind the relation interactively.

Dynamic Rebind the relation according to the binding rule.

If the rule can not point out exactly one revision the user
prompted to bind the relation interactively.

■ Binding rule

A binding rule is a wild card specification for selecting revisions in an evolution
graph. The wild card specification is a pattern corresponding to the parts of the R
sionId.
BindingRule ::= AlternativeName RevisionName RevisionNo
AlternativeName ::= WildCardSpecification
RevisionName ::= WildCardSpecification
RevisionNo ::= WildCardSpecification | NewestRevision | Integer
WildCardSpecification ::= (Char+ | ‘*’)*

Where ‘*’ is a wild card character matching any sequence of
characters.
NewestRevision ::= ‘>’

 ‘>’ matches the newest revision among the revisions selected by the pre
ous two parts of the binding rule.

Example:

Alternative name: MyAlt*

Revision name: *SELECT*

Revision number: >

This means select the latest created revision with an alternative name starting w
‘MyAlt’ and containing ‘SELECT’ in the Revision name.

7.3.1 Look-up of PBOId

At binding time the PBOId is looked up in the file system in the following order:

1. Current directory.

2. According to the environment variable corresponding to the PBO type.

If no PBO is found an explicit binding is initiated.
40 of 56 APPLAB User’s Guide (version 1.2)

The Version Handling System

vi-

the

i-
eing
r

 in

 is
is
7.3.2 Explicit Binding of Relations

When the relation is rebound explicitly the user is prompted for the PBOId.

After selecting the PBOId, the full file name of the PBO is looked up and a re
sion selection prompt is displayed for the selected PBO.

There are two ways of selecting a revision in the revision selection prompt.

■ Double click on the revision

■ Click on a revision and the use the pop-up menu command

-> Choose selected

7.3.3 Evaluation of Relations at Binding time

The evaluation of relations at binding time follow two main directions depending on
value of the PBOId.

■ <SELF> bound relations

A relation with PBOId = ‘<SELF>’ is bound to the virtual copy of the current rev
sion. This means that it is possible to refer to an opened revision despite it not b
inserted in the evolution graph. The binding type and binding rule is overruled fo
<SELF> relations.

■ File name bound relations

For relations where the PBOId equals a filename the binding type is interpreted
order to select a revision.

1. Dynamic binding

The full file name of the PBOId is looked up and the binding rule of the relations
used in order to select a revision. If no revision could be bound an explicit binding
initiated.

2. Explicit binding

An explicit binding is initiated. The binding rule is overruled.

3. Fixed binding
APPLAB User’s Guide (version 1.2) 41 of 56

The Version Handling System

la-
ng

ar,

si-
are

g
ith-

s of

B.
The full file name of the PBOId is looked up and the revision description of the re
tion is used for selecting a revision. If no revision could be bound an explicit bindi
is initiated. The binding rule is overruled.

7.4 Window Structure

The window corresponding to a grammar represents a single revision of the gramm
and is here called therevision window.It is labelled with the PBO-name and the Revi-
sionId. When starting APPLAB an outer window called thePBO-window is created
which representsall of the revisions of the grammar. From the PBO window it is pos
ble to open one or more revision windows of the document. These revision windows
placed inside the PBO window.

Within the PBO-window there is functionality available for viewing and affectin
the revisions of the document. The PBO-window is labelled only with the PBOId. W
in the PBO-window anevolution graph window is displayed. This window shows the
evolution graph of the PBO and is used for manipulating the graph and the revision
the PBO.

7.5 PBO Window

In this section the functionality of the PBO window is described.

7.5.1 Commands

-> Quit This command removes the PBO window and terminates APPLA

Restriction:

It is not allowed to quit from the PBO window if any revision win-
dow currently is open.

PBO
Window

Revision
Window

Evolution
Graph
Window
42 of 56 APPLAB User’s Guide (version 1.2)

The Version Handling System

sev-

an al-
 the
ves.

. In
d the
7.5.2 Undocumented Features

-> Garbage Collect

-> Memory Statistics

-> Memory Statistics without GC

7.6 Evolution Graph Window

The evolution graph window displays all revisions of the PBO.

