
Department of Computer Science
Lund Institute of Technology

Lund University
P.O. Box 118, S-221 00 Lund

Sweden

A Case-Study of Configuration Management with
ClearCase in an Industrial Environment

Ulf Asklund and Boris Magnusson

LU-CS-TR:97-184

Also published in: Proceedings of SCM7, International Workshop on Software
Configuration Management, R. Conradi (Ed.), Boston, May 1997,

LNCS, Springer Verlag



1

A Case-Study of Configuration Management with
ClearCase in an Industrial Environment

Ulf Asklund and Boris Magnusson

Dept. of Computer Science, Lund Institute of Technology,
Box 118, S-221 00 Lund, Sweden
E-mail: { Ulf | Boris}@dna.lth.se

Abstract: This paper reports from a case study where the configuration man-
agement system ClearCase is used in a large scale industrial application. The
focus of the study is on the functionality offered and how it matches the needs in
this particular situation. The paper reports on situations where ClearCase has
turned out to be cumbersome to use or is lacking functionality. Improvements
are outlined for how the problems can be solved or the situations better sup-
ported. The suggested improvements are influenced by experience with the
COOP/Orm research prototype and some of the improvements are illustrated
with functionality available in this integrated environment.

1 Introduction

Configuration management is a well-known problem in industry since most products
evolve over time. There is a need to keep track of which components are included in a
specific version of a product. The car industry is a typical example where each car
model is often revised every year and versions of spare parts for older versions of a
model needs to be identified during a long time period.

The situation in the software industry is at first sight similar, but it turns out to be
much harder to cope with. Explanations for the increased difficulties can be sought in
aspects such as a much faster change of versions (including internal versions), less vis-
ibility of incompatibility (compared to mechanical parts), very complex systems, and
less standardization of parts and sub-systems. In academia and in parts of the software
industry these problems have been identified and systems for management of software
components have been developed. A first generation of tools, such as SCCS [Roe75],
and RCS [Tic85], were based on version control of single files. These systems give
limited support, but are simple to introduce and to use. A second generation of tools,
which take a broader view on support in the software development process, such as
Continuus/CM [Cont, Cla95], ClearCase [Clear, Cla95], and Teamware [Team], are
now finding their way into industry. While giving more support they also have a larger
influence on the developers´ work process and are thus harder to introduce. The accep-
tance of such tools is a comparably slow process and seems to have taken place mainly
in some kernel software industry. Many industries are now, however, facing the situa-
tion that software components are part of what they used to think of as mechanical or
electronic products. As the software components grow, the traditional methods for ver-
sion control and configuration management may prove inadequate and there will be a



2

need for more sophisticated software configuration management tools in a wider com-
munity. At the same time there are research activities to produce even more sophisti-
cated environments and tools. There is thus an interesting question of to what extent
the existing systems meet the needs for configuration management support, in the pure
software industry as well as in the traditional industry.

Introducing configuration management tools in an existing organization is not
always easy. Such tools inflict some overhead on the developers in their everyday
short-term work, which they may not recognize as motivated. The benefits seems to be
more visible for managers, and in the long run. It therefore often takes an explicit man-
agement decision to introduce configuration management in an existing organization.
The needed understanding of CM problems, principles, and systems is more likely to
occur in large-scale software companies, but the need for CM is equally important in
smaller companies. In introducing configuration management tools it is important that
the tools are appreciated as a help rather than as an additional burden for the develop-
ers. They must thus be easy to use and understandable in terms of the development
process used at the company. In a large company there might be resources to create a
specialized support group for configuration management, but in smaller companies
these tasks must be handled by the developers themselves. There is thus also a demand
that the tools and systems must be easy to manage. Tasks like creating new develop-
ment lines, branches, merging and integration of development lines, finding out what
development lines exists, etc. must be possible to do without too much training and
work.

In this paper we report from the use of a second generation system, ClearCase, in a
software company. We have been particularly interested in the functionality it offers
and how it fits the needs of the company. The aim of this case study was to do an objec-
tive, independent and critical examination of how a company with well developed con-
figuration management handled their software. We have tried to identify shortcomings
and suggest solutions of how they can be overcome in the current framework. We have
also compared the system and the situation with the research prototype we are working
with, COOP/Orm. The goal here is to understand how the needs at the company can be
supported in order not to miss important aspects of real use. We outline how the model
used in the COOP/Orm system can go further in the support offered, in particular in
the areas of providing group awareness, fine grained version control and supporting
synchronous interaction.

In section 2 we give some background on the company, what they do and the envi-
ronment they work in, a short introduction to ClearCase and to the COOP/Orm proto-
type. In section 3 we describe in more detail how ClearCase is used today, including
local adaptation. In section 4 we identify and describe particular problems with the use
of ClearCase. In section 5 we outline how the same situation could be handled in an
environment with the facilities available in COOP/Orm. In section 6 we outline solu-
tions of how the problems could be solved or reduced in the ClearCase framework.
Section 7 discusses directions for future work, and section 8 concludes the paper.



3

2 Background

2.1 Introduction to ClearCase

ClearCase by Atria is a version-control and configuration-management system,
designed for development teams working in Unix on a local area network. ClearCase
MultiSite extends the ClearCase features to also support geographically distributed
development teams. ClearCase stores all data under its control in versioned-object
bases (VOBs). A VOB is an implementation of the NFS [NFS] protocol and access can
thus be physically distributed in a local area network. VOBs also inherit from NFS the
restrictions that they can not span physical discs. Each file and directory visible
through a NFS-mounted VOB appears as a Unix file or directory which gives a high
degree of transparency to standard tools. A VOB can be replicated to remote sites, but
there remains a notion of ownership with one of the sites.

