APPLAB User's Guide
Version 1.2

Elizabeth Bjarnason

LU-CS-IR:96-01

Department of Computer Science

Lund Institute of Technology
Lund University

Box 118, S-221 00 Lund, Sweden

APPLAB
User’s Guide
(version 1.2 April 1996)

The Software Development Environments Group
Department of Computer Science
Lund University, Sweden

The Software Development Environments Group
Department of Computer Science

Lund University

Box118

S-221 00 Lund, Sweden

Email: orm@dna.lth.se

© 1996 by Elizabeth Bjarnason

APPLAB - Application Language Laboratory - is the result of continued work on the Orm system
which was first developed as part of the Mjglner project.

Contents

1.0 Introduction 1

11
1.2
1.3
1.4
15
1.6

System Requirements 1

Scope and Usage 1

How to Use This Guide 2

More Literature 2

Important Notice on Copying, Removing, and Renaming Documents
Acknowledgments 3

2.0 Grammar Editing. A Guided Tour. 4

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Enter the Application Language Lab and a Demo Grammar 4
The Target Window 4

The Abstract Grammar Window 5

The Concrete Grammar Window 5

Make a Small Modification of the Concrete Grammar 6
Extend the Grammar With a New Statement 8

The Parse Grammar Window 9

Changing the Precedence of Operators 10

The OOSL Grammar Window 10

2.10 TheNamesmenu 13
2.11 Things That May Go Wrong 13
2.12 Leave the Application Language Lab 14

3.0 Basic Interaction 15

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

Windows 15

The Mouse 15

Popup Menus 15

Basic Commands on Windows 16

Additional Menu Commands on Windows 17

Text 17

3.6.1 Positioning and Selection 17
3.6.2 Cut, Copy and Paste 17
3.6.3 Scrolling 17
Textprompts 17

The “broom” 17

Contents i of iv

2

4.0 The Grammar Editor 19

4.1 Window Structure 19
4.2 Entering, Exiting, and Saving a Grammar 19
4.3 Creating a New Grammar 19

4.4 Editing In the Target and Grammar Aspect Windows 20
4.4.1 Placeholders 20
4.4.2 Selection 20
4.4.3 Expansion 20
4.4.4 Cut, Copy, Paste 21
445 Some Hints 21
4.4.6 TextEditing 21
4.4.7 Semantic Editing 22
4.4.8 Other Editor Commands in Grammar Aspect Windows 22
4.49 Short-cuts 23
4.4.10 Short-cuts to the Expand Menu 24
4.5 Editing In the Text Link Window 24

4.6 Editing In the Grammar Window 25
4.6.1 Inserting and Deleting Grammar Aspects and Targets 25
4.6.2 Other Commands 25

4.7 Restoring a Crashed Grammar 26

5.0 The Grammar Formalisms 28

5.1 The Structure of Abstract Grammars 28
5.2 The Structure of Concrete Grammars 29
5.3 The Structure of Parse Grammars 31
5.3.1 The Lexical Syntax 32
5.3.2 Configure Text Editing 33
5.4 The Structure of OOSL Grammars 33
5.4.1 Compiling an OOSL Grammar 34
5.4.2 Demand-Attribute Evaluation 35
5.4.3 Defining theNamesMenu 35
5.4.4 Predefined Lexeme Classes 35
5.4.5 Predefined Abstract Data Types 36
5.4.6 The Implemented Subset of Door AG 36
5.4.7 ListNodes in OOSL 37
5.5 Editing Metagrammars 37

6.0 Grammar Tools 38

6.1 The Pretty Printer 38
6.2 The OOSL Generator 38

ii of iv Contents

7.0 The Version Handling System 39

7.1
7.2
7.3

7.4
7.5

7.6

7.7

7.8

7.9

Introduction 39

Terminology 39

Relations 39

7.3.1 Look-up of PBOId 40

7.3.2 Explicit Binding of Relations 41

7.3.3 Evaluation of Relations at Binding time 41
Window Structure 42

PBO Window 42

7.5.1 Commands 42

7.5.2 Undocumented Features 43
Evolution Graph Window 43

7.6.1 Interactive Selection of Alternatives and Revisions 44
7.6.2 Selection of Revisions by Rule 45
7.6.3 Open 46

7.6.4 Delete 47

7.6.5 Rename 47

7.6.6 Attribute Support 47

7.6.7 Other Commands 48

7.6.8 Undocumented Features 48
Revision window 48

7.7.1 Save 48

7.7.2 Quit 49

Grammar Document Characteristics 49
7.8.1 Revision Commands 49

7.8.2 Undocumented Features 49

7.8.3 Binding of Relations 50

Predefined Attributes 50

7.9.1 PBO Attributes 51

7.9.2 Revision Attributes 51

8.0 Unix Level 52

8.1
8.2
8.3
8.4
8.5

The “applab” Script 52

The “ormmessage” Script 52
Grammar Files 53
Environment Variable 53
Files in the Release 54

9.0 Trouble Shooting 55

9.1

Problems With Starting APPLAB 55

Contents

iii of iv

9.1.1 APPLAB Prints Error Message on Standard Output 55
9.2 Problems With Saving a Revision 55
9.3 “Dead” Windows 55
9.4 Problems With Editing 55

9.4.1 Confusing Behaviour at Expand 55

9.4.2 The System Hangs 55

9.5 Frequent “brooms” 56

iv of iv Contents

Introduction

1.0

Introduction

11

1.2

APPLAB (Application Language Laborato)ys a system that supports language design

in an integrated, interactive way making it especially suitable for prototyping (small)
domain-specific languages; application languages. The system allows the language de-
signer to work on the language definitions and, simultaneously, experiment with the re-
sulting language. Changes made to the grammars of the language are immediately
effective in any program written in that language. APPLAB includes the following func-
tionality:

= Hybrid grammar-driven structure-oriented editinthe APPLAB editor is structure-
oriented and based on a technique for interpreting grammars. Text editing of struc-
tures is supplied by a grammar-interpreting parser component. The interpreting of
grammars gives great flexibility and allows the syntax for a language and a program
in that language to be edited at the same time. The effects of changing the language
are immediately made visible in the program and new language constructs can be
tried out immediately.

= Static semanticslhe support for static semantics is supplied by a demand-attribute
evaluator for Door Attribute Grammars. The attributes defined for a language struc-
ture of a document can be listed and evaluated by a menu command.

= Grammar toolsA set of grammar tools are available to support the user in defining
new grammars and editing programs.

System Requirements
Machines Sun SPARC workstations

Operating system Solaris version 2.3 or later
or SunOS release 4.1 or later

Window-system OpenWindows 3.0 or later
or X-11 release 4 or later

It is recommended (but not necessary) to use “mouse-moved” focus rather than
“click-to-type” focus in the setup of OpenWindows. The cut/copy/paste functionality
will then work better. Consult the installation guide for details.

Scope and Usage

APPLAB is an evolving research system rather than a supported product. Although it
contains several bugs it is a working system and can be used for designing smaller lan-
guages.

We do not guarantee any correction of bugs or compatibility with future versions
of APPLAB. We are, however, very interested in comments on the system and bug re-
ports (mail to <Elizabeth.Bjarnason@dna.lth.se>).

APPLAB User's Guide (version 1.2) 1 of 56

Introduction

1.3

14

15

How to Use This Guide

Go through the guided tour of chapter 2.0, and then create a new grammar from scratch,
following the instructions in section 4.3.

This guide also contains chapters of reference manual character. Chapter 3.0 de-
scribes basic interaction techniques used, i.e. how to interact with windows, menus, etc.
in the system. Chapter 4.0 describes the grammar editor. Chapter 5.0 describes the
grammar formalisms. Chapter 6.0 describes the available grammar tools. Chapter 7.0
describes the version handling system which applies to grammars. Chapter 8.0 describes
how grammar documents are stored as files on the Unix level, and variations on how to
start the APPLAB system.

Finally, there is a chapter 9.0 on troubleshooting.

More Literature

APPLAB is the result of further development of the Orm Programming Environment
that was initially developed as part of the Nordic research project Mjglner. The main re-
search results from the Mjglner project are summarized in a book:

Object-Oriented Environments: The Mjglner Approach.

Editors: Jagrgen Lindskov Knudsen, Mats Léfgren, Ole Lehrmann Madsen, Boris
Magnusson.

PRENTICE HALL, the object-oriented series, 1994.

ISBN: 0-13-009291-6

More detailed account of the techniques used in developing the Orm system are
available in Ph.D. theses and research reports from Dept. of Computer Science, Lund
University. Many of the reports are available electronically via anonymous ftp:

mjolner.dna.lth.se

or via world wide web:

http://www.dna.lth.se/Research/ProgEnv/ProgEnv.html

Important Notice on Copying, Removing, and Renaming Documents

APPLAB document filenames have the extension “.gram”. However, for each grammar
document basefile “lang.gram” there are a number of additional revision files with
names “.lang.gram_n".

In copying, removing, or renaming grammar documents all these files must be
treated consistently. It is important that the basefile and the revision files are kept togeth-
er in the same directory and that they are consistently named. Therefore, you should not
move, copy, or remove any of these files using normal UNIX commands. Instead, use
the following scripts:

> ormmv lang.gram x.gram to change the name of a grammar

2 of 56

APPLAB User’s Guide (version 1.2)

Introduction

1.6

> ormmv lang.gram dir to move a grammar to another directory
> ormcp lang.gram x.gram to copy a grammar

> ormcp lang.gram dir to copy a grammar to another directory
> ormrm lang.gram to remove a grammar

These scripts work similarly to the standard UNiX; cp, andrm, but they do not take
options or multiple arguments.

Acknowledgments

I would like to thank Gérel Hedin for introducing me to the concept of application lan-
guages, and for guiding me through the implementation work with APPLAB. | would
also like to thank Klas Nilsson and Mats Nyberg for useful comments and questions on
APPLAB.

The following people were involved in the implementation of the Mjglner Orm
system from which APPLAB evolved: Boris Magnusson, Gorel Hedin, Sten Minor,
Mats Bengtsson, Magnus Taube, Lars-Ove Dahlin, Dan Oscarsson, Goran Fries, Anders
Gustavsson, Par-Anders Aronsson, Roger Henriksson, and Torsten Olsson.

APPLAB User's Guide (version 1.2) 3 of 56

Grammar Editing. A Guided Tour.

2.0 Grammar Editing. A Guided Tour. 1
The Application Language Laboratory, APPLAB, is a structure-oriented environment
used for editing grammars and programs based on those grammars. It allows experi-
menting with grammars in an explorative fashion. This guided tour will give an intro-
duction to APPLAB.

Please refer to chapter 4 for more information on the commands used. For trou-
ble shooting see chapter 2.11.

2.1 Enter the Application Language Lab and a Demo Grammar
= Log onto a SUN sparc and start Open Windows or X windows.
= Copy the APPLAB demo grammar “toy.gram” to a directory of your own, using the
ormcp script:
>ormcp ApplabDir /demo/toy.gram .
whereApplabDir is the location of the APPLAB installation directory
= Start APPLAB on the grammar document “toy.gram”.
> applab toy.gram -latest
A grammar windowfor the latest revision of “toy.gram” appears on the screen.
= Resize the window to fill most of the screen by dragging the lower right window cor-
ner with the left or middle button on the mouse.

The different icons contain grammars describing different aspects of the target
language. “ABSTRACT" contains the abstract grammar defining the syntactic structure
of the target language. “CONCRETE” contains the concrete grammar, which defines the
syntactic sugar and screen layout of different constructs in the language. “PARSE” con-
tains the parser grammar which defines the priorities of the different language con-
structs. “O0OSL” contains the semantic grammar, which defines the static semantics of
the language. Finally, “TARGET” is a target structure which can be edited in accord-
ance with the abstract, concrete and parse grammars.

(To leave APPLAB, see section 2.12.)

2.2 The Target Window

The target window is used for editing the program according to the abstract and concrete
grammars in a structure-oriented fashion. For a more thorough presentation of the func-
tionality of the structure-oriented editor, please refer to Section 4.4.

= Double-click on the “TARGET” icon. The target window is opened showing a pro-
gram fragment.

1. Users acquainted with the grammar editor of the Mjglner/Orm system can skip sections 2.2-
2.6.

2. A more technical description can be found in Minér, S., “On Structure-Oriented Editing”,
Ph.D. thesis, Dept. of Computer Science, Lund University

4 of 56

APPLAB User’s Guide (version 1.2)

Grammar Editing. A Guided Tour.

= Make the window a little larger. Pin up the editor menu by pressing the right mouse
button inside the window and select the “pin” at the top of the menu. Add scrollbars
to the window by selecting th&crollbars on/off entry under thévisc entry in the
menu.

= Make some minor modifications of the program. A new statement, for instance, is
created by selecting one statement by repeatedly clicking at it until the whole state-
ment is selected, and then choosingERpand after entry. A new placeholder is
inserted which may be expanded to a new statement chosen from the hierarchical
menu under th&xpand entry. If an “if statement” is selected a template for that
statement is inserted containing placeholders for the predicate and the statements of
the then part and the else part respectively. These placeholders may be further ex-
panded by choosing the desired entries in the menu under the Expand menu.

2.3 The Abstract Grammar Window

2.4

The abstract grammar defines the structure of the language of the program in the target
window. The abstract grammar itself is also represented and edited as a structure. It is
edited by means of the same editor as in the target window, just using different (meta-)
grammars.

An abstract grammar is similar to a conventional BNF grammar. It contains four
different production types; construction, list, alternation, and lexeme productions. They
have the following form:

Stmt::* Stmt List
Stmt::IBlock!lfStmt!WhileStmtAssignStmt Alternative
IfStmt ::= Exp&Stmt&Stmt Construction
Exp::!ldUse!Constant!Add!Mult!Greater!.... Alternative
IdUse::= ID Construction
ID ::LEXEM Lexeme
Add::= Exp&Exp Construction
Block::=Decls&Stmts Construction

Notice that the productions do not contain any concrete syntax such as keywords
and delimiters and that different types (such as construction and list) cannot be nested in
one production.
= Open the “ABSTRACT” window by double-clicking.
= Resize the window and add scrollbars as described in the previous section.
= Pin up the editor menu.