The first revision is called thesource revision and is the original empty revision. A
number of consecutive revisions are called an alternative. A revision may belong to
eral alternatives. A branch starts in afork revision. For every alternative there is a key to
enable synchronization between users. The user first opening the latest revision in
ternative removes the key. Only the user holding the key may add new revisions at
end of the alternative. All other users have to branch and thus create new alternati

The names of the alternatives are always visible in the evolution graph window
order to see the name of a revision move the mouse to the symbol of the revision an

Key

Key removed

A revision

Source
revision

Revision
name

Alternative
name

Fork revision
APPLAB User’s Guide (version 1.2) 43 of 56

The Version Handling System

ill

 in
e re-
han

ill

.
ted.
g-

ter-
name will be displayed in the upper left hand corner of the window. This operation w
only be in effect until the evolution graph is changed.

7.6.1 Interactive Selection of Alternatives and Revisions

The selection of alternatives and revisions is by direct manipulation with the mouse
the evolution graph. The left mouse button is the selection button. Commands in th
vision graph window’s popup menu affect the selected objects in the graph. If more t
one revision is selected the operation will be applied to each revision in turn.

Select a revision Click on the revision of your choice. Any previous selections w
be de-selected.

Toggle revision Click on a revision while pressing the shift key on the keyboard
The state of the revision toggles between selected and not selec
The operation will not affect previous revision selections. The to
gle operation can be used for selecting more than one revision.

Select alternative

Click on the alternative name. It is only possible to select one al
native at a time.

Click on the
revision

Click + Shift
44 of 56 APPLAB User’s Guide (version 1.2)

The Version Handling System

ind-

he
Remove selections

It is possible to remove all previous selections by clicking in the
area of the evolution graph without selecting a revision.

7.6.2 Selection of Revisions by Rule

An alternative way of selecting revisions. Revisions are selected by specifying the b
ing rule which is applied to the evolution graph.

-> Enter Selection Criteria

Sets the binding rule.

-> Show selection

Evaluates the binding rule and shows the selected revisions in t
evolution graph.

Click on the
alternative name

Click inside the
marked area
APPLAB User’s Guide (version 1.2) 45 of 56

The Version Handling System

to the
er to

eir

ind-
.

to

.
 re-

la-

tifi-

e al-
terna-

ning
 revi-
7.6.3 Open

Creates and opens virtual copies of selected revisions. The copies are not added
PBO and are not shown in the graph until the user saves them. It is possible for a us
have several revisions open at the same time.

-> Open -> Dynamic Rebinding

Opens selected revisions and binds the relations according to th
binding types.

-> Open -> Explicit Rebinding

Opens selected revisions and prompts the user for interactive b
ings of relations. The binding types of the relations are overruled

This menu alternative is used for interactively rebinding all rela-
tions of the revision, e.g. when the relations should be rebound
another PBO.

-> Open -> Fixed Relation

Opens the revisions using the revision description of the relation
No rebinding of the relations are done. The binding types of the
lations are overruled.

This menu alternative is used when the existing binding of the re
tion should be used, e.g. in the case of error corrections.

Short-cut: A double click on a revision is a short-cut for choosing a revision
and then performing the-> Open -> Dynamic Rebinding com-
mand.

None of the commands will affect the binding rule of the relations. The revision iden
cation will be changed to the bound revision.

When the last revision of an alternative is opened the key is removed from th
ternative. Only a revision with a key is allowed to be appended at the end of the al
tive. When quit is done on a revision with a key, the key is returned.

Restrictions:

 If the key is removed when opening the last revision of an alternative or when ope
a revision within the alternative the user will be notified. In these cases the opened
sion has to be saved in a new alternative.
46 of 56 APPLAB User’s Guide (version 1.2)

The Version Handling System

d.

t

.

not

t im-
 at-
the

he
7.6.4 Delete

Deletes a selected alternative or selected revisions.

-> Delete

Restrictions:

■ If the evolution graph has only one alternative, this alternative cannot be delete

■ It is not allowed to delete the source revision in the evolution graph (the leftmos
box).