Versioning is always in the context of a particularbranch-type. A branch-type is
identified with a name and is relevant for all files in a VOB. Initially there is only one
branch-type, ‘main’, but at any point in the development a new branch-type can be cre-
ated. There is no assumption of any relation between branch-types in ClearCase. A file
can exist in a sequence of versions on a branch-type (often called a ‘branch’ of the
file). A new version of a file in a particular branch-type is created by ‘checking out’ the
file. A file can be checked out, exist, on several different branch-types at the same time.
Synchronization within a branch-type is by locking, preventing developers working on
the same branch-type to simultaneously change the same file. Versions of a file on dif-
ferent branch-types can, however, be checked-out in parallel.

All users access versioned source data in the VOB through aview, and a virtual
workspace. A View provides a selection mechanism and a workspace is a storage area
(directory) in which developers can perform tasks in isolation from other development.
Each view has an associatedconfiguration specification which lists rules for selecting
a version of each needed file. Many rules name a branch-type on which to look for a
version of a needed file. The rules are evaluated in order until a rule matching an exist-
ing version of the file is found. They can thus be used to specify an order among the
branch-types to use in the particular view. Each rule can be dynamic, allowing users to
see, for example, the latest version of a file on a branch-type, or it can be fixed to allow
a developer to work with a fixed version of a file regardless if later versions of the file
exists on that branch-type, or it can simply name a particular version of a file or a
‘label’ (as of below).

A development project typically use a particular branch-type and a view. Files that
have been changed in the project have versions on that branch-type. These versions are
often thought of as a branch (variant) of the file. The view specifies a dynamic rule to
select files that have versions on the branch-type, perhaps in several steps, and at the
end some fixed rule, which is used as default to get a stable version (such as the latest
release) of files that have not been changed in the current development project. Views
that only contain fixed rules will always return the same version of all files and can
thus be used to represent a version of a configuration, a baseline.



4

Merging of branches is done using the ClearCase merge tool. It identifies the differ-
ences between the branch-types to merge in terms of files that have been updated on
the branch-types. For each of these files it identifies a ‘common ancestor’ version of
the versions used on the branch-types. Files that are changed in only one branch are
included in the updated version. Files that have been changed in more than one branch,
but where the changes do not effect the same original source line, can be automatically
merged. For files with changes on the same source line, the developer is prompted to
choose which changes to accept in order to resolve the conflict.

Views are used to select a configuration of a system, but since this selection is done
on demand it gives different results as new versions of files are created. In order to
make it possible to come back to a particular set of versions of files there is a need to
identify versions of configurations. This is done throughlabeling - all the versions of
files in such a set are marked with the same label (such as “Release.2”). A view can use
labels to select versions of files to recreate the configuration. Although views and thus
branch-types can be used to name a labeled configuration, there is afterwards no rela-
tion between the label and the branch-type or indeed between the labeled configura-
tions. Branch-types are thus only a kind of common naming for variants of files, but do
not support organizing versions of configurations.

For replicated VOBs, branch-types come with a protection mechanism which
restrict creation of versions of files on a particular branch-type to one site. Versions of
files on the built in branch-type, ‘main’, can only be created on the site that acts as the
master of the VOB.

A triggering mechanism can be used to extend the functionality of ClearCase by
scripts executed at situations such as check-out. This facility can be used for all kinds
of extensions such as logging, restricted access, work process, etc.

Small example
We will with a small example further illustrate the functionality of ClearCase. The
example also describes a common work process of how branch-types are used.

Consider a small system which consists of ten files of source code, named foo1.c to
foo10.c, all stored in the same directory. In the initial situation the program has been

0

1

proj_A
Beta1.0Beta1.0

Figure 1. Version trees for individual files

x

/main

a) Unchanged files

/main

x

b) Files modified on
branch-type ‘proj_A’

c) Files modified on branch-
type bug_fix and then
merged to main

0

1

bug_fix
Beta1.0

/main

x

n



5

developed within ClearCase, but without using any branch-types and that the latest
version of all files are labeled with the label ‘Beta1.0’. I.e. all files, including the direc-
tory, have all been versioned on ‘main’, where they may have reached different version
numbers. Thus, each file has a version tree as depicted in Figure 1a, where x is the lat-
est version for that file. The next step in the development of this program is to imple-
ment new functionality but also to correct bugs reported from the beta testers. These
two tasks should, by the two developers Ulf and Boris, be accomplished in parallel and
their individual results should then later be merged and labeled forming the first
release.

For the purpose two branch-types, proj_A and bug_fix, are created. Ulf, who is
responsible for the new development, has the following configuration specification in
his view:

element * CHECKEDOUT
element * .../proj_A/LATEST
element * /main/Beta1.0 -mkbranch proj_A

When a file is needed, the rules are evaluated top-down until a matching version of the
file is found. A rule, i.e. a line in the description, consists of four parts: type of item
evaluated by the rule, restriction on files to be evaluated due to their place in the struc-
ture, the rule, and (optional) the branch that should be created when a file chosen by
this rule is checked-out. The rule itself can contain either a specific version, a label, or
one of the predefined functions: ‘CHECKEDOUT’ or ‘LATEST’. The first rule will
select a checked out version of a file. In case there is no such version, the second rule
will select the latest update of the file on the branch-type ‘proj_A’. Finally, for files that
have no version matching either of these, the version of the file labeled ‘Beta1.0’ will
be selected.

Within the view Ulf implements the new functionality in isolation from Boris’
changes. To accomplish his task foo1.c and foo2.c are checked-out, modified and
checked-in. Thus the two files have a version tree as depicted in Figure 1b. The files
and the directory not yet modified (if not Boris has created new versions of them) have
the same version tree (Figure 1a). I.e. a branch is created on demand for each file. We
call the creation of a branch, i.e. when, for a specific file, the first version on the branch
is created, step A in the work process.

In parallel with Ulf’s work Boris check-out, modify and check-in the files foo2.c
and foo3.c to accomplish his task. When the bugs are fixed and tested the bug_fix
branch-type is merged to main. Merges are also visible in the version tree, depicted by
the file foo3.c version tree in Figure 1c.

Ulf just finished his task and is now ready to merge his changes to main. However,
to avoid incorrect files on the main branch-type the work process convention is that
integration tests must be made on the branch-type before merging to main. This means
that before a merge to main is performed, the program should first be merged to the
development branch-type and tested there, step B. Possible errors due to merge con-
flicts can in this way be corrected on the branch-type in isolation from all other
projects.