= Scroll down to the productions for statements (IfStmt, AssignStmt, etc.). Scrolling a
page is done by clicking at the small box at the bottom of the scroll “elevator”.

The Concrete Grammar Window

The concrete grammar specifies the surface syntax of a language, i.e. the keywords, de-
limiters and formatting information. It is edited in the concrete grammar window, also
by means of the structure-oriented editor.

A concrete grammar consists of productions of different types, one type for each
production type in the abstract grammar; constructions, lists, and lexemes. An exception

APPLAB User's Guide (version 1.2) 5 of 56

Grammar Editing. A Guided Tour.

2.5

is the alternation productions, which are not specified in the concrete grammar. A con-
crete grammar corresponding to the above abstract grammar may have the following ap-
pearance:
Stmts::= List
before:_

in:";"<nl>
after:_

IfStmt::= Construction

if “
@1"then“
@2" else “

o
C
[%2}
@
I

Construction

ID::= Lexeme

Add::= Construction

_@1n +u
@2_
Block::= Construction
“begin">>><nl>

@1<nl>
@2<<<<nl>"end”

A list production contains specification of the concrete syntax tokens before the
first list element, between the elements, and after the last list element. A construction
production contains first the leading concrete syntax, and then a reference to each sube-
lement (@n) together with the concrete syntax after that subelement. A lexeme produc-
tion contains the concrete syntax before and after the lexeme contents.

The concrete syntax is expressed using text (“a text”), indentation (>>>), end in-
dentation (<<<), and newline (<nl>). An empty sequence of concrete syntax is repre-
sented with an underscore ().

= Open the “CONCRETE"” window by double-clicking on it.

= Make the window larger and add scrollbars. Pin up the editor menu. Scroll down to
the productions for statements.

After this step the screen will look something like figure 1.

Make a Small Modification of the Concrete Grammar

The program in the target window is edited in accordance with the grammars. A modifi-
cation of the grammars will affect the target program. A simple modification is to
change the keywords of a statement. To start with, let us change the keywords of a while
statement from “while -do” to, for example, “when-do”.

6 of 56

APPLAB User’s Guide (version 1.2)

Grammar Editing. A Guided Tour.

FIGURE 1

El Loy € D i Witk lin T2 >
I r
-}_g:u.:rl I ﬁ'J'WI-E I.""""'“'I o, DS |r|
i Lent N Rlockzos - L}
L £ TR Te et e g S a6 gt T I e S
148 1= Pl RETat ::.IE: . adm TRl ::"_l .
Eup =z Teles(xeaiast ! dad We T Grsaqer K11 raEEr .y BRI RS fuyg quik
12! Fmarice T RO0L 1 ETATHG Epard afler CHETUPBD I'sl": g niber CRETEH
] s W ird =8 18 Li Cpare aEfors <l
Fadit am tei,,. <Tak :---\.-T.- il am bicob. .. CTAR
Ispord bmct... .f i e D] Tid T
¥ i T red -\.
ourt ol
i Ard
,.';":, LTS L i Parts
Fie Bfter inge Farin af b
Furin Gefore :-_ 0 A T]
i i iy
- Cranmnt s “
< L T T "'I. . S b ibaris
Frir atiribis Lo =il @RI bl i
Specinl Smtal 1 1
I | u
1] [
S l-l::l|
e
-
Wi ' =p
et i ;'1._.\,"'.' B
10 rossg
ot e L Lopured afber CRLTENA
wlie ¥ 0 pagw Popsired BiPEe "B
TEET SHMEE EANT a4 GHat, ., LG
"'l:"' . "'I_‘I’I" Dopeori imak.. .
AN TR v
18 | thae ¥ sl T =
Ha Pur
el Coapry
Pk L —1
T HLE
Erie ERfare
SRIEs
R 3177 TR
#ront oA
S iwl
1

Do the following in the CONCRETE window:
= Find the while-stmt production in the concrete grammar by scrolling the window, or
by selecting ‘WhileStmt’ from the merkind->Find names->.
= Select the “while “ token at the second line of the production by clicking at it.

= ChooseExpand -> Edit lexeme from the editor menu. A one-line text editor ap-
pears. Change the text from “while “ to “when “ and press return.

Move to the TARGET window.

= Click anywhere in the TARGET window and the program display will change ac-
cording to the modified concrete grammar.

= Select a statement by clicking on it. Cho@epand after to get a new placeholder
for a statement. Check that the hierarchical menu ugdeand has changed to the
new syntax and create a new “when-do” statement by selecting it.

APPLAB User's Guide (version 1.2) 7 of 56

Grammar Editing. A Guided Tour.

2.6 Extend the Grammar With a New Statement

In the previous section only the surface syntax of the language was modified. We will
now extend both the abstract and concrete grammars with a new statement. Since there
is a while-statement but no repeat-statement in the language, let us make one. It shall
have the following abstract syntax:

RepeatStmt ::= Stmt & Exp

Do the following in the ABSTRACT window:

= Select a (whole) production and cho&sgand after. A placeholder for a produc-
tion appears. The left-hand side is automatically selected.

= ChooseExpand -> Edit lexeme and enter the name of the production (e.g. “Re-
peatStmt”) followed by Return. The right-hand side of the production is now auto-
matically selected.

= Choose the-...&... entry undeExpand, which states the production type is a con-
struction. A placeholder appears. Brpand -> Edit lexeme and fill in “Stmt”.

= Do Expand after andExpand -> Edit lexeme and fill in “Exp”. We are now
ready with the abstract production for the repeat-statement, but we also have to state
that the repeat-statement is a statement.

= Scroll the ABSTRACT window upwards until the “Stmt” production is found. Itis a
fairly long alternation production stating the names of all statements.

= Select one name and &xpand after. Fill in “RepeatStmt” using
Expand -> Edit lexeme. Be careful to spell the name right. You could also use the
sub menwall names-> and selecRepeatStmt from it. The text ‘RepeatStmt’ is
then inserted into the current lexeme.

The abstract grammar is now complete and we have to specify the concrete syntax
of the repeat-statement. We suggest the following concrete production:

RepeatStmt::=
“repeat ”
@1 “until ”

2

Do the following in the CONCRETE window:

= Select a whole production and @&xpand after. A Template for a concrete produc-
tion appears.

= Fill in the production name “RepeatStmt” usiBgpand -> Edit lexeme. Be care-
ful to spell it in the same way as in the abstract grammar

= Expand the right-hand side of the production to “? ?” representing a construction
production. A template is inserted in which the first placeholder automatically is se-
lected.

= Expand the placeholder t&"” and then choosExpand -> Edit lexeme to fill in
“repeat ”. The second line of the production is now complete.

= Select the “@@%®placeholder and dadit lexeme. Fill in “1”. Expand the follow-
ing placeholder to*' ", do Expand -> Edit lexeme, and fill in “ until ”. The third
line of the production is now complete.

8 of 56 APPLAB User's Guide (version 1.2)

Grammar Editing. A Guided Tour.

2.7

= Select the whole third line by repeatedly clicking at some part of iExpand af-
ter and a new line appears.

= Select the “@@” placeholder aftskpand -> Edit lexeme to “2”. Select the fol-
lowing “?” placeholder and choosrit from the menu.

= Save the grammar on file, just to be on the safe side. Setaetin the popup menu
of the grammar document window.

The concrete production is now ready and should look like the production above.
We are now ready to use the new language construct in the target program.

Move to the TARGET window.

= Select a statement in the program andspand after.

= Check that the hierarchical menu ung#epand is extended with the new state-
ment.

= Select it and a template is inserted in the program. If you are not fully satisfied with
it, modify the concrete production, click in the TARGET window and watch the re-
sult of the modification.

You can now use the new statement as any other statement. The expression and
statement in the repeat statement may be further expanded. If you are not satisfied with
a single statement inside the repeat statement (which can be expanded to “begin ...;...
end” to get a list of statements) you can change that in the abstract grammar. Do the fol-
lowing:

= Select the “Stmt” part of the “RepeatStmt” production in the abstract grammar. Do
Expand -> Edit lexeme to change it to “Block”.

= Cut the statement parts of the repeat-statements in the program. You can now insert
several statements in the repeat-statement &Esipgnd after.

The Parse Grammar Window

The parse grammar contains specifications needed to correctly perform text editing of
the language. It is edited in the parse grammar window, using the same editor as the pre-
viously described grammar windows.

A parse grammar contains a list of productions of the abstract grammar. An asso-
ciativity and precedence is defined for each line of productions. A parse grammar for the
above abstract and concrete grammars may have the following appearance:

Priorities:

nonassoc: Greater, Less Q)
< left: Add (2)
< left: Mult 3)

Configuration:
String Quote: “” (4)
Comment: “(*” ... “*)” (5)

3. The first @ is part of the unparsing scheme for concrete grammars, while the second @ is a
placeholder for an unexpanded lexeme.

APPLAB User's Guide (version 1.2) 9 of 56

Grammar Editing. A Guided Tour.

(1) The production Greater and Less are non associative and have the same precedence,
which is lower than that for the productions Add (2) and Mult (3) which are left associ-
ative. Left, right, nonassociative and no associativity can be defined for the productions
of the abstract grammar.

The configuration part of the parse grammar is used to configure the text editing
for programs based on the current grammar. In the example, (4) a string is specified as
being enclosed by the quote character “”, (5) a comment is specified as being recog-
nized by beginning with the token “(*, and ending with “*)".

= Open the “PARSE" window by double-clicking on it.
= Make the window large enough to show its entire contents. Pin up the editor menu.

2.8 Changing the Precedence of Operators

Any structure of the program in the TARGET window can be selected and edited as text.

The system translates the edited text into a structure which is then inserted into the se-
lected focus of the TARGET window. When text editing expressions the precedence of
the different productions determine which structure the edited text will be translated to.

Do the following in the TARGET window:

= Click at the expression ‘i+4*x>0’ of the assignment statement until the whole ex-
pression is chosen.

= Choose=dit as text... from the editor menu. A one-line text editor appears contain-
ing the text of the current editor focus. Press return. The string is now translated to a
structure and inserted into the program.

= Clicking at the + and * symbols of the expression reveals that the resulting structure
is equivalent to (i+(4*x))>0.

Now, do the following change in the PARSE window:

= Give Add higher precedence than Mult. Select Add anGuio Now select Mult
and doPaste after. Select Mult, daCut. Select the empty marker on the line above.
Do Expand list, and therPaste.

Return to the TARGET window:

= Repeat the text edit of the ‘i+4*x>0" expression. The text presented for editing is
now ‘i+(4*x)>0’, representing the underlying structure of the expression. Remove
the parenthesis and press Return. Investigate the resulting structure. It is now equiva-
lent to ((i+4)*x)>0 since Add has been given higher priority than Mult.

2.9 The OOSL Grammar Window

The static semantics of a language can be defined as an attribute grammar in the OOSL
window. It is edited in the OOSL grammar window, by the means of the same structure-
oriented editor as the previously described grammar windows.

10 of 56 APPLAB User's Guide (version 1.2)

Grammar Editing. A Guided Tour.

An OOSL grammar consists of node classes of different types, one type for each
production type in the abstract grammar; constructions, alternation, lists and lexemes.
An OOSL grammar corresponding to the abstract grammar above may have the follow-
ing appearance.

ANYNODE: node ::! Alternation
{ inh env: ref Set;
syn undeclaredEnv: ref Set;
eg son ANYNODE.env :=env;
eq undeclaredEnv := new Set;
eqg son Exp.names :=env
3
Exp: node ANYNODE::! Alternation
{ inh names: ref Set
Mult: node Exp:= Construction
(a_Expl: ref Exp,
a_Exp2: ref EXp)

{ eg undeclaredEnv :=
a_Expl.undeclaredEnv.union(a_Exp2.undeclaredEnv)

Stmts: node ANYNODE::*Stmt List
{ eg undeclaredEnv :=
ACS$X :=(new Set | $X.union(son .undeclaredEnv))
h
ID: node :(val: string); Lexeme

Attributes, and equations for those attributes, can be defined in the different node class-
es. OOSL is an object-oriented specification language so each node class may inherited
attributes and equations from an alternation class. This corresponds to the alternative
productions in the abstract grammar. E.g.Ekp-production of the abstract grammar
above is an alternative production listing all the different kinds of expressions for the
language. In the OOSL aspect this corresponds to an alternation class containing all the
common attributes and equations o, and each specific expressigud, Mult ,

etc.) is represented by a construction class Biih as its superclass.

The OOSL aspect of the demo grammar defines that variables need to be declared
in the local or in an outer block to be used. The attritertg contains the names of the
declared variables at the current node class while the attribdexlaredEnv con-
tains the names of all the used but undeclared variables.

The OOSL attributes and equations need to be compiled to internal structures to
be available in the TARGET window. When they are, the attributes are accessible
through a submenu.

Do the following in the OOSL window:

= First we need to update the OOSL aspect with a node class fRgpeatStmt we
added to the grammar earlier. Select a whole node class by repeatedly clicking at it
and choos&xpand after. A placeholder for a OOSL declaration appears.

APPLAB User's Guide (version 1.2) 11 of 56

Grammar Editing. A Guided Tour.

Choose the: node ???? entry undeExpand, which inserts a placeholder for a
node class. The node class-name placeholder is automatically selected.

ChooseExpand->Edit lexeme and enter the name of the node classRiee.
peatStmt) followed by return. The prefix placeholder is now automatically select-
ed. Choose theentry undeExpand, and therExpand->Edit lexeme and fill in
“Stmt”. TheRepeatStmt appears on the right-hand side of 8tet production

in the abstract grammar.