■ It is not allowed to delete a revision which forms a fork between two alternatives

7.6.5 Rename

Renames a selected alternative or selected revisions.

-> Rename

The rename operation will not affect the binding of relations since the RevisionId is
used for selecting revisions at binding time.

7.6.6 Attribute Support

An attribute is an attribute name with an associated attribute contents. In the curren
plementation both the name and the contents are text strings. The attribute can be
tached to the PBO or to any revision. Attributes can be used for example to describe
state of a revision in the development process.

-> Attached Info -> Attributes -> Object attributes ->

These commands apply to the PBO attributes.

......-> Show Show the attributes of the PBO.

......-> Set Define a new attribute or change the contents of an attribute in t
PBO.

......-> Delete Delete a PBO attribute.

Restriction:

■ SeePredefined Attributes(section 7.9) for a summary of all attributes with an al-
ready defined meaning.

-> Attached Info -> Attributes -> Revision attributes ->

These are the commands applicable to the revision attributes.

......-> Show all

Show all attributes for each revision in the PBO.

...... -> Show Show all attributes of the selected revisions.
APPLAB User’s Guide (version 1.2) 47 of 56

The Version Handling System

ve-

m-

he

us

e”

te

O.

uto-
 in-

ter-
...... -> Set Define a new attribute or change the contents of an attribute for e
ry selected revision.

......-> Delete Delete an attribute for every selected revision.

7.6.7 Other Commands

-> Show Revision Names

The selected revisions will have their names printed above its sy
bol.

-> Misc -> Restore all keys

If anyone takes the key from an alternative and the execution of t
program is unintentionally interrupted (crashed) the key will be
lost. This command resets the key for every alternative.

Note: Do not use this command when there are other simultaneo
users of the same PBO.

-> Misc -> Purge Removes revisions in the evolution graph according to the “Purg
attribute.

Uses the “Purge” attribute. See the definition of the Purge attribu
in thePredefined Attributes(section 7.9) for more information.

7.6.8 Undocumented Features

-> Attached Info-> Object Relation Menu ->

-> Misc -> Compact

-> Misc -> Redisplay

-> Misc -> Debug ->

7.7 Revision window

The revision window contains the functionality to save and quit a revision of the PB

7.7.1 Save

The save command stores the revision in the alternative it was created from and a
matically gives the revision a default name. After the save operation, the key or the
serted revision is owned by the current revision.

-> Save

Restriction:

■ If the revision is not owner of a key it is not possible to save the revision in the al
native it was created from.
48 of 56 APPLAB User’s Guide (version 1.2)

The Version Handling System

ve op-
rna-

.

rsion

as to

s
to

he
Instead the revision may be save in a new alternative or the user may cancel the sa
eration. If the revision is saved in a new alternative the user is prompted for an alte
tive name and a revision name.

7.7.2 Quit

This command lets the user leave a revision without saving changes in the revision

-> Quit

If the user has received the key it is returned.

7.8 Grammar Document Characteristics

This section describes some characteristics of the grammar documents from the ve
handling point of view.

7.8.1 Revision Commands

The revision commands are located in the revision window menu as follows:

-> Revision -> Save as revision

This command behaves as the Save command except the user h
provide an explicit revision name for the revision to be saved.

-> Revision -> Save as alternative

The current revision is saved in a new alternative and the user is
prompted for names of the new alternative and revision.

-> Revision -> Insert Revision Window

The PBO window and evolution graph window is created (if it wa
not already present) and the revision window is inserted as a son
the PBO window. This enables the user to view and manipulate t
revisions in the revision graph.

7.8.2 Undocumented Features

-> Miscellaneous -> Create relation

-> Miscellaneous -> Delete relation ->

-> Miscellaneous -> Relation info
APPLAB User’s Guide (version 1.2) 49 of 56

The Version Handling System

ent.

r is

.

ng
n.

t

f-

s.
7.8.3 Binding of Relations

One relations is connected to each grammar aspect window in the grammar docum
The relation is bound to the meta grammar.