6

Before merging the configuration specification must be changed to select the latest ver-
sion on main instead of the labeled one. I.e the specification must be changed to:

element * CHECKEDOUT
element * .../proj_A/LATEST
element * /main/LATEST -mkbranch proj_A

When the program has been tested and checked-in it can now be merged to main, step
C. The specification is again changed, now to:

element * CHECKEDOUT
element * /main/LATEST

and the merge is made. If no further versions have been created at the main branch-
type since step B, this merge is trivial, otherwise step B should be repeated. After the
merge to main (C) the program is again tested, files are checked-in, and the selected
versions are labeled. By labeling the versions a new version of the entire system is cre-
ated and can later easily be recreated.

Figure 2 depicts the version tree of the file foo2.c. Both Boris and Ulf modified this
file and therefore versions of it exists both on branch-type bug_fix and proj_A. The
work process is also depicted with its three steps: (A) the branch-type is created, (B)
updating the branch-type from main, and (C) finally merging the branch-type to main.
For this file all three steps are visible in the version tree. However, if, for a file, no new
version had been checked-in between step A and step B, step B had not been visible in
the version tree of that file.

Further details about ClearCase can be found on Atria’s www-site [Clear]. Clear-
Case is also one of the configuration management tools evaluated by Ovum [RBI95].

2.2 Kockums Computer Systems

Kockums Computer Systems, KCS, markets design and production information sys-
tems specifically created for the shipbuilding industry. Systems from KCS are cur-
rently in service at more than 260 sites in 38 countries in Asia, Australia, Europe,
North and South America. KCS’ main office is located in Malmö, Sweden, with sub-
sidiaries in Germany, Japan, South Korea, United Kingdom, and the USA.

0

1

Beta1.0

Figure 2. foo2.c after merge of two sets of parallel changes to main. The changes
in the second set are first tested locally (B) before merged into main (C).

/main

0

1

bug_fix proj_A

2

(A)

(B)

(C)
REL1.0

u

v

x



7

Their product, TRIBON, is a CAD/CAM/CIM system and is in fact 17 different
products combined to one complete system. TRIBON is ported to several hardware
platforms including VAX, ALPHA, HP, IBM, Sun, and PC (partly). These platforms in
turn have several operating systems in several versions, e.g. HP-UX 9, HP-UX 10,
AIX 3, and AIX 4. The programming languages used are among others PL/1, Fortran,
C, C++, UIL, and assembler. They, of course, also exists in several versions. These
aspects in combination with a geographically distributed development with approxi-
mately 60 developers in three different countries makes it a complex development
environment interesting to study. To handle this complex development situation KCS
has had a long history of emphasis on configuration management resulting in a well
developed CM-model, implemented in ClearCase and ClearCase MultiSite.

2.3 The COOP/Orm environment overview

COOP/Orm is an environment supporting collaborative writing of hierarchically struc-
tured documents. It is based on previous work in the Mjølner-project [KLMM93], con-
cerning object-oriented software development. The environment developed in Lund,
Mjølner Orm [MHM+90], supports collaborative software development to a limited
extent through its configuration management [Gus90]. The current project, the COOP/
Orm environment, is a research prototype aimed at providing support for distributed
teams of developers. It has been influenced by advances in the CSCW area, but its
main target area is software development.

COOP/Orm is designed for use in a distributed environment and is built with a
multiple-client, multiple-server architecture. Some of the aspects of distribution and
replication of data was reported at PDCS-96 [MG96] and in [MA95]. As a result of the
design, users of COOP/Orm can have the same support and interaction whether local
or distributed although the speed might depend on the quality of the long distance net-
work.

COOP/Orm is also designed to support versioned configurations of documents
(such as programs). Links from one document to another is always denoting a particu-
lar version of that document (which might be a new configuration). As a result, select-
ing a version of a document determines particular versions of all (recursively)
referenced documents. The model thus support a baseline approach, but the user inter-
face makes it very simple to switch to use another version of a configuration as
described at last years SCM [MA96]. Versions of configurations can be interactively
compared and differences presented (added/deleted dependencies, change of targeted
version).

COOP/Orm supports hierarchical composition of documents in an integrated stor-
age model as described in [MMA93]. This storage model is compact since unchanged
parts (or sub-trees) can be shared among many versions. The model support very fast
identification of changes in terms of structural changes and changes to the content of a
node [Ask94]. The hierarchy can be used to support structured software as e.g. classes
and methods (or modules and procedures), but fits equally well for documents with
chapters, sections, paragraphs etc. The hierarchical model support automatic merge of
variants. Changes such as addition, deletion or change of a part in only one of the vari-



8

ants are handled according to default rules. Parts that have been changed in both vari-
ants has to be dealt with by the editor for that particular kind of node (also here default
rules are supported).

COOP/Orm maintains a version graph for each document which in the user inter-
face can be used to (very fast) switch between viewing different versions of a docu-
ment and to compare (also distant) versions. The version graph is shared among all
users and is updated when any user creates a new version of the document.

For the full benefit of the COOP/Orm model editors for the leaf nodes (such as a
text editor) must be version aware in order to support the fine-grained and interactive
version control mechanism. As an alternative documents can be written to normal files,
edited with some standard editor, and then read back in, at which time the changes will
be visible to others.

In contrast to other version-control/configuration-management systems, COOP/
Orm offers a high level of collaborative awareness. These aspects are described in
more detail in [MM93] and [MMA97]. In the present setting we like to mention a few
aspects.

The version graph makes it possible for every user to get an overview of how his
version of a document relates to other versions, and to see as new revisions and vari-
ants are created by other users. He can also compare his version with other versions,
including these under construction as an extreme case. The model also supports syn-
chronous interaction, but that is not further elaborated here.