Now choose the= ? entry undeExpand, which states the node class type to be a
construction. A placeholder for a son now appears.RépeatStmt has two sons,
Stmt andExp. Define the first son by doirexpand->Edit lexeme and enter
“a_Stmt”, the name of the son-variable. Define its type by deigand->Edit
lexeme at the placeholder afteef , and enter “Stmt”.

To insert another declaration of a son selecSting -son and dé&Expand After.
Let the second son be calladExp and be of typdexp. Specify it in the same man-
ner as thé&tmt -son.

If the OOSL window is a bit garbled by now, ddaésc->Reunparse to refresh it.

The comment placeholder should now be (automatically) seléeteénd it to
NO_comment.

The next placeholder contains the body of the node class. Chodse}thatry un-
derExpand. A declaration body of the node class appears with a selected placehol-
der.

Enter an equation by choosing #e? := ? entry undeExpand. Define the left
hand side of the equation to be the attriturnideclaredEnv . Choose® from the
Expand-menu, therExpand->Edit lexeme and enter “undeclaredEnv”.

Enter the right-hand side of the equation by text editing. ChBd#eas text. A

one-line text editor now appears. Enter the text “a_Stmt.undeclaredEnv.un-
ion(a_Exp.undeclaredEnv)” and press Return. (You can enlarge the text window by
pulling its corners with the left mouse button.) The text will now be processed, and if
you have entered it correctly the corresponding structure should have been inserted
into the OOSL window. The resulting node class should look like this:

RepeatStmt: node Stmt::=

(a_Stmt: ref Stmt,
a_Exp: ref Exp)
{ eq undeclaredEnv :=

} a_Stmt.undeclaredEnv.union(a_Exp.undeclaredEnv)
ChooseCompile OOSL. The (changed) OOSL grammar is now compiled. If any
errors where detected they are marked in the OOSL window with a dotted marker
and a message will appear stating the number of errors found. If this happens, press
OK to acknowledge that there are compilation errors and look at the error messages
by choosingexplain next error from the menu. If you have entered the node class
as described the only possible error should be that the new node class appears before
the node classe&dtmt and/orExp have been defined. If this is the case then move
the node class (witkut andPaste after) to appear after the declarationsStint
andExp. RedoCompile oosl.

Switch to the TARGET window:

12 of 56

APPLAB User’s Guide (version 1.2)

Grammar Editing. A Guided Tour.

2.10

211

= Select the expression of thdile -loop. DoShow Attributes->. A list of all
available attributes at that point in the program is shown.

= Chooseshow Attributes->env. The value of the attribute is calculated and dis-
played in a window. It should contain all the declared variables at this point in the
program. Remove the window by doiKgjll.

= Change the declaration bfto declare a variable. Re-evaluate thenv attribute of
the expression as before. Note that the varialitenow contained in thenv -at-
tribute instead of .

The Names-menu

In the menu of the TARGET window there is a submenu callegines->. The contents

of this submenu is defined by the OOSL aspect of the base-grammar. The OOSL at-
tribute names is used to define the contents of this submenu. In the demo grammar the
node clas&xp has anames attribute that defines all (semantically) visible names at
the currenExp-node in the TARGET window.

= Select the expression of thdhile -loop and choosBlames-> from the menu. A
submenu containing all visible names will then be displayed. (If the OOSL grammar
needs to be recompiled a menu optRecompile OOSL grammar is given. If so,
perform the needed compilation by choosing the given menu option, and then choose
Names-> again.) Choosing one of the presented namesQ& ginserts it into the
current selection.

In a similar fashion, variables that are used but not declared, in the demo, can be ac-
cessed in a declaration structure.

= Click twice on the OK in the declaration of OK. Chod&emes-> and a list of all
used, but undeclared variables is presented.

Note! The demo only has support for limited static semantics. For example, the declared
types of the variables are not taken into account. This will be possible in future releases
of APPLAB.

See sections 4.4.7 and 5.4.3 for further details ohé&mees-menftacility.

Things That May Go Wrong

One mistake resulting in the changes of a grammar not coming into effect in the target
window is misspelling of the production name. Be careful not to add extra blanks and to
use the same upper/lower case letters. (Usaltheames facility to avoid this.)

Grammar changes of the abstract, concrete or parse grammars will not come into
effect until an operation (cliclExpand,...) is performed in the TARGET window.
Changes of the OOSL grammar need to be compiled to come into effect. When OOSL
attributes are accessaddmes, Show attribute) the system checks if the OOSL
grammar needs to be recompiled. If so, a menu command for recompiling the OOSL is
presented. Recompilation of the current OOSL grammar is only perforiRedain-
pile OOSL grammar is chosen.

APPLAB User's Guide (version 1.2) 13 of 56

Grammar Editing. A Guided Tour.

Unexpanded placeholders in the grammars can sometimes give unexpected re-
sults. Check that all placeholders are expanded in the grammar.

Inconsistencies may occur between abstract grammars and programs. If an ab-
stract production is modified and the program contains constructs generated from the
old production the program is inconsistent with its grammar. The system does not sup-
port program transformations from old to new abstract grammars. You have to cut the
inconsistent parts manually. However, the system is fairly tolerant to inconsistencies,
and does not crash for this reason in general.

Inconsistencies may also occur between abstract and concrete grammar aspects.
This may cause the system to crash. E.g. if the abstract aspect contains a production
WhileStmt::= Exp&Stmt, and the concrete aspect contains a production

WhileStmt ::=
“while ”
@1“do”
@3 _

trying to edit a While-statement will cause the unparser to crash.

If the display of any grammar window gets garbled doisc->Reunparse in
that window.

If the system should crash while you are working on a grammar revision that revi-
sion will be "locked”. Unlock it by restarting APPLAB (without the optidatest)
and doMisc->Restore all keys in the Evolution Graph Window.

If the system ‘freezes’ for no apparent reason (no working message, or garbage
collection) it may be that the Caps Lock or Num Lock have been engaged. Unengage
them for APPLAB to correctly respond to mouse actions.

2.12 Leave the Application Language Lab

= Do Quitinthe grammar window. If any changes have been made since the grammar
document was last changed a prompt box with the alternatives “Save”, “Quit”, and
“Cancel” will appear asking you if you wish to save the changes. Choosing “Save”
will save the changes and then quit the program, while “Quit” will quit without sav-
ing. The “Cancel” option will neither save nor quit the current grammar document.

14 of 56

APPLAB User’s Guide (version 1.2)

Basic Interaction

3.0

Basic Interaction

3.1

3.2

3.3

This chapter explains how to interact with windows, menus and promptboxes, and how
to use the mouse

Windows

A window is eitheropeneddr closed An open window has the following parts: &@on,
atitle, aframe and acontentspart. The icon and title parts are optional. When the win-
dow is closed, only the icon and title parts are shown.

title

icon \

= wingou B

[contents

The Mouse

The mouse has three buttons: left (LB), middle (MB), and right (RB).
General usage:

LB Moving windows and selecting items of the window contents.

MB Resizing windows, initiating text editing.

RB Bringing up popup menu

In addition to this general usage, there may be specialized behaviour in different

windows. The mouse cursor changes shape depending on what it points to. This helps
when pointing to small or narrow things, e.g. the window frame.

Note! Donottry to “click-ahead”. If the response of the system is not immediate it
is better to wait a little while. Otherwise strange things may happen.

Popup Menus

Different parts of a window may be associated with different popup menus. In particular
there is

icon menu on the icon of a closed window
title menu on the title of a closed window
frame menu on the icon and frame of an open window

APPLAB User's Guide (version 1.2) 15 of 56

Basic Interaction

3.4

contents menu on the contents part of an open window

The icon and frame menus contain general window commands whereas the title and
contents menus are application menus are application specific.

Some menus are “stay-up”-able. These menus have a “pin” at the top. Choosing the pin
makes the menu stay up. A pinned up menu disappears when clicking on the pin (RB).
Some menu alternatives are “pull-right”-able, indicated by an arrow to the right. Drag
the mouse to the right and a new menu appears.

Stay-Uup™pin o s - “pull-right”-arrow
Ml i]
BT npmes ;
Expand siter CRETUER

pand Setre "2
ottt . CTREC

Impirt Sedi

F 10

[ETE]

Liagsy

Pasta

Pyets 5ftar
Farla befare
ShHE

Sheow stiribuke
Frint atiribala

S ia

To refer to menu commands we will use the following notation:

choice select “choice” in a popup menu.
window -> choice select “choice” in a popup menu of “window”

choice -> subchoice pull right at “choice” and select “subchoice” in
the appearing submenu.

choice -> “txt” select “choice” in a menu and answer “txt” in a
textprompt.

Basic Commands on Windows

Open Open window by double clicking (LB) on the icon or title of a
closed window, or choosmen in the icon menu.

Close Close window by click on the icon of an opened window, or choose
close in the frame menu.

Move Move window by dragging title or frame (LB). (Dragging the icon
works only for closed windows.)

Resize Resize window by holding on to the window frame (MB) and drag.

The cursor turns into a lower right corner shape. You may also use
the LB for resizing if you start dragging close to one of the corners.
Resizing an interior window will automatically resize outer win-
dows as well if this is needed to make all of the window visible.

Front Bring window to the front by clicking on title or frame (LB). The
window is placed in front of sibling windows. Instead of clicking,
thefront command in the frame or icon menu can be used.

16 of 56

APPLAB User’s Guide (version 1.2)

Basic Interaction

3.5

3.6

3.6.1

3.6.2

3.6.3

3.7

3.8

Back Bring a window to the back of all its sibling windows by ltaek
command in the frame or icon menu.

Additional Menu Commands on Windows

Visible Resizes outer windows to make sure all of the items of the window
contents are applicable

Scrollbars Adds or removes scrollbars. Only applicable to windows with text
contents.

Refresh Redraws the window or icon.

Text

Text based interaction is only possible in textprompts.

Positioning and Selection
LB click position the text cursor
MB click extend the selection

Keyboard arrow keys (up, down, left, right) change the position of the text cursor.
Cut, Copy and Paste

Use the cut, copy, and paste keys on the keyboard or the menu commands in the popup
menu.

Scrolling

Add scrollbars to the window by the command in the popup menu or the frame menu.

Textprompts

Textprompts usually contain an OK and a CANCEL button. Pressing the RETURN key
on the keyboard is a short-cut for clicking on the OK button.

Some hints:
= If the text is too large to be completely visible in the prompt you need to resize the
promptbox. (Scrolling in promptboxes is currently not implemented.)
= The textprompt can be resized by dragging one of its corners.
= The textprompt can be moved by holding on to its frame and dragging it.

The “broom”

The APPLAB implementation depends on garbage collection which sometimes
takes a few seconds and slightly disturbs user interaction. To give the user feedback on
when this happens, the mouse cursor changes shape to a “broom” each time the garbage

APPLAB User's Guide (version 1.2) 17 of 56

Basic Interaction

collector is started, as shown below. If the “broom” appears, simply wait until it disap-
pears again. In case the broom shows up very frequently, you probably need to run AP-
PLAB with a larger heap. This may be the case if you are working with larger
grammars. See section 8.1 on how to start APPLAB with a larger heap.

4

18 of 56 APPLAB User's Guide (version 1.2)

The Grammar Editor

4.0 The Grammar Editor
4.1 Window Structure
The window hierarchy in the grammar editor is the following:
PBO window Represents all the revisions of the grammar
Evolution Graph window
Contains the Evolution graph for the grammar document
Grammar window Contains the parts of a revision of the grammar, so called
aspect
Grammar aspects Contains one part of a grammar, e.g. abstract
grammar, concrete grammar, etc.
Target window Contains a target structure which is edited
according to the abstract, concrete and parse grammar as-
pects.
Text Link window Similar to a target window but its contents is linked to a
text file.
4.2 Entering, Exiting, and Saving a Grammar
Entering Enter a grammar document “lang.gram” by typing
applab lang.gram
in a shelltool in the OpenWindows system (or in X windows). The PBO
window containing the Evolution Graph of the grammar document now
appears. Each “box” represents a revision of the grammar. Double click-
ing on one of them opens a grammar window for that revfsion.
Exiting Exit a grammar revision byrammar window -> Quit. If any chang-
es have been made since the grammar document was last changed a
prompt box with the alternatives “Save”, “Quit”, and “Cancel” will ap-
pear asking if you wish to save the changes. Choosing “Save” will save
the changes and then quit the program, while “Quit” will quit without
saving. The “Cancel” option will neither save nor quit the current gram-
mar document. To finish an APPLAB session each opened grammar
window has to be exited and thenRIBO window->Quit.
Saving Save the grammar yammar window -> Save. It is recommended
to save the grammar rather often since the system crashes occasionally.
Each save creates a new revision of the program. A revision cannot be
changed.
4.3 Creating a New Grammar

A new grammar document is created by starting APPLAB with a new grammar docu-
ment name with the extension “.gram”, e.gpplab newlang.gram ”. APBO win-

4. See Section 7.0 for further details on the version control system.

APPLAB User's Guide (version 1.2) 19 of 56

The Grammar Editor

4.4

44.1

4.4.2

443

dow with an Evolution Graph containing one (empty) revision node appears. Opening it
reveals an empty grammar window. Add an abstract, a concrete, and a target window as
described in section 4.6.1. Do not forget to set the startproduction in the target window
before editing in the target window (see section 4.4.8). If no startproduction is set the
first production of the abstract window is chosen.

Editing In the Target and Grammar Aspect Windows

Grammars and programs edited in APPLAB are represented internally as abstract syn-
tax treesASTs The basic editing technique usedtisicture editingvhere constructs

are inserted into the grammar aspects by selecting them in a menu. The program can
containplaceholderswhich represent incomplete parts of the aspect. The placeholders
can be replaced by syntactically correct language constructs by choosing from a menu.
This means that it is impossible to construct documents which are syntactically incor-
rect. APPLAB also supports text editing of structures.

Placeholders

There are three kinds of placeholders.