■ Revision window

-> Add (Abstract, Concrete,)

When adding a new grammar aspect window the meta gramma
bound using an explicit binding.

A Target grammar window may be bound to the current revision
This is achieved by assigning the PBOId to ‘<SELF>’.

-> Change meta grammars

All relations are rebound using explicit binding.

■ Grammar aspect window

-> Binding Rule -> Set Binding Rule -> Dynamic

Sets the binding type to dynamic rebinding and asks for the bindi
rule. The command will not affect the current value of the relatio

-> Binding Rule-> Set Binding Rule -> Explicit

Sets the binding type to explicit rebinding. The command will no
affect the current value of the relation.

-> Binding Rule -> Set Binding Rule -> Fixed

Sets the binding type to fixed rebinding. The command will not a
fect the current value of the relation.

-> Binding Rule -> Show Binding Rule

Shows the binding rule of the relation.

7.9 Predefined Attributes

This section introduces the predefined attributes on both the PBO and the revision

Grammar
aspect
windows
50 of 56 APPLAB User’s Guide (version 1.2)

The Version Handling System

tive

i-
Con-

ati-
7.9.1 PBO Attributes

Currently there are only two predefined PBO attributes.

■ Purge

The attribute defines how many revisions should be left at the end of each alterna
when the purge command is executed.

The Purge contents is defined as.

PurgeContents ::= ‘KEEP=’ (Integer | ‘ALL‘)

Restrictions:

The source revision and fork revisions will not be deleted. This means that the
number of remaining revisions is greater or equal to the specified number of rev
sions to keep. If no Purge attribute exists the Purge command will use the Purge
tents = “KEEP=ALL’.

Examples:

KEEP=4 ! Keep the 4 last revisions in every alternative.

KEEP=ALL ! No revisions will be removed.

■ TimeStamp

Contains the creation date and creation time of the PBO. This attribute is autom
cally set and should never be modified manually.

7.9.2 Revision Attributes

There are currently no predefined revision attributes.
APPLAB User’s Guide (version 1.2) 51 of 56

Unix Level

e
le.

-

iv-
8.0 Unix Level

This chapter explains how APPLAB works at the Unix level. This information can b
useful if you want to change the system configuration or if you get into some troub
For normal usage you do not need to know this.

8.1 The “applab” Script

Theapplab script starts an APPLAB session for a grammar file.

The synopsis for applab is

> applab [-m=#] [-g] [-p]

[-text=importFile:[grammar]:[startProd]]

[-socket] [-msgport=#]

filename

-m=# start APPLAB with a heap of # Mbyte.
Default is 1 Mbyte.

-g print a message for each garbage collection.

-p prints a message concerning the current heap size

-socket start APPLAB with open socket communication

-msgport=# initiate socket communication on port #. Only meaningful

when starting APPLAB with the socket option.

-text=textFile:[grammar]:[startProd]

starts APPLAB with a text link window (see section 4.5) con
taining the imported text fromtextFile . The file is assumed
to contain a program written in the metagrammargrammar
starting at productionstartProd . If no grammar name is
given the current grammar is used. If no start production is g
en the first production of the grammar is used.

filename Must have the extension “.gram” . If the file does not exist, a
new grammar is created.

8.2 The “ormmessage” Script

The ormmessage script sends a message to an active APPLAB session.

The synopsis for ormmessage is

> ormmessage [-ormclient=<orm-machine>] [-msgport=#]

STOP |

((READ|EDIT) <FileName> <grammar> <startProd>)

-ormclient=<orm-machine>

Send message to APPLAB running onorm-machine .
52 of 56 APPLAB User’s Guide (version 1.2)

Unix Level

the

ains

re

irec-
or re-

take
-msgport=# Use port # for socket communication.

STOP Close the current APPLAB session

(READ | EDIT) <FileName> <grammar> <startProd>

Initiates a Text Link Window (see section 4.5) with the con-
tents of the text fileFileName interpreted according to the
grammargrammar with start productionstartProd

8.3 Grammar Files

Grammars in APPLAB are stored in a binary format as so calledprogram-base objects,
or PBO:s. For each PBO there is a “basefile” and a number of “revisionfiles” as in
following example:

aGrammar.gram (basefile)

.aGrammar.gram_1 (revisionfile)

.aGrammar.gram_5 (revisionfile)

The revisionfiles contain the “contents” information whereas the basefile only cont
information about the revisionfiles.