The support for versioned configurations makes the user aware of when new ver-
sions become available. Switching to use another version of a configuration is simple
and explicitly visible, and it is as simple to switch back. Selecting a version of a con-
figuration implies selecting versions of all files included in the configuration (possibly
very many), and at the same time ensures that a meaningful collection of these files is
used (‘meaningful’ in the sense of an intended combination of versions).

3 CM overview at KCS

3.1 The CM history in the company

Like almost every company the developers at KCS first built their own configuration
management system. Within the system, called MMS, the product structure were
made. By use of name-conventions, files with functional relationship were structured
into a family stored in the same directory. The system had functionality to, by the file
name, find the directory containing a specific file and present the header. It was also
possible to, very quickly, find dependencies between files (a useful functionality not
yet fully implemented in the new system). Until recently all KCS customers had VMS
platforms, but Unix use grew and the demands on porting TRIBON to other platforms
increased. Unfortunately MMS only run on VMS and KCS therefore started to look at
commercial alternatives, of which ClearCase were chosen.

1994 the, well planned, conversion from MMS to ClearCase started. For about 6
months ClearCase was used only as a secondary system and development was still



9

made using MMS. In this way the developers could learn the new system gradually
and not necessarily all developers at the same time. Even when ClearCase had become
the primary system, MMS was used as backup. Platforms were ported to ClearCase
one at the time.

Because the conversion was made gradually and the old product structure remained
there was not much resistance from the developers. In fact, the structure and the name
conventions are still used.

3.2 How ClearCase is used today

All source code is under the control of ClearCase, i.e. both code that make up the prod-
uct, and all internal routines and scripts. The source is organized in total 12 VOBs, due
to the technical restriction that a VOB can not span physical discs. So far there is no
logical or structural background to on which VOB which information is placed. The
same file type is used for all code, independent of platform and programming lan-
guage. Such information are instead obtained by structured comments in the file
header. A CM support group has been formed in order to maintain specialized compe-
tence and off load the developers from CM tasks. The CM-group works with trouble-
shooting and there are particular actions that usual developers are not allowed to per-
form.

Branch-types are used at KCS for three basic purposes: (1) each development
project has its own branch-type, (2) maintenance is done on product branch-types, (3)
correction of serious urgent errors are made on a special bug-fix branch-type. Develop-
ment projects are typically relatively long-lived activities involving several developers.
New branch-types are created by the CM-group only, which also help in creating
views.

A build of a system is managed through a preprocessor that with a given view
extracts the code for a given platform and activates the corresponding compilers etc.
Management of variants for different platforms are thus done outside the control of
ClearCase, but it enables storage of all code in the same place, i.e. on the same VOB.
E.g. are the same discs mounted both on VMS and Unix systems. This enables even
VMS code to be under control of ClearCase (which is not ported to VMS). ClearCase
is however not used to handle documentation. The reason for this is that ClearCase
only fully supports ASCII files and not binaries like word processor files, since the
used delta techniques and merge tools do only work on ASCII.

The CM-group has built a command interface on top of ClearCase in order to make
it easier to use for the developers and to give additional support. One example of a
command is ‘cmmkelem’ which creates a new file. Before the new file is created a
check is made to check that a file with that name does not already exist in some other
branch-type. ClearCase would allow this, but it would create problems during merge.
The command also supports KCS conventions for naming and organization in directo-
ries. Emacs has also been extended to support CM functions.



10

4 Requirements and shortcomings of ClearCase

The analysis is made with focus on some key areas. In this section each of these areas
is stated, and the way that particular problems are handled at KCS is described and
reflected upon. A more elaborated suggestion to changes (improvements) is made in
section 6.

4.1 The version selection problem for developers

The problem concerning the selection of files and directories to be included in the
workspace and to determine which version of each of these that should be chosen is
often called theselection problem. The problem increase with the number of files and
directories. One core functionality of ClearCase is the configuration specification in a
view. A specification filters out the correct version of every file and directory to the
developer. The idea is that once the view is set everything should almost be like ‘nor-
mal’, i.e. like working alone. ‘Set and forget’ is the slogan used in ClearCase manuals.
The specification actually serves two roles: define the selection rules, and define the
actions to be taken when a file is checked-out. Thus, a configuration specification is
very powerful. It seeks through an amount of files and directories a developer hardly
can get an overview of and comes up with the result. One danger, however, with this
kind of global search approach is that as long as the specification is correct nobody
care about how it works, but when then an error occur (which, sooner or later, always
happens) it can be hard to solve, or even to notice.

The most frequently encountered CM-related problem at KCS is that the view
specification is wrong. Even if the syntax is easy to understand the specification gets
complex and it can be hard to see the consequences of a written specification. I.e. it is
hard both to verify that a given specification is correct, but also to notice when there is
an error. A misspelling, for example, can lead to that completely wrong versions are
seen and used for a long time without notice. Even if errors are not so frequent at KCS,
they have resulted in a suggestion that only the CM-group should create view-specifi-
cations, instead of the developers themselves as today. This will, of course, reduce the
CM-knowledge of the developers even more. An observation is that a semantic check
of the specifications, finding errors like misspelled branch-type names should reduce
the number of errors. However, even with such an improvement the more serious prob-
lems of missed, or specifying the wrong, branch-type still remains. A better overview
of how the branch-types relate to each other might help, but this is not supported by
ClearCase at all.

More support for structuring could make it possible for the developers to get an
overview so that they, by themselves, can do the selection or, at least, verify that the
selection automatically made is correct. ClearCase supports structure through directo-
ries. Versioning of directories is only related to which files are included in a directory,
not which version of these files. For decreasing the complexity in the version selection
problem ClearCase directories thus offer no help.



11

Summary – needed support:
• Semantic check of view-specifications
• Support for relations between branch-types
• Support for versioned sub-systems (i.e. directories)

4.2 Support for short term sub-project

At KCS development is divided into several projects. Each project has its own branch-
type which makes it possible for developers in different projects to work in parallel. In
addition there is a branch-type dedicated to bug fixes. Branch-types are created by the
CM-group, but any developer can create a version of a file on a branch-type. All devel-
opers working on the same project are working on the same branch-type which makes
it important to know how their changes are shared. There are two fundamental strate-
gies:optimistic where changes are shared as soon as they take place, andpessimistic
where changes are seen by others only after their own consent. In ClearCase the strat-
egy is controlled by the views as we will see below.