? The questionmark denotes a placeholder for a language construct, e.g. a state-
ment or an expression. E.g.

while ? do
2

Here the first questionmark is a placeholder for any expression. The second ques-
tionmark is a placeholder for any statement.

The underscore denotes an empty list. E.g.

while ? do
begin

end
Here the underscore denotes an empty list of statements

@ The at-sign denotes a placeholder ftax@mein the program. A lexeme place-
holder must be replaced by a sequence of characters.

Selection

Language constructs are selected by clicking with the left mouse button. Repeated
clicks at the same position extends the selection to the enclosing construct. If the whole
AST is selected, a repeated click starts from the “beginning” and selects the smallest
construct at the click position.

Unfortunately, there is currently no mechanism for selecting a part of a list, e.g.
two statements out of three in a list.

Expansion

A placeholder can be replaced,expandedby the menu command

Expand ->...

20 of 56

APPLAB User’s Guide (version 1.2)

The Grammar Editor

4.4.4

4.45

4.4.6

What appears in the submenu depends on the current selection.

Non-placeholder cannot be expanded

? placeholder the submenu contains syntactically correct language con-
structs

_ placeholder Expand -> Expand list will insert an element into
the list.

@ placeholder Expand -> Edit lexeme will produce a text prompt

box where you can type in the new lexeme.

A list can be expanded by selecting one of its elements and selecting
Expand after or Expand before.

Cut, Copy, Paste

The system has an internal “paste buffer” which can hold any language construct. This
paste buffer can be used to move language constructs within a grammar aspect. Unfortu-
nately, the paste buffer does not work across different grammar aspects.

Cut Removes the current selection and replaces it with a place-
holder. The removed language construct is placed in the
internal paste buffer.

Copy Copies the current selection into the paste buffer.

Paste Replaces the currently selected placeholder with a copy of
the paste buffer.

Paste after Inserts a copy of the paste buffer after the currently select-
ed list element.

Paste before Inserts a copy of the paste buffer before the currently se-

lected list element.
Some Hints

One source of confusion is that some language constructs have the same extent on the
screen. This means that one cannot tell which one of them is selected. This is e.g. the
case for some lists with one element. One cannot see the difference between selecting
the only element and selecting the whole list with the only element. This can be rather
confusing. E.g. if you have selected a list with one element where the element is a place-
holder, you may think that the placeholder is selected. But the expand command will not
work as if you actually have selected the list. In these situations you can find out by re-
peated selections which construct you have actually selected.

Text Editing

The “expand” command is usually rather tedious to use for constructing and changing,
e.g. expressions. Therefore, text editing facilities are also provided for expressions and
all other language construct. To edit a structure as text, select it and Eldbosa

text... from the menu. A promptbox appears in which you can edit the selected structure
as text. When you are ready, press the RETURN key on the keyboard. The text is then
processed, and if it is syntactically correct, the corresponding AST will replace the cur-

APPLAB User's Guide (version 1.2) 21 of 56

The Grammar Editor

4.4.7

4.4.8

rent selection. If any syntax errors where encountered an error window will appear con-
taining a report on the detected errors, and the edited text is presented to the user for
further text editing. Sometimes a window containing grammar errors and warnings ap-
pears. E.g. when text editing in the CONCRETE window such a window appears. To
avoid it popping up every time a text edit is performed iconize it and it will only appear
again if any further grammar errors are detected.

There is a convenient short-cut to text editing. Click on the middle button of the
mouse instead of choosing tAdit as text menu command.

See section 5.3 on how to configure the text editing facilities for a specific lan-
guage.

Semantic Editing

As a complement to structure-oriented editing and text editing it is also possible to do
semantic editingSemantic editing can utilize static semantic information such as scope
rules, properties of declared identifiers, and context of the current selection to support
high-level editing. At the moment such semantic support is limited tiNtliees menu,

but in future releases of APPLAB will contain more support for configuring and per-
forming semantic editing of grammars and programs.

The Names menu is designed to give a submenu of all names (semantically) visi-
ble at the current selection (cmp the Names menu in the Mjglner/Orm system). The ac-
tual contents of thBlames menu is defined by the OOSL aspect of the base-grammar
and can be configured by the language designer. If the contentsigfifnes menu has
not been defined in the OOSL aspect the current selection it is said to have no semantics
defined for it.

See section 5.4.3 for further details on how to define the contentsi&thes
menu.

When the user selects a name fromNitaeénes menu the system tries to insert it
into the current selection. If the text can not be correctly matched to a structure, error
messages are given and the user is presented with a text editing prompt with the chosen
text.

The submenll names works in the same way #games except that it contains
a list of all current lexemes in the grammar aspect window. l.e. when a lexeme text is
chosen from thell names-list the system tries to insert it at the current selection.

Other Editor Commands in Grammar Aspect Windows

Edit as text...... Edit the current focus as text.
Import text...... Import the contents of a text file into the current focus.
Find-> Tries to locate a lexeme matching a given search string.
Find... Asks the user for a search string.
Find pastebuffer Uses the current contents of the pastebuffer.
Find next Continues a previous successful search.

22 of 56

APPLAB User’s Guide (version 1.2)

The Grammar Editor

Find names->
Misc->

Scrollbars on/off

Redisplay

Reunparse

Rebuild menus

Save As Text

Save Interface
Save As Tree
Delete Fork

Set Title->

Set Startprod->

Binding Rule->
Show attribute->

Print attribute->

Special->

Debug->

Check Grammar

4.4.9 Short-cuts

Presents a list of all lexeme-texts of the current window.

Add or remove scrollbars to the window
Redisplay the text in the window.
Reunparses the contents of the window according to the

concrete grammar and displays it. Used in the target win-
dow when the display has been garbled.

Recreates the contents of the expand menu.

Saves a grammar aspect or target structure on a text file.
You will be prompted for the filename.

Not documented.
Not documented.

Deletes this TARGET or grammars aspect window, after
confirmation.

Allows the title if a target or grammar aspect window to be
changed.

Allows a production to be chosen as the start production of
the abstract syntax tree in the window. This is typically
used when a target window just has been created. The root
node of the tree is set to the desired start production of the
abstract grammar. Use the “Edit...” alternative to enter an
arbitrary production name

Not documented.

Contains the available OOSL attributes at the current fo-
cus. Choosing an attribute from the menu evaluates that at-
tribute and displays the result.

The same aShow attribute but the value of the attribute
is displayed to a textfile. You will be prompted for the
filename.

Contains a few utilities. It varies slightly depending on
which aspect it appears in. It basically has the following
entries:

Undocumented.

Undocumented.

There are a number of short-cuts when editing grammar aspect windows.

Mouse short-cuts

= Middle mouse button works &dit as text...

Keyboard short-cuts

= The arrow keys move the selection.

APPLAB User's Guide (version 1.2) 23 of 56

The Grammar Editor

4.4.10

4.5

uUpP moves the selection one level up in the AST
DOWN moves the selection to the first son node in the AST
RIGHT moves the selection to the next node in a preorder traversal

LEFT moves the selection to the previous node in a preorder
traversal
= Control keys (hold down the CTRL key while typing another character)
"E Expand list or Expand lexeme
"M (or RETURN) Expand after
"B Expand before
= Function keys
Copy
Paste
Cut
Find

= The TAB key works agdit as text...
Short-cuts to the Expand Menu

Instead of selecting syntactic constructs from the Expand menu with the mouse, the key-
board can be used. Type the keywords of an entry and press <TAB>. The keyboard entry
will be matched with the expand menu entries and the matching construct will be insert-
ed in the program. Each word of the menu entry may be abbreviated. For instance,
“while <TAB>", “while do<TAB>", “wh d <TAB>", and “wh<TAB>" will all result in

that a while-do template is inserted in the program. Notice that the placeholder symbols
(*?” and “...") in the menu entries should not be typed.

These short-cuts are still at an experimental level in the system. They are thus not
yet fully supported. The keyboard input is not echoed on the screen, for instance, and
the input can not be edited using <DELETE>.

Editing In the Text Link Window

Working in a text link window is basically the same as working in a target or grammar
aspect window. All the editing operations described in section 4.4 are also available in
text link windows. The only difference is that a text link window is of a more temporary
nature. Each text link window is edited according to a base grammar and its actual con-
tents is linked to a text file. The menu of a text link window contains the additional op-
tions

Save & Quit Saves the contents of the window on the text file and quits
APPLAB

Save Saves the contents of the window on the text file

Quit Quits APPLAB without saving any changes on the text
file.

24 of 56

APPLAB User’s Guide (version 1.2)

The Grammar Editor

4.6

46.1

Text link windows appear when APPLAB is used for socket communication, and when
the system is started with thiext option. The name of a text file and the base gram-
mar to be used is given. The text is then imported and translated into its corresponding
structure according to the given base grammar. The user can then edit the contents of the
text file in the structure-oriented editor and save the result, as text, on the original text
file. This option is useful for integrating APPLAB in an environment with other (text -
based) tools. See section 8.0 for further details on how to use APPLAB in this way.

Editing In the Grammar Window

Inserting and Deleting Grammar Aspects and Targets

New target and grammar aspect windows can be inserted by menu commands in the
grammar window.

Add Abstract Inserts a new abstract grammar aspect
Add Concrete Inserts a new concrete grammar aspect
Add Parse Inserts a new parse grammar aspect
Add OOSL Inserts a new OOSL grammar aspect
Add Target Inserts a new target structure

EDIT Insert an unnamed grammar aspect

After having selected one of these entries, the system prompts for the name and revision
of the meta grammar. Usually you can use the meta grammar name suggested in the
prompt box by just pressing return. The revision is selected in a revision graph. To get
the latest revision, double-click in the right most box of the graph. The meta-grammar
“<SELF>" is suggested when a target window is opened. It means that the target struc-
ture is edited using the abstract and concrete grammar aspects in the grammar of which
the target window itself is part (this is usually what you want).

A target or grammar aspect window is removed using:

Delete fork Delete a target or grammar aspect window. The name of
the window to be deleted is specified in a prompt box.
N.B. Be careful to spell the name exactly as it appears in
the title of the window.

4.6.2 Other Commands

The grammar window menu also contains the following entries. We recommend not us-
ing the undocumented ones.

Change Meta Grammars
Not documented.

Revision Not documented.

Miscellaneous Not documented.

Import text... Imports a program from a textfile to a new grammar as-
pect.

APPLAB User's Guide (version 1.2) 25 of 56

The Grammar Editor

Import text as... Same asmport text, but a new metagrammar can be
specified

Pretty Print Generates a pretty print list of the current grammar.

Debug Not documented.

4.7 Restoring a Crashed Grammar

If APPLAB crashes while you have an opened grammar, you will normally have lost
only the changes you made since the last Save command. However, a complication oc-
curs if the system crashdsiring opening or saving the grammar. In this case, the stored
grammar may be left in an inconsistent state. Such crashes may occur if you run out of
disk quota, heap space, or swap space during these operations.

If the program is in an inconsistent state, APPLAB will crash or give an error mes-
sage when you start it on the grammar again. Usually, the following error message is
given in the Unix shell window:

Warning: Wrong version of bytestring

In this case, press <CTRL>-C, or press <RETURN> a few times until APPLAB
crashes.

To be able to open the grammar again, consistency must be restored by removing
the latest revision of the grammar. To do this, proceed as follows.

Save a backup copy of the grammar (in case this cure does not work) by

ormcp lang.gram lang-backup.gram

(If you are out of disk quota this might not be possible).

Open the grammar with revision handling by the following command in a unix
shell window:

applab lang.gram

A revision handling window for the grammar appears. The revision handling window
contains an “Evolution Graph” window showing small boxes which represent all the ex-
isting revisions of the grammar.

1. The revisions are organized in a tree-structured graph of “alternative lines” with old-
er revisions to the left and newer to the right. Often, there is only one alternative line.
Each alternative has a “key” which is also displayed in the Evolution Graph window.
Since the system crashed the previous time the grammar was edited, the key is prob-
ably crossed over, indicating that the key has not been returned properly. To remedy
this, do the menu commaiolution Graph Window -> Misc -> Restore all
Keys. A promptbox asks if you want to restore all keys. Click on the Yes button.The
cross over the key now disappears.

2. The rightmost small box in the Evolution Graph window represents the latest revi-
sion. Click on it and it becomes marked. Then delete Exmlution Graph Win-

26 of 56

APPLAB User’s Guide (version 1.2)

The Grammar Editor

dow -> Delete.

O—0—0—E D== Altersative

-ii

ERI s

Shaw revikicon roames
Enter salsottan criteria
Shaow selectim

ATEaCAEdInfo
s

A promptbox asks if you want to delete the revision. Click on the Yes button.

3. Check if the cure worked by opening the latest remaining revision of the grammar by
double clicking on the rightmost small box of the Evolution Graph Window. If the
grammar opens normally you may remove the backup copy. If not, refer to the trou-
ble shooting section in the chapter on version handling, or contact the implementors.

APPLAB User's Guide (version 1.2) 27 of 56

The Grammar Formalisms

5.0

The Grammar Formalisms

51

The grammar aspects in the different windows are expressed in different formalisms.
The underlying language of the structure in the target window is typically defined by the
abstract and concrete grammar aspects in the same grammar. Text editing of the struc-
tures in the target window is defined by the abstract, concrete and parse grammar as-
pects. The abstract, concrete, parse, and oosl aspects are edited according to a fixed
metagrammar for each aspect respectively.

The Structure of Abstract Grammars

An abstract grammar (or more accurately, the abstract aspect of a grammar) only defines
the structure of a language. It is similar to a conventional BNF grammar, but since the
concrete syntax is omitted it only contains the nonterminals of a conventional grammar.
A production can be of four different types: construction, alternation, list, and lexeme.
The different types cannot be nested in one production. Some examples are given be-
low:

(1) StatementList ::* Statement List

(2) Statement ::! If ! While ! Assign Alternation
(3) If ::= Expression & Statement & Statement Construction
(4) Expression ::! ID! Add ! Sub ! Mult ! Div Alternation
(5) Plus::= Expression & Expression Construction
(6) ID::= LEXEME Lexeme

(1) A StatementList consists of a number of statements, specified in a list production

fied in an alternation production (“... ::! ... 1 .."); (3) An If statement is an aggregation of
an Expression, a Statement, and a Statement, specified in a construction production (“...
n=...&.."). (4,5) The productions state that an Expression is an alternation if ID, Add,
Sub, Mult, and Div, and that a Plus is a construction of two Expressions. (6) Finally, an
ID(identifier) has a textual contents filled in by the user. This is stated in a lexeme pro-
duction (“... ::= LEXEME").