Note that the revisionfiles have filenames starting with a dot. They will therefo
normally not be listed by the UNIXls command. To list all the files, including the revi-
sionfiles, use e.g. the command

> ls -lsa

It is important that the basefile and the revisionfiles are kept together in the same d
tory and that they are consistently named. Therefore, you should not move, copy,
move any of these files using normal UNIX commands. Instead, use the following
scripts:

> ormmv lang.gram x.gram to change the name of a grammar

> ormmv lang.gram dir to move a grammar to another directory

> ormcp lang.gram x.gram to copy a grammar

> ormcp lang.gram dir to copy a grammar to another directory

> ormrm lang.gram to remove a grammar

These scripts work similarly to the standard UNIX mv, cp, and rm, but they do not
options or multiple arguments.

8.4 Environment Variable

APPLAB makes use of the following environment variable:

setenv MJOLNERHOME dir
used for finding grammars and icon raster files
APPLAB User’s Guide (version 1.2) 53 of 56

Unix Level
8.5 Files in the Release

This section lists the files included in the APPLAB release and their purpose.

bin/
applab Sun sparc Solaris binary executable for APPLAB
ormmessage Sun sparc Solaris binary executable for socket

communication with an open APPLAB session
ormcp script for copying grammar files
ormmv script for moving grammar files
ormrm script for removing grammar files

demo/ demonstration programs and grammars

doc/ documentation

grammars/
abs.gram metagrammar for abstract grammars
con.gram metagrammar for concrete grammars
code.gram metagrammar for code generation grammar
doc.gram metagrammar for documentation grammar
oosl.gram metagrammar for oosl grammars
par.gram metagrammar for parse grammars
rapid.gram metagrammar for rapid grammars
sem.gram metagrammar for semantic checking grammar (not

OOSL)

Images/
UILrasters/ raster files for icons

Grey/ raster files for background grey scales

lib/
greyscales configuration file for the grey scales used in

background windows
54 of 56 APPLAB User’s Guide (version 1.2)

Trouble Shooting

 pro-
er-

cu-

that
 docu-

can

e rea-
can

vel

lso

n
 You
d

9.0 Trouble Shooting

9.1 Problems With Starting APPLAB

9.1.1 APPLAB Prints Error Message on Standard Output

This may happen after a previous crash during a save operation, which has left the
gram document you are trying to open in an inconsistent state. Usually, the following
ror message is given in the Unix shell window:

Warning: Wrong version of bytestring

In this case, you must remove the last inconsistently saved revision of the do
ment, as described in section 4.7.

9.2 Problems With Saving a Revision

If APPLAB crashes when you save a revision of a document, the reason could be
you are out of disk quota. In this case, you may need to restore consistency in the
ment files as described in section 4.7

If an empty revision name has previously been given then no further revisions
be saved in that alternative. This is a bug that will be fixed in future releases.

9.3 “Dead” Windows

Sometimes, a window seems “dead” and does not respond to mouse clicks etc. Th
son may be that there is an unanswered promptbox connected to the window. If you
not see any promptbox, try closing the outermost APPLAB window and other top-le
windows on your screen. The promptbox may be behind one of these windows.

It is also possible that the Caps Lock-, or Num Lock-button is activated. This a
causes the window to act “dead”.

9.4 Problems With Editing

9.4.1 Confusing Behaviour at Expand

See section 4.4.5.