There are two basic problems elaborated upon in this section: how and by whom
branch-types are created, and how to support optimistic and pessimistic propagation of
changes within projects.

Strategies for branch type creation
At KCS creating a branch-type is viewed as creating a new project, which is nothing a
developer does, but is restricted to be made only by the CM-group (having consulted
the product managers). The CM-group thus maintains the knowledge of which branch-
types that exist and for what purposes. The drawback is the extra overhead for the CM-
group that runs the risk of becoming a bottleneck, and that the developers perceive cre-
ating a new branch-type as a heavy operation. Even with these restrictions there are
many branch-types and a risk that merge problems occur due to related changes made
in different branch-types. Synchronization within a branch-type is obtained by locking
– it is thus impossible for developers working on the same project to work in parallel
on the same file (although this is possible between project with their own branch-
types).

There is a need for developers in the same project to work independently for
shorter times. This could in principle be supported by using branch-types, but because
of the management overhead on creation of branch-types, motivated by its main use,
this would be too heavy-weight.

Baseline vs. generic configurations
A baseline means (following the terminology of Tichy [Tic88]) a configuration that
specifies the versions of all included files and directories. Ageneric configuration on
the other hand is dynamic and is set up using rules rather than fixed versions. Both
these strategies can be supported in ClearCase views. Generic configurations are sup-
ported with the built in rules ‘CHECKEDOUT’ (matching the versions in the work-
space) and ‘LATEST’ (matching the latest version of a file in a branch-type). Baselines
are supported by using fixed versions and labels as rules.



12

Returning to the first configuration specification in the example in section 2.1, we
can see how a view can be written to specify an optimistic change propagation strat-
egy.

For developers working in the same project there seems to be at least three levels
between using a baseline and a generic configuration for all files.

1) The most generic configuration is when the developers use thesame view. This
results in all having exactly the same workspace, i.e. even the same checked-out files
are used although only one developer can actually change a checked-out file.

2) ‘Normal’ generic configuration is obtained by usingprivate views,but with the
rule to select the latest version in the project branch-type (this case is illustrated in the
example view in 2.1). In this case all checked-out files are private and they get visible
to (and are used by) other developers in the project when checked-in.

3) Finally, it is possible to work in a baseline configuration, which is obtained by
having each developer work alone on aprivate branch (or have a private view with
rules selecting specific versions). In this case changes made by other developers will
not be incorporated without the user changing his view.

The positive aspect of working in a baseline configuration is that the developer has
a stable environment, all differences in behavior of the developed system are related to
changes he/she makes. The disadvantage of using baselines during development can be
that changes are integrated late and get less tested together with the other developers
changes.

Generic configurations, on the other hand, support early testing. Changes from
other developers are seen when checked-in and are included during the next ‘make’.
The disadvantage is that this happens without any knowledge by the developer using
the new file. A bad change by one developer may hinder the others on the project until
the problem is fixed.

The second strategy put priority on early testing, but provides some protection
between developers and is the model most frequently used at KCS. The drawback is
that the individual developer can not get any version control between him checking out
and checking in a file. Such fine-grained ‘micro versions’ would often be useful when
rolling back a change that did not work. Support in this situation would also have the
benefit of offering direct support for the individual developer. The only way to do this
in ClearCase would be to introduce private branch-types for each developer and use a
policy to do frequent merges to the project branch-type. For reasons mentioned above
the management overhead when creating a new branch-type is too high to make this
viable.

Summary – needed support:
• ‘light-weight’ branch-types
• fine-grained ‘micro versions’

4.3 Merging and integration

According to the Ovum report [RBI95] ClearCase ‘sets a new standard for industry’
when it comes to the interface to the merge-conflict resolution. ClearCase thus offers a



13

well developed support for merge. The command used is called ‘findmerge’ which
means that when programs (or entire vobs) are merged ClearCase firstfinds which
directories and files that have to be merged and can then, with the developers permis-
sion, really do themerge according to its default rules. After the ‘find’-phase Clear-
Case returns the files and directories that needs to be merged. The result is, however,
just a list of names which makes it hard to get an overview. The form of the result
seems more suited to be parsed by ClearCase again, launching the merge of the
required files, rather than by a developer searching for inconsistencies. Considered that
merge and integration often are made just before the release dead-line, a not very read-
able merge result often results in that the merge is done more or less in blindness, and
as much automatic as possible. However, when conflicts are detected by the system
and the developer is prompted to resolve it, the graphical merge tool is easy to use.
Despite that the merge is line based and not so fine-grained, it is easy to understand
and gives required support.

In section 2.1 a common work process, integrating modifications made at a project
branch-type to the main branch-type, was illustrated by three steps. The process
described is used at KCS, in the way that the CM-group has written conventions fol-
lowed by the developers. Notable is that the configuration specification must be
changed for every step in the process. This means that the specification, which is the
single feature most prone to errors, must exist in three versions. A more directed sup-
port for this kind of common process should, most certain, reduce the number of errors
made by the developers.

One should note that the process is iterative. After the tests have been made on the
project branch-type and the next step should be to merge to ‘main’ the developer must
make sure that no newer versions have been checked-in to ‘main’ since he did step (B).
This is done by doing the find-phase of step (B) again, thus iterating the step (B) and
test phases until the latest versions on ‘main’ have been tested and then quickly check
in. Even with this iterative process we can not be totally sure that no files have been
checked-in before we run step (C). If this happens, which is noticed by carefully read-
ing the merge result, the convention on KCS is to revoke step (B) with an uncheck-out
and do step (B) over again. Here a more active awareness of version checked-in had
been of great help, see the awareness discussion in section 4.5.

Again, all steps can be made in ClearCase. However, when conventions must be
used to force the developers to a certain behavior, we see that as a lack of support.