In the ABSTRACT window, the abstract grammar is edited by means of the struc-
ture-oriented editor. It is edited according to the language of abstract grammars. The
structure of abstract grammars is defined by an abstract grammar for abstract grammars.
Below the structure of abstract grammars is shown. The grammar is written in its own
formalisn:

(1) AbstractGrammar::* Production

(2) Production::= Id & Definition

(3) Definition ::! Alternation ! Construction ! List ! Lexeme
(4) Alternation::* Id

(5) Construction::* Id

(6) List::= LEXEME

(7) Id ::= LEXEME

(8) Lexeme::=_

5. This is actually the grammar interpreted by the structure-oriented editor while editing an ab-
stract grammar in the ABSTRACT window

28 of 56

APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

5.2

(1) An abstract grammar consists of a number of productions. (2) A production consists
of an Id containing the production name at the left hand side and a definition at the right
hand side. (3) The definition states the production type, which can be chosen from Al-
ternation, Construction, List, and Lexeme. (4) An alternation is specifying a number of
alternatives. Its structure is a list of Identifiers, each containing the production name of
an alternative. (5) A construction consists of a number of descendants. The structure of
the construction definition is thus a list of identifiers, each specifying the production
name of a descendant. (6) A list specifies that a construct can have an arbitrary number
of descendants, all of the same type. The structure of the list definition is a lexeme con-
taining the production name of the construct to be repeated. (7) An Id contains a produc-
tion name and is thus a lexeme. (8) A lexeme definition is a terminal node in a grammar.

The Structure of Concrete Grammars

A concrete grammar (or the concrete aspect of a grammar) adds syntactic sugar, delim-
iters, and formatting information to the abstract grammar. This is used by the structure-
oriented editor for presentation of the edited program or grammar. Each production in
the abstract grammar, except for alternation productions, has a production in the con-
crete grammar. The production name in the concrete grammar production has to be the
same as in the abstract grammar. An example of a concrete grammar is given below. The
grammar describes the concrete aspect of the same language as the example of the ab-
stract aspect in the previous section.

(1) StatementList ::= List
before:"begin” >>> <nl>
in:";” <nl>
after:<<< <nl> “end”

2)If = Construction
wif
@1 “then” >>> <nl>
@2 <<< <nl> “else” >>> <nl>

@3 <<<

(3) Plus::= Construction
_@1 uyn
@2 _

(4) ID::= Lexeme
before:_
after:

(1) The production in the abstract grammar describing a StatementList is a list produc-
tion. In the concrete grammar, the presentation is also specified in a list production with
the same name. A list production has three parts, the before, in, and after part. The be-
fore part specifies the text and formatting information before the first descendant. It is
expressed in a list of templates chosen from text (“..."), indentation (>>>), end indenta-
tion (<<<), and newlines (<nl>). In this case the text “begin” is presented followed by
increasing the indentation level (>>>) and a new line (<nl>). The in part specifies the
concrete syntax separating the descendants of the StatementList, in the example a semi-
colon followed by a new line. The after part specifies the concrete syntax after the last
descendant. In the example, decreasing the indentation level, a new line, and the text
“end”.

APPLAB User's Guide (version 1.2) 29 of 56

The Grammar Formalisms

(2) An If statement is a construction production. The concrete production consists
of the concrete syntax before the first descendant, “if “, and a number of references to
the presentation of the descendants (@...), followed by the concrete syntax after the de-
scendant. In the example “@1” results in presentation of descendant one, the condition
expression of the if statement, followed by the text “then”, increasing the indentation
level, and a new line. The second descendant, the then-statement, is presented followed
by decreasing the indentation level, a new line, the text “else”, increasing the indenta-
tion level, and a new line. (3) The Plus production is another example of a construction
production. It has no concrete syntax before the first descendant represented by an emp-
ty template list (). The first descendant is followed by the text “+” and the presentation
of the second descendant. No concrete syntax follows the second descendant.

(4) Finally, the ID is a lexeme production. It has two parts, “before” and “after”.
The before part specifies the concrete syntax presented before the lexeme contents. The
lexeme contents is then presented followed by the concrete syntax of the after part. In
the example no concrete syntax is preceding or following the identifier.

The structure-oriented editor has knowledge of the structure of concrete gram-
mars. It can be expressed in an abstract grammar for concrete grimmars

(1) ConcreteGrammar::* Production

(2) Production ::=Id & Definition

(3) ID ::= LEXEME

(4) Definition ::! Construction ! List | Lexeme

(5) Construction ::= TemplateList & SonList

(6) TemplateList::* Template

(7) Template ::! Text ! NewLine ! Indent ! Endindent
(8) Text::= LEXEME

(9) NewLine ::=
(10)Indent ::= _
(11)Endindent ::= _

(12)SonList ::* Son

(13)Son::= SonNumber & TemplateList
(14)SonNumber ::= LEXEME

(15)List ::= TemplateList & TemplateList & TemplateList
(16)Lexeme ::= TemplateList & TemplateList

(1) A concrete grammar is a list of productions. (2) A Production consists of an identifi-
er, Id, and a definition. (3) An ID contains a production name and is thus a lexeme. (4) A
definition is either a construction, a list, or a lexeme. (5) A construction definition con-
sists of a TemplateList describing the concrete syntax presented before the descendants.
The concrete syntax of the descendants is described in the SonList production. (6) A
TemplateList consists of a number of templates containing keywords and formatting in-
formation. (7) A Template either is a text containing a keyword or delimiter, or format-
ting information Newline, Indent, or Endindent. NewLine means that a new line is to be
inserted, Indent that the indentation level is to be increased, and Endindent that the in-
dentation level is to be decreased. (8) A Text contains the text to be presented in a lex-
eme. (9,10,11) The Newline, Indent, and Endindent production do not have any
descendants or text contents. They are thus terminals in the grammar. (12) The SonList
(in the construction definition) specifies the concrete syntax for the descendants (sons)
of a construction. (13) A Son consists of a SonNumber and a TemplateList containing

6. This is the grammar used by the structure-oriented editor when editing concrete grammars in
the CONCRETE window

30 of 56

APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

5.3

the concrete syntax to be presented after the son. (14) A SonNumber contains the
number of the son that is part of a construction. It is a lexeme and its contents should be
1 for the first son, 2 for the second, etc. (15) A List definition has three parts. One
TemplateList that specifies the concrete syntax to be presented before the first element
of the list, one TemplateList that specifies the concrete syntax separating list elements,
and one TemplateList for the concrete syntax after the last list element. (16) A lexeme
definition contains a TemplateList containing the concrete syntax before the lexeme
contents, and one TemplateList for the concrete syntax after it.

The “bread and butter” of the concrete grammars are the Text, Indent, Endindent,
and NewLine templates. A Text template will cause the lexeme contents of the Text to
be presented. The Indent and Endindent will increase and decrease the indentation level
respectively. The Indent and Endindent will not come into effect until a NewLine is per-
formed. A NewLine results in a new line in the presentation and an indentation to the
current indentation level.

The Structure of Parse Grammars

A parse grammar (or the parse aspect of a grammar) specifies additional information
needed to correctly perform textual editing of a grammar asp>admar-Interpret-
ing Parsef-component is used to allow textual editing of any selected structure of a
grammar aspect within the structure-oriented editor. The same (abstract and concrete)
syntax as is used in the structure-oriented editor is recognized by the parse. Any ambi-
guities of the abstract grammar are resolved in a parse grammar by specifying the prec-
edence and associativity of ambiguant productions (operators). The parse grammar also
partly specifies the lexical syntax of the defined language and configures certain aspects
of the parsing component. An example of a parse grammar is given below.

Priorities:

left: Add, Sub
< left: Mult, Div

Configuration:
Comment: “(*” ... “*)”
String Quote: *”

Each line of the “priority” part contains a list of productions of the same precedence.
They are either right, left, or non-associative, or have no associativity. The productions
are listed from the lowest to the highest level of precedence. I.e. in the given example
Add and Sub, which are left associative, have lower precedence than Mult and Div.

The “configuration” part of the parse grammar is used to specify certain aspects of the
lexical syntax, i.e. comments and strings, and to configure the parser component.

APPLAB has knowledge of the structure of the parse grammar. It can be expressed in an
abstract grammar for the parse granfinar

7. See “A Grammar-Interpreting Parser in a Language Design Laboratory” by E. Bjarnason and
G. Hedin, To be presented at the poster session of CC'96

8. This is the grammar used by the structure-oriented editor when editing parse grammars in the
PARSE window.

APPLAB User's Guide (version 1.2) 31 of 56

The Grammar Formalisms

531

(1) ParseGrammar::= priorities&configuration

(2) priorities ::* priority_level

(3) priority_level ::= assoc_kind&prod_list

(4) assoc_kind ::! leftlrightlnonassoc!NO_assoc

(5) left:=_

(6) right ::= _

(7) nonassoc ::= _

(8) NO_assoc ::= _

(9) prod_list ::* production

(10)production ::LEXEM

(12)configuration ::* C_config_option

(12)C_config_option::!StringQuote!Comment!ExtendedFocus!NOStri
ngs!NO_left_factor!NO_priorities

(13)StringQuote ::LEXEM

(14)Comment ::= Keyword&EndComment

(15)Keyword ::LEXEM

(16)EndComment ::! Keyword ! EOLToken

(17)EOLToken ::= _

(18)ExtendedFocus ::= _

(19)NOStrings ::= _

(20)NO_left_factor ::= _

(21)NO_priorities ::= _

(1) A parse grammar consists of two parts: one for defining priorities and one for config-
uring the parser component. (2) The priorities are defined as a list of priority_level:s. (3)
Each priority_level has an assoc_kind and a prod_list. (4) An assoc_kind is either left,
right, nonassoc or NO_assoc. (5, 6, 7, 8) the left, right, nonassoc and NO_assoc produc-
tions do not have any descendants. (9) prod_list is a list of production:s. (10) production
contains the name of a production. (11) The configuration is a list of C_config_option:s.
(12) C_config_option is either StringQuote, Comment, ExtendedFocus, NOStrings,
NO_left_factor or NO_priorities. (13) StringQuote contains a character used to encap-
sulate strings. (14) Comment contains a Keyword and an EndComment. (15) Keyword
is the text of a keyword. (17, 18, 19, 20, 21) the EOLToken, ExtendedFocus, NOStrings,
NO_left_factor and NO_priorities productions do not have any descendants.

The Lexical Syntax

In the current version of APPLAB the definition of lexical items are hand-coded, includ-
ing identifiers, keywords, numerical constants, strings and comments. Start- and end-to-
kens of strings and comments can be specified in the configure part of the parse
grammar.

When doing textual editing in APPLAB special note is taken of the lexeme pro-
ductions ID, NUM, INT, REAL, and ANYLEX of the abstract grammar. The ID pro-
duction matches an identifier, the NUM, INT and REAL productions are expected to be
used for numerical constants, while ANYLEX represents any combination of characters
and should be used for strings and comments. Thus, when defining a grammar for a lan-
guage which is to be editable as text, the ID, NUM, INT, REAL and ANYLEX produc-
tions should be defined as lexeme-productions and used instead of user-defined lexeme-
productions. Internally, the predefined lexeme productions, comments, strings, and key-
words, are implemented as follows:

(1) NUM -> INT | REAL

(2) INT -> Integer

(3) REAL -> RealNumber [Exponent]
(4) 1D -> Letter {Letter|Digit|’_"}*

(5) ANYLEX -> (Chars)*

32 of 56

APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

5.3.2

54

(6) Comment-> CommentBeginToken ANYLEX CommentEndToken
(7) String -> QuoteChar ANYLEX QuoteChar

(8) Keyword -> (Non-blank)+

(9) RealNumber -> Integer.Integer

(10)Exponent -> (E | e)[+|-]Integer

(11)Integer -> Digit*

(12)Digit -> {0..9}

(13)CommentBeginToken -> (Specified in PARSE)
(14)CommentEndToken ->(Specified in PARSE)
(15)QuoteChar -> (Default: *”, specified in PARSE)
(16)Chars -> {All printable ASCII characters}
(17)Non-blank -> {All printable non-blank ASCII characters}
(18)Letter -> {'A’.."Z’, 'a’..’z’}

Configure Text Editing

The text editing facilities of APPLAB can be configured for each language described by
a grammar in APPLAB. The parser component that performs the text editing works on
an internal representation of the current grammatr. In order to correctly parse as large a
set of grammars as possible this internal grammar representation is restructured to allow
the parser to perform correctly. Sometimes, it may be desirable to limit the amount of
restructuring done to the grammars but that means that the original grammar must be
suitable for parsing without those grammar transformations. The configuring options in-
clude:

No left factoring Common prefixes are not factored out; the grammar
should be LL(1)
Do not use priorities The precedence and associativity of productions specified

in the parse grammar should not be used; the grammar
must be unambiguous

Extended focus When selecting a structure for textual editing match to the
most general language construct with the same extent on
the screen. E.g. for the grammar Exp ;! Add ! ... | NUM,
NUM::LEXEM. Selecting the lexeme-structure of a NUM
production is equal to text editing an Exp-structure.