9.4.2 The System Hangs

If the whole APPLAB system suddenly hangs when you are text editing, the reaso
could be that the grammar-interpreting parser has reached a loop in the grammar.
will need to crash the APPLAB system from the Unix shell window (<CTRL>-C) an
restart it. Your changes since the last save are lost.
APPLAB User’s Guide (version 1.2) 55 of 56

Trouble Shooting

). In
a
ction
9.5 Frequent “brooms”

The “broom” is the mouse cursor shown during garbage collection (see section 3.8
case the broom shows up very frequently, you probably need to run APPLAB with
larger heap. This may be the case if you are working with larger grammars. See se
8.1 for how to start APPLAB with a larger heap.
56 of 56 APPLAB User’s Guide (version 1.2)

Index
A
ABSTRACT 4
abstract data types 36
abstract grammar 4, 28
abstract grammar window 5
AC-expression 37
Add 25
alternation 5
alternative 39
alternative name 39
ANYLEX 32, 35
applab script 52
associativity 31
attribute content 39
attribute name 39
attributes 34

B
back 17
binding rule 23, 40
binding type 40
broom 17

C
cardinal 37
change meta grammars 25
check grammar 23
choose selected 41
close 16
comments 32
compile OOSL 34
CONCRETE 4
concrete grammar 4, 29
concrete grammar window 5
construction 5
contents 15
contents menu 16
copy 21
cut 21

D
debug 23, 26
delete 47

delete fork 23, 25
demand attribute evaluation 35
door attribute grammars 33
dynamic rebinding 46

E
edit as text 21
Edit lexem 21
edit lexeme 7, 21
enter selection criteria 45
entering 19
environment variable 53
equations 34
error recovery 26
evolution graph 39
Evolution graph window 42
evolution graph window 19, 42, 43
exiting 19
expand 5, 20
expand after 5, 21
expand before 21
expand list 21
expansion 20
explain error 34
explain next error 34
explicit rebinding 46
extended focus 33

F
find 22
fixed relation 46
fork revision 43
frame 15
front 16

G
generate from ABSTRACT 38
grammar aspects 19
grammar formalisms 28
grammar window 19

I
icon 15

Index
icon menu 15
ID 32, 35
identifiers 32
import text 22, 25
import text as 26
insert revision window 49
INT 32, 35

K
keyboard short-cuts 23
keywords 32

L
LB 15
left factoring 33
lexeme 5
lexical syntax 32
list 5
list nodes 37
locked 14

M
MB 15
metagrammars 37
misc 5
mouse 15
move 16

N
Names 13, 35
NUM 32, 35
numerical constants 32

O
OOSL 11
OOSL generator 38
OOSL grammar 11, 33
OOSL grammar window 10
open 16
ormmessage 52

P
PARSE 10
parse grammar 9, 31
parse grammar window 9
paste 21
paste before 21
PBO 39
PBO window 19, 42
placeholders 20
popup menu 15
precedence 10, 31
predefined lexemes 35
pretty print 26
pretty printer 38
print attribute 23
production types 5
program base object 39

Q
quit 14, 19, 24

R
RB 15
REAL 32, 35
rebuild menus 23
recompile OOSL grammar 34
redisplay 23
refresh 17
relations 39
rename 47
resize 16
reunparse 23
revision 25
revision description 39
revision id 39
revision name 39
revision number 39
revision window 42, 48

S
save 19, 24
save as alternative 49
save as revision 49
save as text 23
save as tree 23
save interface 23
saving 19
scrollbars 17
scrollbars on/off 5, 23
selection 20
set startprod 23
set title 23
short-cuts 23
show attribute 23
show selection 45
son.pos 37
source revision 43
strings 32
surface syntax 5

T
TARGET 4
target window 4, 19
text 17
text editing 21
text link window 19, 24
textprompts 17
title 15
title menu 15

U
unambiguant grammar 33
unlock 14

V
visible 17

W
window 15
window structure 42

	APPLAB User’s Guide
	Version 1.2
	Contents
	1.0 Introduction
	1.1 System Requirements
	1.2 Scope and Usage
	1.3 How to Use This Guide
	1.4 More Literature
	1.5 Important Notice on Copying, Removing, and Renaming Documents
	1.6 Acknowledgments