Summary – needed support:
• Support for integration of projects with a ‘main’ development line.
• More viewable merge results.

4.4 Support for delivery and consistent configurations

In ClearCase (like in e.g. RCS, SCCS, and CVS [Ced93, Wat]) keeping track of con-
figurations are done by labels. I.e. for each file and directory a label, which is a special
type of attribute, is attached to the version included in the configuration. It is then easy
to ‘rebuild’ this configuration by just selecting the version of each file which is marked



14

with the label. It might come as a surprise that in a configuration management system
there is no support to record relations between such labeled configurations. For files
each version is related to other versions of the file. A label, however, is just a text string
(such as ‘REL_2.0’) and other means have to be used to keep track of existing configu-
rations (i.e. Labels), why they are created and their relations.

KCS uses labels to label the version of all files included in a delivery, and also to
mark configurations of systems and subsystems that have reached a certain level of
maturity. In this way developers working on a subsystem easier can select correct ver-
sions of other subsystems without having detailed information about their development
status.

Labeling files can be seen as taking a snapshot of the configuration. Between the
snapshots, files are checked-in, both to branch-types, but also to main, changing the
configuration continuously. It is therefore important to remember to label a configura-
tion that later should be accessible. Normally this is done after a merge that has been
tested, but before other changes has been made. It can otherwise be very difficult
(although in principle possible) to ‘find back’ to the desired configuration.

When using labels the aspect of disc space consumption must be considered since
labeling implies storing information about all files included in the configuration. With
a product like TRIBON, including about 30,000 files, a labeling of the entire system
(the main branch-type) will cost about 500 Kilobyte and take about 90 minutes to per-
form. Even if labeling is an easy operation to invoke the technique can not be used
freely by all developers, but must again at KCS be controlled by the CM-group.

There is a need for individual developer to create stable versions of a system during
development, for debugging, evaluating the impact of changes compared to earlier ver-
sions, backing out of mistakes involving several files etc. With labels these stepping
stones must be pre-planned and created relatively often to be meaningful. Unfortu-
nately the labeling technique is too heavy for routine use by individual developers.
Again we notice that this is a situation where developers could directly benefit from
the use of a CM system, but where well motivated restrictions makes it not possible.

Summary – needed support:
• a more powerful support for configurations than ‘labels’

4.5 Support for group awareness

An important aspect of a system for people working together is its support for ‘collab-
orative awareness’, i.e. how and to what extent actions performed by others can be
noticed by a user. In a CM system there are different demands from managers and
developers and there are trade-offs between supporting isolation as opposed to aware-
ness. The needs are also different in a setting where all users are working relatively
close (say in the same building) or geographically distributed (as supported by Clear-
Case MultiSite). In the former case other mechanisms, such as informal meetings etc.
can replace functionality in the CM system while in the latter case demands are higher.



15

Developer support needs
Development projects at KCS are often organized so the developer(s) can work in rela-
tive isolation from developers on other projects. Even so, there are situations where a
developer needs to be aware of what other developers are doing. A frequent problem is
to see if a file is already checked-out. This is supported in ClearCase with a tool creat-
ing graphs for individual files showing in which branch-types versions of the file has
been created. Another tool creates a listing of all files currently checked-out. These
tools thus contribute to awareness through giving an overview picture.

Using an optimistic update model, one developer checking in (or merging in) files
on one branch-type might as a result change the version used by a developer working
on another branch-type. In case there are incompatibilities, problems noted by surprise
by the second developer, there is a need for support in making him aware of the
change, at least a simple way for him to identify that a change has occurred. The Clear-
Case overview of versions of a file can be used toverify that a candidate file has indeed
been changed, but there is no support for finding such candidates.

When a new branch-type is created other developers might need to update their
views in order to include the new branch-type, although they are not primarily
involved with it. Some kind of awareness of this kind of changes are needed. There is
no support for this aspect in ClearCase and at KCS the conclusion is that also views
might have to be managed by the central CM-group.

The experience at KCS is, however, that not much of the existing functionality in
ClearCase supporting ‘awareness’ in the broad sense is in fact used, at least not by the
regular developer. The exact reason for this is unclear, but it seems to be a combination
of lack of match with the required support and that the provided commands are too
awkward to use or have too long execution time. Instead most awareness is achieved
by just ‘knowing’ what other developers are doing, i.e. through ‘social protocol’ rather
than by system support.

Manager support needs
For the CM-group, managing the use of ClearCase, there is a need for overview of the
system, in particular which branch-types that exists and how they are related to each
other and to the views and labels. These aspects are poorly supported by ClearCase
and at KCS some additional support has been developed by the CM-group. A tool gen-
erates html-documents which are stored on a local web-server. In these documents all
currently existing views, branch types, and label types can easily be viewed by all
developers. Viewing the current views, for example, also shows the corresponding
configuration specification. This is to great help when creating new views and reduce
the number of errors occurring in the specifications. The generation takes some time,
though, and is therefore not made after every change which can result in some confu-
sion when the list is not up to date.

Summary – needed support:
• collaborative awareness that a new version of a file has been created
• collaborative awareness for created branch-types
• relations between branch-types



16

5 Relevant functionality in the COOP/Orm environment

In this section we will outline how the ideas used in COOP/Orm can solve the prob-
lems identified at KCS. Since the problems are expressed in terms of functionality in
ClearCase the mapping is not always direct to COOP/Orm functionality. In some cases
the problems simply do not exist since they arise from using ClearCase itself. The pre-
sentation will follow the organization in section 4. A general observation is that while
ClearCase seems more geared towards the needs of managers, COOP/Orm seems to
support the needs of the developers as well. This is an important aspect when introduc-
ing a CM system, getting it accepted, understood and used.

Version selection problems (4.1) and need for consistent configurations (4.4).
The versioned configuration approach used in COOP/Orm seems to solve many of the
problems identified in ClearCase. The explicit choice of versions replaces the need for
‘view’-specifications and thus the problems they introduces. The need for repeated and
error-prone changes to ‘view’ specifications is thus replaced with explicit selection in
the version-graph. The explicit version graph in COOP/Orm makes the relations
among revisions and variants explicit and solves the problem of relations among
‘branch-types’ in ClearCase. The need for versioned sub-systems is directly answered
by the versioned configurations in COOP/Orm.