The Structure of OOSL Grammars

The OOSL grammar (or the oosl aspect of a grammar) is used to define static semantics
defined as Door Attribute Grammar&ach production in the abstract grammar has a
node class in the OOSL grammar. There are different types of node classes, Alterna-
tion(::!), Construction(::=), List(::*) and Lexeme(::LEXEM). They correspond to the al-
ternation, sequence, list and lexeme productions of the abstract grammar. The node class
name in the OOSL grammar production has to be the same as in the abstract grammar.
An example of an OOSL grammar is given below.

Expr: node ANYNODE::! Alternation
{ inh expectedType : integer ;

loc myType: integer ;

loc sonError : boolean ;

9. See Hedin, G., “Incremental Semantic Analysis”, Ph. D. thesis, Dept. of Computer Science,
Lund University, for a more detailed description of the grammar formalism.

APPLAB User's Guide (version 1.2) 33 of 56

The Grammar Formalisms

loc locTypeError : boolean ;

eq locTypeError :=
if expectedType = anyType or

myType = anyType then
false
else

expectedType = myType;

eq error := locTypeError or sonkError;

WhileStmt: node Stmt:= Construction
(a_Expr: ref Expr,
a_Stmt: ref Stmt)
{ eq error :=
a_Expr.error or
a_Stmt.error;
eq a_Expr.expectedType :=

boolType
Less: node Expr::= Construction
(a_Exprl: ref Expr,
a_Expr2: ref Expr)
{ eq sonError :=
a_Exprl.error or

a_Expr2.error;
eq son Expr.expectedType :=
numType;

eq myType =
boolType

)

For each node class attributes and equations defining the value of those attribute can be
specified. APPLAB has knowledge of the structure of the OOSL grammar. It can be ex-
pressed in an abstract grammar for the OOSL grammar.

5.4.1 Compiling an OOSL Grammar

In order to benefit from the entered OOSL grammar it must be compiled. This is done
by choosing the menu alternat@empile oosl in the menu of the OOSL window, or,

the menu alternativRecompile OOSL grammar, which appears when the system
discovers the need to recompile. During compilation the OOSL aspect is read, checked
for semantic errors and compiled to internal data structures used to perform demand-at-
tribute evaluation. A message is given upon completion of compilation to indicate the
outcome of the compilation.

When compiling by issuing the menu alternat@¥empile oosl in the menu of the
OOSL window an error marker is set at the corresponding language construct in the
OOSL window whenever an error is detected. Focusing on this marking and choosing
the menu alternativExplain error gives a short explanation of the error. It is also pos-
sible to scroll through the errors with the menu altern&igelain next error. The
system then focuses on the next error and presents the error message associated with it.
The error markers remain in the window until the next compilation. I.e. even if the error
is corrected the error marking will remain in the window (unless the whole construct is
deleted) until the grammar construct is correctly compiled.

34 of 56

APPLAB User’s Guide (version 1.2)

The Grammar Formalisms

54.2

543

544

Demand-Attribute Evaluation

As the user edits a program in the TARGET window it is possible to evaluate the OOSL
attributes defined for the current language construct. A list of the accessible attributes is
presented when the user choaShsw Attributes in the menu of the TARGET win-

dow. By choosing one of the attributes of this menu it will be evaluated and the result
presented in a window on the screen. If something goes wrong during the evaluation,
e.g. an attribute does not have an equation defined for it or the target grammar is not
complete, then the attribute is said to have an erroneous value. Before presenting the list
of accessible attributes the system checks if the OOSL grammar needs recompiling. If
so, the menu optioRecompile OOSL grammar is given.

Defining the Names Menu

If the current selection has an OOSL attribute with the naarees the contents of this
attribute is presented in thiéames menu. This facility is intended to be used to present

a list of all names (semantically) visible at the current selection of the program. It is up
to the language designer to define tteames attribute defining the current names to be
presented in thBlames menu. Such an attribute can be defined for any node class of the
grammar. If no such attribute is defined for the current selection it is said to have no se-
mantics defined for it. See sections 2.10 and 4.4.7 for a description bfghes menu

facility.

When requesting thiames menu the system checks if amgmes attribute is
defined in the OOSL aspect for the node class of the current selection and if so it is eval-
uated and its contents presented ames menu in the TARGET window. The system
also checks if the OOSL grammar needs to be recompiled. If so, the menuRzation
ompile OOSL grammar is given.

Predefined Lexeme Classes

The predefined lexeme-productions, ID, NUM, INT, REAL and ANYLEX, described in
Section 5.3.1, are implemented as predefined lexeme classes in OOSL through which
the contents of the actual lexeme text can be accessed in the OOSL grammar. The prede-
fined lexeme classes are defined as follows (also found in the LIB aspect of oosl.gram):

ID: node :!
{ syn val: string ;
syn lex: string

1

NUM: node ::!

{ syn val: real ;
syn lex: string

REAL: node :!

{ syn val: real ;
syn lex: string

INT: node ::!

{ syn val: integer ;
syn lex: string

APPLAB User's Guide (version 1.2) 35 of 56

The Grammar Formalisms

ANYLEX: node ::!
{ synlex: string }

5.4.5 Predefined Abstract Data Types

In order to more efficiently express static semantics of a language using the OOSL
grammar a number of abstract data types have been predefined. The only data type im-
plemented at the moment is a set of strings, but in the future lists, dictionaries and sym-
bol tables are to be predefined. The set is defined as follows (also found in the LIB
aspect of oosl.gram):
Set: class
{ (* Returns true if the set is empty *)
empty: func boolean ;

(* Returns true if the set contains item *)

contains: func boolean
(item: string);
(* Adds item to the set *)
add: funcref Set
(item: string);
(* Returns the union of this set and s *)
union: funcref Set
(s: ref Set);

(* Returns true if this set contains exactly the same
strings as s *)
equal: func boolean
(s: ref Set)

5.4.6 The Implemented Subset of Door AG

The OOSL compiler and demand attribute evaluator of APPLAB are presently limited
to handling only a subset of Door AG constructs. This subset includes
= alt- and cons-classes with (single) inheritance,

= list classes extended with the predefined attributes cardinal and son.pos, and an at-
tribute construction expression. Sést Nodes in OOSL on page 37 for a descrip-
tion of the added features.

= local, inherited and synthesized attributes,

= virtual functions with parameters,

= classes without parameters,

= types: integer, real, boolean, string, object references
= logical operations: not, or, and, ==, <>, if-then-else,

= arithmetic operations: +, -, *, **, function calls,

= String operations: concat, blanks

= attribute equations,

= collective equations.

36 of 56 APPLAB User's Guide (version 1.2)

The Grammar Formalisms

547

55

Doors and semantic objects have been left out, as well as iterators, collections, condi-
tions, and fix attributes.

List Nodes in OOSL

The list node-construct of OOSL has been extended with the predefined attidutes
dinal andson.pos and an attribute construction expression. The predefined attribute
cardinal can be described as follows:

cardinal attribute of list nodes denoting the current number of sons

In order to construct attribute values based on attributes of the sons of a list node an at-
tribute construction expression has been added. It has the following syntax:

AC$<Id> := (<Start-Exp> | <Loop_Exp>)

The AC-expression iterates over all the sons of the list node, evaluating <Loop_Exp>
for each one of them. The temporary variable $<Id> is used to store the intermediate re-
sults and can be accessed in <Loop_Exp>. $<Id> is initiated by evaluating <Start-Exp>.
Attributes of the current son are accessed through the predefined reference-ganiable
which can only be used in a <Loop_Exp> ofA@rexpression. The left-to-right posi-

tion of the current son can be accesseddyypos The result of evaluating th&C-ex-
pression is the resulting value found in $<Id>.

Editing Metagrammars

All grammars in APPLAB are represented as abstract syntax trees. They are edited by
means of the structure-oriented editor according to grammars describing grammars, i.e.
metagrammars. All abstract grammars are defined by a grammar defining abstract gram-
mars, containing one abstract and one concrete aspect specifying their structure and
presentation respectively. All concrete grammars are defined by a grammar defining
concrete grammars, containing an abstract and a concrete aspect. This is also the case
for the parse and oosl grammars. The metagrammars, i.e. the grammars specifying
grammars, are in turn defined in terms of themselves.

Since the metagrammars are ordinary grammars they can be edited using AP-
PLAB. The concrete aspects of the metagrammars can be edited freely changing the
presentation of grammars, e.g. the way an abstract grammar is presented with “... ::= ...
& ... & ..". The abstract aspects of the metagrammarsmmotlye changed, since they
define the structure of the grammars which is the language APPLAB interprets while
editing. Changing the abstract aspects of the metagrammars will cause unpredictable re-
sults.

The metagrammars are named abs.gram, con.gram, par.gram, and oosl. gram.
They are located in the “grammars” directory. The grammars may be inspected using
APPLAB, but we strongly recommend yourtot edit them.

APPLAB User's Guide (version 1.2) 37 of 56

Grammar Tools

6.0

Grammar Tools

6.1

6.2

When defining new languages in APPLAB it is useful to have a few tools that help the
language designer in editing and debugging the grammar specifications. Two such sim-
ple, rudimentary, tools are included in this release of APPLABg#y Printerand an

OOSL generatorThePretty Printercompiles the abstract, concrete and parse aspects of

a grammar into one list. The OOSL generator is used to generate the outlines of an
OOSL grammar aspect corresponding to the abstract aspect.

The Pretty Printer

The grammar for a language is entered production by production, and information con-
cerning each production is spread over a number of different aspects of the grammar.
ThePretty Printercollects information about each production from the abstract, con-
crete and parse aspect, and produces a tree-listing of the grammar. Any undefined pro-
ductions are marked in the produced list. Defined, but unused, productions are found at
the root of a separate tree in the listing. This helps to identify misspelled and/or unde-
fined productions. It also gives a better overview of the defined language since informa-
tion from the abstract, concrete and parse aspect is compiled into one list. The list is
written to a text file specified by the user.

Invoke the pretty printer by the menu commamcktty Print in the pop-up menu
of the grammar window.

The OOSL Generator

When entering a grammar for a language one usually begins by defining the abstract and
concrete aspects. Later on an OOSL aspect may be added. The structure of the node
classes has then already been defined in the abstract grammar aspect and entering the
corresponding structures once again in OOSL syntax is both tedious and error prone. In-
stead the OOSL Generator can be used to automatically generate and/or update these
structures from the current abstract aspect. The OOSL Generator is invoked by the menu
commandSpecial->Generate from ABSTRACT in the OOSL window. The user is

asked to give the name of a general prefix class, i.e. an alternation node class that will be
the superclass of all the node classes in the grammar. It is often useful to declare a com-
mon node class containing attributes and equations which are general to all the node
classes. If no prefix is given, non will be used in the generated structures.

When using the OOSL Generator to update an OOSL aspect messages will be pro-
duced in a message-window for any node classes that already exist. If they have a differ-
ent structure, prefix, or number/type of sons, than is derived from the abstract grammar
aspect this is also reported and the node class of the OOSL window is changed to match
its abstract aspect. The bodies of existing node classes, containing attributes and equa-
tions, are always left intact. The sons of a construction node are named with the prefix
"a_" added to the qualification of the son.

38 of 56

APPLAB User’s Guide (version 1.2)

The Version Handling System

7.0

The Version Handling System

7.1

7.2

7.3

This chapter introduces how to use the finer details of the version handling system of
APPLAB and it explains how the version handling system affects the basic operations
for entering, exiting and saving grammars. It is not necessary to read this chapter for

normal use of APPLAB.

Introduction

All grammars within APPLAB are uniformly version controlled using the same basic
mechanisms. The version handling system supports the user in organizing versions of
grammars and maintains relations between those stored objects. Two users may simulta-
neously work on the same revisions of the same grammar.

The operations for entering, exiting, and saving grammar documents use the ver-
sion handling system for storing the information. These operations use the version han-
dling system in a straightforward way similar to the traditional way in which programs
are stored in a file system. This chapter describes how the version handling system may
be used in order to extend the function of the entering, exiting and saving operations.

Terminology

A grammar document, including all its revisions is call€t@yram Base Objeair

PBO for short. ThéBOIldis used for identification of a PBO. The revisions of a PBO
are organized in aavolution graphwhich describes the development order of the revi-
sions. A series of consecutive revisions in this graph is callaftexnative.New alter-
natives may be created by making a branch from a revision in an existing alternative. A
Revisionldis used for identification of a revision and consists of three namesdtehe
native nametherevision namend therevision numberTwo PBO:s can be connected
by arelationwhich describes a dependency between the PBO:s or between two revi-
sions of the PBO:s. A typical example is a program that depends on a grammar. It is
possible to store information aitributesconnected to the revisions and to the PBO. An
attribute has aattribute nameand anattribute contentAutomatic purge is an example
of a facility controlled by an attribute.

Relations

A relation is used in order to describe a relationship between two PBO:s or even be-
tween specific revisions within the PBO:s. The information connected to a relation con-
sists of three parts, thievision descriptiorwhich describes the current value of the
relation, thebinding typewhich is used to describe how the relation should be rebound
and thebinding rulewhich describes how a revision should be selected in the evolution
graph.

= Revision description

The revision description consists of the PBOId and an Internal number which
uniquely identifies a revision within the selected PBO.

APPLAB User's Guide (version 1.2) 39 of 56

The Version Handling System

PBOId File name of the PBO or ‘<SELF>". ‘<SELF>’ is used in
order to refer to an open revision despite it not yet being
inserted in the evolution graph.

Internal no Undocumented description.
= Binding type
The binding type defines how the relation will be rebound.

Explicit Rebind the relation by letting the user interactively choose
PBO and revision.

Fixed Do not rebind the relation.
Uses the revision identification in order to bind the rela-
tion.

If the revision can not be found the user is prompted to
bind the relation interactively.

Dynamic Rebind the relation according to the binding rule.
If the rule can not point out exactly one revision the user is
prompted to bind the relation interactively.
= Binding rule
A binding rule is a wild card specification for selecting revisions in an evolution
graph. The wild card specification is a pattern corresponding to the parts of the Revi-

sionld.