	2.0 Grammar Editing. A Guided Tour.
	2.1 Enter the Application Language Lab and a Demo Grammar
	2.2 The Target Window
	2.3 The Abstract Grammar Window
	2.4 The Concrete Grammar Window
	2.5 Make a Small Modification of the Concrete Grammar
	2.6 Extend the Grammar With a New Statement
	2.7 The Parse Grammar Window
	2.8 Changing the Precedence of Operators
	2.9 The OOSL Grammar Window
	2.10 The Names-menu
	2.11 Things That May Go Wrong
	2.12 Leave the Application Language Lab

	3.0 Basic Interaction
	3.1 Windows
	3.2 The Mouse
	3.3 Popup Menus
	3.4 Basic Commands on Windows
	3.5 Additional Menu Commands on Windows
	3.6 Text
	3.6.1 Positioning and Selection
	3.6.2 Cut, Copy and Paste
	3.6.3 Scrolling

	3.7 Textprompts
	3.8 The “broom”

	4.0 The Grammar Editor
	4.1 Window Structure
	4.2 Entering, Exiting, and Saving a Grammar
	4.3 Creating a New Grammar
	4.4 Editing In the Target and Grammar Aspect Windows
	4.4.1 Placeholders
	4.4.2 Selection
	4.4.3 Expansion
	4.4.4 Cut, Copy, Paste
	4.4.5 Some Hints
	4.4.6 Text Editing
	4.4.7 Semantic Editing
	4.4.8 Other Editor Commands in Grammar Aspect Windows
	4.4.9 Short-cuts
	4.4.10 Short-cuts to the Expand Menu

	4.5 Editing In the Text Link Window
	4.6 Editing In the Grammar Window
	4.6.1 Inserting and Deleting Grammar Aspects and Targets
	4.6.2 Other Commands

	4.7 Restoring a Crashed Grammar

	5.0 The Grammar Formalisms
	5.1 The Structure of Abstract Grammars
	5.2 The Structure of Concrete Grammars
	5.3 The Structure of Parse Grammars
	5.3.1 The Lexical Syntax
	5.3.2 Configure Text Editing

	5.4 The Structure of OOSL Grammars
	5.4.1 Compiling an OOSL Grammar
	5.4.2 Demand-Attribute Evaluation
	5.4.3 Defining the Names Menu
	5.4.4 Predefined Lexeme Classes
	5.4.5 Predefined Abstract Data Types
	5.4.6 The Implemented Subset of Door AG
	5.4.7 List Nodes in OOSL

	5.5 Editing Metagrammars

	6.0 Grammar Tools
	6.1 The Pretty Printer
	6.2 The OOSL Generator

	7.0 The Version Handling System
	7.1 Introduction
	7.2 Terminology
	7.3 Relations
	7.3.1 Look-up of PBOId
	7.3.2 Explicit Binding of Relations
	7.3.3 Evaluation of Relations at Binding time

	7.4 Window Structure
	7.5 PBO Window
	7.5.1 Commands
	7.5.2 Undocumented Features

	7.6 Evolution Graph Window
	7.6.1 Interactive Selection of Alternatives and Revisions
	7.6.2 Selection of Revisions by Rule
	7.6.3 Open
	7.6.4 Delete
	7.6.5 Rename
	7.6.6 Attribute Support
	7.6.7 Other Commands
	7.6.8 Undocumented Features

	7.7 Revision window
	7.7.1 Save
	7.7.2 Quit

	7.8 Grammar Document Characteristics
	7.8.1 Revision Commands
	7.8.2 Undocumented Features
	7.8.3 Binding of Relations

	7.9 Predefined Attributes
	7.9.1 PBO Attributes
	7.9.2 Revision Attributes

	8.0 Unix Level
	8.1 The “applab” Script
	8.2 The “ormmessage” Script
	8.3 Grammar Files
	8.4 Environment Variable
	8.5 Files in the Release

	9.0 Trouble Shooting
	9.1 Problems With Starting APPLAB
	9.1.1 APPLAB Prints Error Message on Standard Output

	9.2 Problems With Saving a Revision
	9.3 “Dead” Windows
	9.4 Problems With Editing
	9.4.1 Confusing Behaviour at Expand
	9.4.2 The System Hangs

	9.5 Frequent “brooms”

	Index