Support for short-term project (4.2).
The reasons not to allow developers to create new ‘branch-types’ in ClearCase are
eliminated (or at least greatly reduced) by the explicit version-graph in COOP/Orm. It
enables everyone to get an overview of the development history of a file or configura-
tion. It should thus be less problematic to allow users to create short-lived branches.
Furthermore, the fine-grained version control mechanism directly support the micro-
versions for the benefit of developers.

Merging and integration (4.3)
The work process for merge followed at KCS, (see Figure 2), can be supported by
choosing the order in which merge is performed in COOP/Orm. In addition the version
graph will document that the process was followed. Support for the work process could
also be improved, so for example the tool would insist on that the agreed process was
followed. This is not an aspect in comparison with ClearCase, but is relevant when
comparing with other systems such as Teamware [Team] and Continuus [Cont] that to
some extent support work processes. The merge support in COOP/Orm is designed to
give a good overview of the result and to let the user interactively explore different
possibilities before settling on a particular choice. These mechanisms are currently
extended to better support selection of consistent sets of related changes from the vari-
ants merged.

Support for group awareness (4.5).
COOP/Orm directly supports the demands for collaboration awareness identified at
KCS, when creating a new version of a file as well as when creating a new variant.



17

COOP/Orm go beyond these demands with support for much finer grain of collabora-
tive awareness. The need for this kind of interaction has not yet arisen at KCS, proba-
bly due to that project teams are typically put together with local members.

6 Suggested improvements in ClearCase

Some of the problematic situations identified in the previous section are such that there
is in principle some functionality in ClearCase that seems to support the situation.
However, it turns out in a number of cases that the functionality of ClearCase after all
can not be used for the purpose due to some conflicting goal at KCS. In the following
we will suggest some technical improvements of ClearCase which we believe is in the
line of its overall design and will solve the problems.

6.1 Semantic checks for views

When evaluating a view it should be simple to report to the user any branch-type or
label name that does not match an existing name. This rather simple improvement
would considerably decrease the risk of using a bad view. This would be a significant
step to continue to allow the users to manage their own view specifications.

6.2 Relations among branches

Although the very general form of branch-types, that can accept versions of files from
any other branch-type, might be useful in some cases, the use at KCS shows that
branch-types are in practice organized much more structured. Following a very com-
mon work process, ‘project’ branch-types are in fact used to house versions of files
from a single ‘master’ branch-type. The versions of the files on the ‘project’ are even-
tually merged back to that same ‘master’ branch-type. This pattern can be repeated
many times, with successive local ‘masters’ and several such ‘projects’ active in paral-
lel at any given time.

Supporting such a restricted form of branch-types would have several benefits. It
would directly support ‘light-weight’ branch-types allowing developers in a project to
form local short-term projects in parallel with each other. ClearCase would also have
the possibility to give an overview picture of existing such branch-types and how they
relate to each other. Furthermore, since these branch-types are restricted, the corre-
sponding view specifications can be much simpler, since they do not have to specify
the rules ‘all the way up’, but inherit the rules of the ‘master’ branch-type. Together
these mechanisms would make it possible for KCS to allow developers to create their
own branch-types for local use, although branch-types for new projects still would be
meaningful to coordinate.

The suggested ‘project’ branch-types are similar to the mechanisms in Teamware
and would in the same way as for Teamware enable a minimal support for a work pro-
cess. For the developer this would also mean that he could benefit from using version-



18

control for his own work. The CM-group could with these mechanisms more follow
the development rather than act as the central single point of CM-actions.

6.3 Versions of directories

Versions of directories in ClearCase only change when files are added/deleted/renamed
in the directory. A more ambitious definition would be to create a new version of a
directory when some of its files are updated. A version of a directory would uniquely
specify the version of each included file as described in [Kat90] and in COOP/Orm
[MAM93, MA96]. This much more advanced support for versioned directories would
give support for versions of configurations. The possibility to show the difference
between versions of the same directory/configuration provides a powerful change
traceability mechanism and some of the hard questions when trying to get overview of
the development would be easy to answer.

6.4 Awareness

ClearCase, and most other CM systems, are weak on providing ‘collaborative aware-
ness’, i.e. information on what is happening with the systems due to actions by other
developers. In many situations a developer wants to work alone, as if he, or his project
members, were the only ones working with the system. In some critical situations, the
needs are the opposite, one want to get an overview and immediate information about
certain activities. An example we have mentioned earlier is when merging from a
development branch-type. The actions of (1) updating the development branch-type
with the latest versions on the ‘master’ branch-type, (2) testing, and (3) merging back
could not be interleaved. If interleaving happens, the procedure has to be repeated.
Awareness that some project has started such a process might be enough to make other
groups hold back, and (on the other hand) noticing that some other group did indeed
merge back would be a nicer way to realize that the procedure has to be repeated.

‘Awareness’ here indicates that the information we request is updated on-line as the
changes occur. Aspects of awareness that we see meaningful to support is:

• For a ‘master’ branch-type, that some of its ‘project’ branch-types is in the pro-
cess of merging.

• Monitoring creation of branch-types in general would be useful for the CM-
group.

• For a branch-type, which files currently are changed or checked-out.

7 Future work / further studies

This paper reports on work in progress. Future work will be focused on evaluation of
the suggestions put forward in this paper. Since the implementation of the suggestions
in most cases would require added functionality in ClearCase, we will most likely try



19

to illustrate the implications of the changes in the COOP/Orm environment. In this
environment we plan to do small case studies with some of the source at KCS.

We also plan to work with a prototype implementation in ClearCase for evaluation
of our suggestions: a semantic checker for views, support for structured branch-types,
versioned directories and awareness through triggers and a client-server architecture.
These experiments will have to use existing functionality in ClearCase (triggers, labels
etc.) and conventions, so some of the cases might be too slow or cumbersome for pro-
fessional use, but should be seen more as a proof of concept.