BindingRule ::= AlternativeName RevisionName RevisionNo
AlternativeName ::= WildCardSpecification
RevisionName ::= WildCardSpecification
RevisionNo ::= WildCardSpecification | NewestRevision | Integer
WildCardSpecification ::= (Char+ | **")*

Where *' is a wild card character matching any sequence of
characters.
NewestRevision ::= >’

>’ matches the newest revision among the revisions selected by the previ-
ous two parts of the binding rule.

Example:

Alternative name: MyAlt*
Revision name: *SELECT*
Revision number: >

This means select the latest created revision with an alternative name starting with
‘MyAlt' and containing ‘SELECT' in the Revision name.

7.3.1 Look-up of PBOId

At binding time the PBOId is looked up in the file system in the following order:

1. Current directory.
2. According to the environment variable corresponding to the PBO type.

If no PBO is found an explicit binding is initiated.

40 of 56 APPLAB User's Guide (version 1.2)

The Version Handling System

7.3.2

7.3.3

Explicit Binding of Relations

When the relation is rebound explicitly the user is prompted for the PBOId.

II.H'Il-E:II:.J-n- TS| I

After selecting the PBOId, the full file name of the PBO is looked up and a revi-
sion selection prompt is displayed for the selected PBO.

TG & LIYEITN i Fhemeientunie iy meansivofsgran

 m—

There are two ways of selecting a revision in the revision selection prompt.

= Double click on the revision
= Click on a revision and the use the pop-up menu command
-> Choose selected

Evaluation of Relations at Binding time

The evaluation of relations at binding time follow two main directions depending on the
value of the PBOId.
= <SELF> bound relations

A relation with PBOId = ‘<SELF>' is bound to the virtual copy of the current revi-
sion. This means that it is possible to refer to an opened revision despite it not being
inserted in the evolution graph. The binding type and binding rule is overruled for
<SELF> relations.

= File name bound relations

For relations where the PBOId equals a filename the binding type is interpreted in
order to select a revision.

1. Dynamic binding
The full file name of the PBOId is looked up and the binding rule of the relations is
used in order to select a revision. If no revision could be bound an explicit binding is
initiated.

2. Explicit binding
An explicit binding is initiated. The binding rule is overruled.

3. Fixed binding

APPLAB User's Guide (version 1.2) 41 of 56

The Version Handling System

7.4

7.5

751

The full file name of the PBOId is looked up and the revision description of the rela-
tion is used for selecting a revision. If no revision could be bound an explicit binding
is initiated. The binding rule is overruled.

Window Structure

The window corresponding to a grammar represents a single revision of the grammar,
and is here called thevision windowilt is labelled with the PBO-name and the Revi-
sionld. When starting APPLAB an outer window called RBO-windowis created

which representall of the revisions of the grammar. From the PBO window it is possi-
ble to open one or more revision windows of the document. These revision windows are
placed inside the PBO window.

Within the PBO-window there is functionality available for viewing and affecting
the revisions of the document. The PBO-window is labelled only with the PBOId. With-
in the PBO-window aevolution graph windows displayed. This window shows the
evolution graph of the PBO and is used for manipulating the graph and the revisions of
the PBO.

raaid
Evolution S | \TVB%
Graph _ _ indow
WindOW\\ b ! i I} i e VST /
\ ——1 o (ST T3]
|
I .I-I - R - .
evision
PBO Window
In this section the functionality of the PBO window is described.
Commands
-> Quit This command removes the PBO window and terminates APPLAB.
Restriction:

It is not allowed to quit from the PBO window if any revision win-
dow currently is open.

42 of 56

APPLAB User’s Guide (version 1.2)

The Version Handling System

Fajal

7.5.2 Undocumented Features

-> Garbage Collect
-> Memory Statistics
-> Memory Statistics without GC

7.6 Evolution Graph Window

The evolution graph window displays all revisions of the PBO.

o Fork revision Key
Revision
name .

volrtio Alternative
RRevision ?/ name
SOUI’CG_’— —4 Alternativel
revision e Alternativez
Key removed
A revision

The first revision is called theource revisiorand is the original empty revision. A

number of consecutive revisions are called an alternative. A revision may belong to sev-
eral alternatives. A branch starts ificak revision For every alternative there is a key to
enable synchronization between users. The user first opening the latest revision in an al-
ternative removes the key. Only the user holding the key may add new revisions at the
end of the alternative. All other users have to branch and thus create new alternatives.

The names of the alternatives are always visible in the evolution graph window. In
order to see the name of a revision move the mouse to the symbol of the revision and the

APPLAB User's Guide (version 1.2) 43 of 56

The Version Handling System

name will be displayed in the upper left hand corner of the window. This operation will
only be in effect until the evolution graph is changed.

7.6.1 Interactive Selection of Alternatives and Revisions

The selection of alternatives and revisions is by direct manipulation with the mouse in
the evolution graph. The left mouse button is the selection button. Commands in the re-
vision graph window’s popup menu affect the selected objects in the graph. If more than
one revision is selected the operation will be applied to each revision in turn.

Select arevision Click on the revision of your choice. Any previous selections will
be de-selected.

Revision 3
ob—n Alternativel
o0—n Alternativez

Click on the
revision

Toggle revision Click on a revision while pressing the shift key on the keyboard.
The state of the revision toggles between selected and not selected.
The operation will not affect previous revision selections. The tog-
gle operation can be used for selecting more than one revision.

D—D—[ﬁu—n A1ternativel
o0—n Alternativez

Click + Shift

Evolution Graph

Select alternative

Click on the alternative name. It is only possible to select one alter-
native at a time.

44 of 56

APPLAB User’s Guide (version 1.2)

The Version Handling System

H—T::—D 0—n #Alternativel
0— Mterr‘at1’ve2

Click on the
alternative name

Remove selections

It is possible to remove all previous selections by clicking in the
area of the evolution graph without selecting a revision.

D—D—[ﬁ:g—ﬂ 0—n #Alternativel
o0—n Alternativez

Click inside the
marked area

7.6.2 Selection of Revisions by Rule
An alternative way of selecting revisions. Revisions are selected by specifying the bind-
ing rule which is applied to the evolution graph.

-> Enter Selection Criteria
Sets the binding rule.

Blternative name : myAlt+_

Revision name : *SELECT*_

Revision number : >

-> Show selection

Evaluates the binding rule and shows the selected revisions in the
evolution graph.

APPLAB User's Guide (version 1.2) 45 of 56

The Version Handling System

7.6.3

Open

Creates and opens virtual copies of selected revisions. The copies are not added to the
PBO and are not shown in the graph until the user saves them. It is possible for a user to
have several revisions open at the same time.

-> Open -> Dynamic Rebinding
Opens selected revisions and binds the relations according to their
binding types.

-> Open -> Explicit Rebinding
Opens selected revisions and prompts the user for interactive bind-
ings of relations. The binding types of the relations are overruled.

This menu alternative is used for interactively rebinding all rela-
tions of the revision, e.g. when the relations should be rebound to
another PBO.

-> Open -> Fixed Relation

Opens the revisions using the revision description of the relation.
No rebinding of the relations are done. The binding types of the re-
lations are overruled.

This menu alternative is used when the existing binding of the rela-
tion should be used, e.g. in the case of error corrections.

Short-cut: A double click on a revision is a short-cut for choosing a revision
and then performing the Open -> Dynamic Rebinding com-
mand.

None of the commands will affect the binding rule of the relations. The revision identifi-
cation will be changed to the bound revision.

When the last revision of an alternative is opened the key is removed from the al-
ternative. Only a revision with a key is allowed to be appended at the end of the alterna-
tive. When quit is done on a revision with a key, the key is returned.

Restrictions:
If the key is removed when opening the last revision of an alternative or when opening

a revision within the alternative the user will be notified. In these cases the opened revi-
sion has to be saved in a new alternative.

rapid

46 of 56

APPLAB User’s Guide (version 1.2)

The Version Handling System

7.6.4 Delete

Deletes a selected alternative or selected revisions.

-> Delete

Restrictions:

= If the evolution graph has only one alternative, this alternative cannot be deleted.

= Itis not allowed to delete the source revision in the evolution graph (the leftmost
box).

= It is not allowed to delete a revision which forms a fork between two alternatives.
7.6.5 Rename

Renames a selected alternative or selected revisions.
-> Rename

The rename operation will not affect the binding of relations since the Revisionld is not
used for selecting revisions at binding time.

7.6.6 Attribute Support

An attribute is an attribute name with an associated attribute contents. In the current im-
plementation both the name and the contents are text strings. The attribute can be at-
tached to the PBO or to any revision. Attributes can be used for example to describe the
state of a revision in the development process.

-> Attached Info -> Attributes -> Object attributes ->
These commands apply to the PBO attributes.

...... -> Show Show the attributes of the PBO.
...... -> Set Define a new attribute or change the contents of an attribute in the
PBO.

...... -> Delete Delete a PBO attribute.

Restriction:

= SeePredefined Attributegsection 7.9) for a summary of all attributes with an al-
ready defined meaning.

-> Attached Info -> Attributes -> Revision attributes ->

These are the commands applicable to the revision attributes.
...... -> Show all

Show all attributes for each revision in the PBO.
...... > Show Show all attributes of the selected revisions.

APPLAB User's Guide (version 1.2) 47 of 56

The Version Handling System

7.6.7

7.6.8

7.7

7.7.1

...... > Set Define a new attribute or change the contents of an attribute for eve-
ry selected revision.
...... -> Delete Delete an attribute for every selected revision.

Other Commands
-> Show Revision Names

The selected revisions will have their names printed above its sym-
bol.

-> Misc -> Restore all keys

If anyone takes the key from an alternative and the execution of the
program is unintentionally interrupted (crashed) the key will be
lost. This command resets the key for every alternative.

Note: Do not use this command when there are other simultaneous
users of the same PBO.

-> Misc -> Purge Removes revisions in the evolution graph according to the “Purge”
attribute.

Uses the “Purge” attribute. See the definition of the Purge attribute
in thePredefined Attributegsection 7.9) for more information.

Undocumented Features

-> Attached Info-> Object Relation Menu ->
-> Misc -> Compact

-> Misc -> Redisplay

-> Misc -> Debug ->

Revision window
The revision window contains the functionality to save and quit a revision of the PBO.
Save

The save command stores the revision in the alternative it was created from and auto-
matically gives the revision a default name. After the save operation, the key or the in-
serted revision is owned by the current revision.

-> Save

Restriction:

= If the revision is not owner of a key it is not possible to save the revision in the alter-
native it was created from.

Could not sawe as revision !

{(Sawe in new Alternative) (CANCEL)

48 of 56

APPLAB User’s Guide (version 1.2)

The Version Handling System

7.7.2

7.8

7.8.1

7.8.2

Instead the revision may be save in a new alternative or the user may cancel the save op-
eration. If the revision is saved in a new alternative the user is prompted for an alterna-
tive name and a revision name.

Quit

This command lets the user leave a revision without saving changes in the revision.
-> Quit

If the user has received the key it is returned.

Grammar Document Characteristics

This section describes some characteristics of the grammar documents from the version
handling point of view.

Revision Commands

The revision commands are located in the revision window menu as follows:

-> Revision -> Save as revision

This command behaves as the Save command except the user has to
provide an explicit revision name for the revision to be saved.

-> Revision -> Save as alternative

The current revision is saved in a new alternative and the user is
prompted for names of the new alternative and revision.

-> Revision -> Insert Revision Window

The PBO window and evolution graph window is created (if it was
not already present) and the revision window is inserted as a son to
the PBO window. This enables the user to view and manipulate the
revisions in the revision graph.

Undocumented Features

-> Miscellaneous -> Create relation

-> Miscellaneous -> Delete relation ->
-> Miscellaneous -> Relation info

APPLAB User's Guide (version 1.2) 49 of 56

The Version Handling System

7.8.3 Binding of Relations

One relations is connected to each grammar aspect window in the grammar document.
The relation is bound to the meta grammar.

u_l-l.l 1 ANl TErnaT el Ry ralas o I

Grammar
aspect
windows

= Revision window
-> Add (Abstract, Concrete,)

When adding a new grammar aspect window the meta grammar is
bound using an explicit binding.

A Target grammar window may be bound to the current revision.
This is achieved by assigning the PBOId to ‘<SELF>'.

:“IJI'r'!-'!r alterngtivel Reviztan @ _.-|

b, BRSTAALT
3, COMCHETE

= PA:-C-EI

I WALET Gr e (NN

-> Change meta grammars

All relations are rebound using explicit binding.
= Grammar aspect window
-> Binding Rule -> Set Binding Rule -> Dynamic

Sets the binding type to dynamic rebinding and asks for the binding
rule. The command will not affect the current value of the relation.

-> Binding Rule-> Set Binding Rule -> Explicit

Sets the hinding type to explicit rebinding. The command will not
affect the current value of the relation.

-> Binding Rule -> Set Binding Rule -> Fixed

Sets the binding type to fixed rebinding. The command will not af-
fect the current value of the relation.

-> Binding Rule -> Show Binding Rule
Shows the binding rule of the relation.

7.9 Predefined Attributes

This section introduces the predefined attributes on both the PBO and the revisions.

50 of 56 APPLAB User's Guide (version 1.2)

The Version Handling System

7.9.1 PBO Attributes

Currently there are only two predefined PBO attributes.

Purge

The attribute defines how many revisions should be left at the end of each alternative
when the purge command is executed.

The Purge contents is defined as.
PurgeContents ::= ‘KEEP=" (Integer | ‘ALL")

Restrictions:

The source revision and fork revisions will not be deleted. This means that the
number of remaining revisions is greater or equal to the specified number of revi-
sions to keep. If no Purge attribute exists the Purge command will use the PurgeCon-
tents = “KEEP=ALL'.

Examples:

KEEP=4 I Keep the 4 last revisions in every alternative.
KEEP=ALL I No revisions will be removed.

TimeStamp

Contains the creation date and creation time of the PBO. This attribute is automati-
cally set and should never be modified manually.