8 Conclusions

The use of ClearCase at KCS has at large been a positive experience. Its facilities has
improved the situation for management of its large software system. Although Clear-
Case has proved very powerful and useful at KCS there are some situations where
ClearCase gives less support than one might expect.

The main criticism of ClearCase is the lack of mechanisms for overview, error
detection and structure. As a consequence its use needs more training, experience and
overview than what most developers have. At KCS the result is that the CM support
group has taken on more tasks and the use of ClearCase has been restricted for devel-
opers which are not allowed to perform crucial actions. In this way the overview over
project and system development has been possible to maintain at least within the CM
group. The restricted use also means that the use of ClearCase has been most beneficial
for the development managers and less so for the individual developers.

Suggestions for improvements of ClearCase put forward in this paper includes: (1)
Better error detection - to enable less experienced users to write specifications them-
selves. (2) Support for a new kind of ‘branch-type’ to support development projects -
enabling more advanced support at integration and merge, better overview of parallel
development, and allowing single developers to create local projects. (3) Advanced
version control for directories to enable versioning of configurations. (4) ClearCase
also has a general weakness in ‘collaborative awareness’. Some information can cur-
rently be presented on user demand, while we in this paper suggest support for moni-
toring such information. We also ask for more extensive information for developers
performing critical tasks to follow certain aspects of changes to the system performed
by others.

We feel that with these improvements the deficiencies with ClearCase encountered
during its use at KCS would be overcome and the overall usefulness of ClearCase
would be much improved.

Acknowledgments

This study has been carried out in close cooperation with the CM-group and develop-
ers at KCS. First of all we want to thank KCS for opening their doors for us. We want
in particular to thank Krister Erlansson, leader of the CM-group, for the time he has



20

devoted to helping us in this study. NUTEK (The Swedish National Board for Indus-
trial development) has supported this work through grant 93-3564.

References

[Ask94] Ulf Asklund. Identifying Conflicts During Structural Merge. InProceed-
ings of the Nordic Workshop on Programming Environment Research.
Lund, Sweden. June 1-3, 1994.

[Cla95] Dave St. Clair: Continuus/CM vs. ClearCase, URL: http://sun-
site.icm.edu.pl/sunworldonline/swol-07-1995/swol-07-cm.html,
SunWorld Online, 1995.

[Clear] http://www.atria.com/products/clearcase.html

[Ced93] Per Cederqvist. Version Management with CVS. Available from Signum
Support AB, Linköping, Sweden. 1993.

[Cont] http://www.continuus.com

[Gus90] A. Gustavsson.Software Configuration Management in an Integrated En-
vironment. Licentiate thesis, Lund University, Dept. of Computer Science,
Lund, Sweden, 1990.

[Kat90] Randy H. Katz. Toward a Unified Framework for Version Modelling in
Engineering Databases.ACM Computing Surveys, 22(4), December 1990.

[KLMM93] J.L. Knudsen, M. Löfgren, O.L. Madsen, and B. Magnusson, editors.Ob-
ject-Oriented Environments - The Mjølner Approach. Prentice-Hall, 1993.

[MA95] Boris Magnusson and Ulf Asklund: Collaborative Editing - Distributed
and replication of shared versioned objects. Presented at the Workshop on
Mobility and Replication, held with ECOOP 95, Aarhus, August 1995.
Available as: LU-CS-TR:96-162, Dept. of Computer Science, Lund, Swe-
den.

[MA96] Boris Magnusson and Ulf Asklund. Fine Grained Version Control of Con-
figurations in COOP/Orm. In Sommerville, I., editor,Proceedings of the
6th International Workshop on Software Configuration Management,
LNCS, Springer Verlag, Berlin. 1996

[MG96] Boris Magnusson and Rachid Guerraoui: Support for Collaborative Ob-
ject-Oriented Development. InProceedings of ISCA International Confer-
ence on Parallel and Distributed Computing Systems, Dijon, Sept. 25-27,
1996, pp 169-174.

[MAM93] Boris Magnusson, Ulf Asklund, and Sten Minör. Fine-Grained Revision
Control for Collaborative Software Development. InProceedings of ACM
SIGSOFT’93 - Symposium on the Foundations of Software Engineering,
Los Angeles, California, 7-10 December 1993.

[MM93] Sten Minör and Boris Magnusson. A Model for Semi-(a)Synchronous Col-



21

laborative Editing. InProceedings of the Third European Conference on
Computer Supported Cooperative Work, Milano, Italy, 1993. Kluwer Ac-
ademic Publishers.

[MMA97] Boris Magnusson, Sten Minör and Ulf Asklund: A Model for Semi-(a)Syn-
chronous Collaborative Editing. InJournal of Computer Supported Col-
laborative Work. To appear.

[MHM +90] Boris Magnusson, Görel Hedin, Sten Minör, et al. An Overview of the
Mjølner Orm Environment. In J. Bezivin et al., editors,Proceedings of the
2nd International Conference TOOLS (Technology of Object-Oriented
Languages and Systems), Paris, June 1990. Angkor.

[NFS] Sun Microsystems. The NFS Distributed File Service - A White Paper
from SunSoft, stb 1252. 1994

[RBI95] W. Rigg, C. Burrows and P. Ingram:Ovum Evaluates: Configuration Man-
agement Tools, Ovum Limited, London, 1995

[Roe75] M. J. Roekind. The source code control system.IEEE Transactions on
Software Engineering, 1(4):364–370, December 1975.

[Team] TeamWare user’s guides, Sun Microsystems, 1994.

[Tic85] Walter F. Tichy. RCS - a system for revision control.Software Practice
and Experience, 15(7):634–637, July 1985.

[Tic88] Walter F. Tichy. Tools for software configuration management. InPro-
ceedings from International Workshop on Software Version and Configu-
ration Control, Grassau, Germany, February 1988.

[Wat] Gray Watson. CVS Tutorial. Available from gray.watson@antaire.com.