Attribute TimeStamp : 1991-03-11 17.28:.27

7.9.2 Revision Attributes

There are currently no predefined revision attributes.

APPLAB User's Guide (version 1.2) 51 of 56

Unix Level

8.0 Unix Level

This chapter explains how APPLAB works at the Unix level. This information can be
useful if you want to change the system configuration or if you get into some trouble.
For normal usage you do not need to know this.

8.1 The “applab” Script
Theapplab script starts an APPLAB session for a grammar file.

The synopsis for applab is

> applab [-m=#] [-g] [-p]
[-text=importFile:[grammar]:[startProd]]
[-socket] [-msgport=#]

filename
-m=# start APPLAB with a heap of # Mbyte.
Default is 1 Mbyte.
-g print a message for each garbage collection.
-p prints a message concerning the current heap size
-socket start APPLAB with open socket communication
-msgport=# initiate socket communication on port #. Only meaningful

when starting APPLAB with the socket option.
-text=textFile:[grammar]:[startProd]

starts APPLAB with a text link window (see section 4.5) con-
taining the imported text frortextFile . The file is assumed

to contain a program written in the metagramgrammar
starting at productiostartProd . If no grammar name is
given the current grammar is used. If no start production is giv-
en the first production of the grammar is used.

filename Must have the extension “.gram” . If the file does not exist, a
new grammar is created.

8.2 The “ormmessage” Script
The ormmessage script sends a message to an active APPLAB session.

The synopsis for ormmessage is

> ormmessage [-ormclient=<orm-machine>] [-msgport=#]
STOP |
((READ|EDIT) <FileName> <grammar> <startProd>)

-ormclient=<orm-machine>
Send message to APPLAB runninga@m-machine

52 of 56 APPLAB User's Guide (version 1.2)

Unix Level

8.3

8.4

-msgport=# Use port # for socket communication.
STOP Close the current APPLAB session
(READ | EDIT) <FileName> <grammar> <startProd>

Initiates a Text Link Window (see section 4.5) with the con-
tents of the text fil&ileName interpreted according to the
grammargrammar with start productiostartProd

Grammar Files

Grammars in APPLAB are stored in a binary format as so cgtegram-base objects
or PBO:s. For each PBO there is a “basefile” and a number of “revisionfiles” as in the
following example:

aGrammar.gram (basefile)
.aGrammar.gram_1 (revisionfile)
.aGrammar.gram_5 (revisionfile)

The revisionfiles contain the “contents” information whereas the basefile only contains
information about the revisionfiles.

Note that the revisionfiles have filenames starting with a dot. They will therefore
normally not be listed by the UNI} command. To list all the files, including the revi-
sionfiles, use e.g. the command

>|s -Isa

It is important that the basefile and the revisionfiles are kept together in the same direc-
tory and that they are consistently named. Therefore, you should not move, copy, or re-
move any of these files using normal UNIX commands. Instead, use the following
scripts:

> ormmyv lang.gram x.gram to change the name of a grammar

> ormmv lang.gram dir to move a grammar to another directory
> ormcp lang.gram x.gram to copy a grammar

> ormcp lang.gram dir to copy a grammar to another directory
> ormrm lang.gram to remove a grammar

These scripts work similarly to the standard UNIX mv, cp, and rm, but they do not take
options or multiple arguments.

Environment Variable

APPLAB makes use of the following environment variable:

setenv MJOLNERHOME dir
used for finding grammars and icon raster files

APPLAB User's Guide (version 1.2) 53 of 56

Unix Level

8.5 Files in the Release
This section lists the files included in the APPLAB release and their purpose.

bin/
applab Sun sparc Solaris binary executable for APPLAB
ormmessage Sun sparc Solaris binary executable for socket
communication with an open APPLAB session

ormcp script for copying grammar files
ormmv script for moving grammar files
ormrm script for removing grammar files
demo/ demonstration programs and grammars
doc/ documentation
grammars/
abs.gram metagrammar for abstract grammars
con.gram metagrammar for concrete grammars
code.gram metagrammar for code generation grammar
doc.gram metagrammar for documentation grammar
oosl.gram metagrammar for oosl grammars
par.gram metagrammar for parse grammars
rapid.gram metagrammar for rapid grammars
sem.gram metagrammar for semantic checking grammar (not
OOSL)
Images/
UlLrasters/ raster files for icons
Grey/ raster files for background grey scales
lib/
greyscales configuration file for the grey scales used in

background windows

54 of 56 APPLAB User's Guide (version 1.2)

Trouble Shooting

9.0 Trouble Shooting
9.1 Problems With Starting APPLAB
9.1.1 APPLAB Prints Error Message on Standard Output
This may happen after a previous crash during a save operation, which has left the pro-
gram document you are trying to open in an inconsistent state. Usually, the following er-
ror message is given in the Unix shell window:
Warning: Wrong version of bytestring
In this case, you must remove the last inconsistently saved revision of the docu-
ment, as described in section 4.7.
9.2 Problems With Saving a Revision
If APPLAB crashes when you save a revision of a document, the reason could be that
you are out of disk quota. In this case, you may need to restore consistency in the docu-
ment files as described in section 4.7
If an empty revision name has previously been given then no further revisions can
be saved in that alternative. This is a bug that will be fixed in future releases.
9.3 “Dead” Windows
Sometimes, a window seems “dead” and does not respond to mouse clicks etc. The rea-
son may be that there is an unanswered promptbox connected to the window. If you can
not see any promptbox, try closing the outermost APPLAB window and other top-level
windows on your screen. The promptbox may be behind one of these windows.
It is also possible that the Caps Lock-, or Num Lock-button is activated. This also
causes the window to act “dead”.
9.4 Problems With Editing
9.4.1 Confusing Behaviour at Expand
See section 4.4.5.
9.4.2 The System Hangs

If the whole APPLAB system suddenly hangs when you are text editing, the reason
could be that the grammar-interpreting parser has reached a loop in the grammar. You
will need to crash the APPLAB system from the Unix shell window (<CTRL>-C) and
restart it. Your changes since the last save are lost.

APPLAB User's Guide (version 1.2) 55 of 56

Trouble Shooting

9.5 Frequent “brooms”

The “broom” is the mouse cursor shown during garbage collection (see section 3.8). In
case the broom shows up very frequently, you probably need to run APPLAB with a
larger heap. This may be the case if you are working with larger grammars. See section
8.1 for how to start APPLAB with a larger heap.

56 of 56 APPLAB User's Guide (version 1.2)

Index

A delete fork 23, 25

ABSTRACT 4 demand attribute evaluation 35

abstract data types 36 door attribute grammars 33

abstract grammar 4, 28 dynamic rebinding 46

abstract grammar window 5

AC-expression 37 E

Add 25 edit as text 21

alternation 5 Edit lexem 21

alternative 39 edit lexeme 7, 21

alternative name 39 enter selection criteria 45

ANYLEX 32, 35 entering 19

applab script 52 environment variable 53

associativity 31 equations 34

attribute content 39 error recovery 26

attribute name 39 evolution graph 39

attributes 34 Evolution graph window 42
evolution graph window 19, 42, 43

B exiting 19

back 17 expand 5, 20

binding rule 23, 40 expand after 5, 21

binding type 40 expand before 21

broom 17 expand list 21
expansion 20

c explain error 34

cardinal 37 explain next error 34

change meta grammars 25 explicit rebinding 46

check grammar 23 extended focus 33

choose selected 41

close 16 E

comments 32 find 22

compile OOSL 34 fixed relation 46

CONCRETE 4 fork revision 43

concrete grammar 4, 29 frame 15

concrete grammar window 5 front 16

construction 5

contents 15 G

contents menu 16 generate from ABSTRACT 38

copy 21 grammar aspects 19

cut 21 grammar formalisms 28
grammar window 19

D

debug 23, 26 I

delete 47 icon 15

Index

icon menu 15 R
ID 32, 35 RB 15
identifiers 32 REAL 32, 35
import text 22, 25 rebuild menus 23
import text as 26 recompile OOSL grammar 34
insert revision window 49 redisplay 23
INT 32, 35 refresh 17
relations 39
K rename 47
keyboard short-cuts 23 resize 16
keywords 32 reunparse 23
revision 25
lI:B 15 revision description 39
revision id 39
left factoring 33 revision name 39
Iexeme 5 revision number 39
:g:lcsal syntax 32 revision window 42, 48
list nodes 37 IS
locked 14 save 19, 24
save as alternative 49
MB 15 save as revision 49
metagrammars 37 Save as tree 23
misc 5 save interface 23
mouse 15 saving 19
move 16 scrollbars 17
N scrollbars on/off 5, 23
selection 20
ngpﬂezzlsgs% set s_tislrtgrsod 23
. set title
numerical constants 32 short-cuts 23
0 show attribute 23
0O0SL 11 show selection 45
OOSL generator 38 son.pos 37
OOSL grammar 11, 33 source revision 43
OOSL grammar window 10 strings 32
open 16 surface syntax 5
ormmessage 52 T
P TARGET 4
PARSE 10 target window 4, 19
parse grammar 9, 31 text 17
parse grammar window 9 text editing 21
paste 21 text link window 19, 24
paste before 21 textprompts 17
PBO 39 title 15
PBO window 19, 42 titte menu 15
placeholders 20 U
B?gcuepd;nnecneu 1105 31 unambiguant grammar 33
predefined lexemes 35 unlock 14
pretty print 26 v
pretty printer 38 visible 17
print attribute 23
production types 5 Y,
program base object 39 window 15

window structure 42

Q.
quit 14, 19, 24

	APPLAB User’s Guide
	Version 1.2
	Contents
	1.0 Introduction
	1.1 System Requirements
	1.2 Scope and Usage
	1.3 How to Use This Guide
	1.4 More Literature
	1.5 Important Notice on Copying, Removing, and Renaming Documents
	1.6 Acknowledgments

	2.0 Grammar Editing. A Guided Tour.
	2.1 Enter the Application Language Lab and a Demo Grammar
	2.2 The Target Window
	2.3 The Abstract Grammar Window
	2.4 The Concrete Grammar Window
	2.5 Make a Small Modification of the Concrete Grammar
	2.6 Extend the Grammar With a New Statement
	2.7 The Parse Grammar Window
	2.8 Changing the Precedence of Operators
	2.9 The OOSL Grammar Window
	2.10 The Names-menu
	2.11 Things That May Go Wrong
	2.12 Leave the Application Language Lab

	3.0 Basic Interaction
	3.1 Windows
	3.2 The Mouse
	3.3 Popup Menus
	3.4 Basic Commands on Windows
	3.5 Additional Menu Commands on Windows
	3.6 Text
	3.6.1 Positioning and Selection
	3.6.2 Cut, Copy and Paste
	3.6.3 Scrolling

	3.7 Textprompts
	3.8 The “broom”

	4.0 The Grammar Editor
	4.1 Window Structure
	4.2 Entering, Exiting, and Saving a Grammar
	4.3 Creating a New Grammar
	4.4 Editing In the Target and Grammar Aspect Windows
	4.4.1 Placeholders
	4.4.2 Selection
	4.4.3 Expansion
	4.4.4 Cut, Copy, Paste
	4.4.5 Some Hints
	4.4.6 Text Editing
	4.4.7 Semantic Editing
	4.4.8 Other Editor Commands in Grammar Aspect Windows
	4.4.9 Short-cuts
	4.4.10 Short-cuts to the Expand Menu

	4.5 Editing In the Text Link Window
	4.6 Editing In the Grammar Window
	4.6.1 Inserting and Deleting Grammar Aspects and Targets
	4.6.2 Other Commands

	4.7 Restoring a Crashed Grammar

	5.0 The Grammar Formalisms
	5.1 The Structure of Abstract Grammars
	5.2 The Structure of Concrete Grammars
	5.3 The Structure of Parse Grammars
	5.3.1 The Lexical Syntax
	5.3.2 Configure Text Editing

	5.4 The Structure of OOSL Grammars
	5.4.1 Compiling an OOSL Grammar
	5.4.2 Demand-Attribute Evaluation
	5.4.3 Defining the Names Menu
	5.4.4 Predefined Lexeme Classes
	5.4.5 Predefined Abstract Data Types
	5.4.6 The Implemented Subset of Door AG
	5.4.7 List Nodes in OOSL

	5.5 Editing Metagrammars

	6.0 Grammar Tools
	6.1 The Pretty Printer
	6.2 The OOSL Generator

	7.0 The Version Handling System
	7.1 Introduction
	7.2 Terminology
	7.3 Relations
	7.3.1 Look-up of PBOId
	7.3.2 Explicit Binding of Relations
	7.3.3 Evaluation of Relations at Binding time

	7.4 Window Structure
	7.5 PBO Window
	7.5.1 Commands
	7.5.2 Undocumented Features

	7.6 Evolution Graph Window
	7.6.1 Interactive Selection of Alternatives and Revisions
	7.6.2 Selection of Revisions by Rule
	7.6.3 Open
	7.6.4 Delete
	7.6.5 Rename
	7.6.6 Attribute Support
	7.6.7 Other Commands
	7.6.8 Undocumented Features

	7.7 Revision window
	7.7.1 Save
	7.7.2 Quit

	7.8 Grammar Document Characteristics
	7.8.1 Revision Commands
	7.8.2 Undocumented Features
	7.8.3 Binding of Relations

	7.9 Predefined Attributes
	7.9.1 PBO Attributes
	7.9.2 Revision Attributes

	8.0 Unix Level
	8.1 The “applab” Script
	8.2 The “ormmessage” Script
	8.3 Grammar Files
	8.4 Environment Variable
	8.5 Files in the Release

	9.0 Trouble Shooting
	9.1 Problems With Starting APPLAB
	9.1.1 APPLAB Prints Error Message on Standard Output

	9.2 Problems With Saving a Revision
	9.3 “Dead” Windows
	9.4 Problems With Editing
	9.4.1 Confusing Behaviour at Expand
	9.4.2 The System Hangs

	9.5 Frequent “brooms”

	Index

