
Department of Computer Science
Lund Institute of Technology

Lund University
P.O. Box 118, S-221 00 Lund

Sweden

Integrated Version Control in the
COOP/Orm Version Server

Ulf Asklund

LU-CS-TR:96-175

Also published in: Proceedings of NWPER’96, Nordic Workshop on
Programming Environment Research, L. Bendix, K. Nørmark,

and K. Østerbye (Eds), Aalborg, Denmark, May 1996.
Aalborg University, Technical Report R-96-2019



1

Integrated Version Control in the
COOP/Orm Version Server

Ulf Asklund

Dept. of Computer Science, Lund Institute of Technology
Box 118, S-221 00 Lund, Sweden
e-mail: Ulf.Asklund @ dna.lth.se

Position paper: This position paper describes some of the design
decisions made during the development of the prototype COOP/Orm.
The prototype is build to illustrate an editing model supporting distrib-
uted groups of developers working together. The model is based on hier-
archical structured documents and fine grained version control. Editors
as well as the database, storing the documents, understand (and main-
tain) versions. This position paper describes the client-server architec-
ture of COOP/Orm, how the knowledge of versions is integrated into
the server and how this affect the client-server protocol. Especially the
need for a version tube is discussed.

1 Introduction

In our work we design a document model supporting distributed teams of pro-
grammers working together on the same system. The model we present avoids
the problems that occur when documents are shared between team members,
and solves the problems of how team members can be aware of each others
work. We have also build a prototype which uses the model. During the develop-
ment of this prototype, called COOP/Orm, we have come across many interest-
ing design issues. Many of these are purely technical, but some of them are
tightly connected to the problem we try to solve. The design decisions made in
order to integrate versions into the system are particular interesting.

This position paper is a short description of the architecture of COOP/Orm
and of the decisions mentioned above. Especially the interaction between the
client and the server using version numbers as parameters and the role of a
data structure called ‘version tube’, are described. The next section gives a short
overview of the COOP/Orm environment, the user interface and the main func-
tionality. Section 3 describes the architecture and our design decisions. It also
introduces the term version tube and motivate its existence. A short summary
concludes the paper.



2

2 The COOP/Orm environment

COOP/Orm is an environment supporting collaborative writing of hierarchically
structured documents. It is based on previous work in the Mjølner-project
[KLMM93], concerning object-oriented software development. The environment
developed in Lund, Mjølner Orm [MMH+90] supports collaborative software
development to a limited extent through its configuration management [Gus90].
The aim of the current project is to focus on supporting teams working on the
same system, and work has been done to both integrate version and configura-
tion control into the environment [MA96].

Version control is part of our fundamental storage model, which means that
all processors, including editors, must understand (and maintain) versions and
deltas. No locking is used to synchronize parallel work, instead an optimistic
check-out approach resulting in alternatives of the document is used. A merge
operation supports both textual and structural changes and automatically cre-
ates a suggestion using a set of default rules [Ask94]. Potential conflicts are
detected and clearly marked, making it simple for the user to find and edit them
in the merged version. The hierarchical structure helps in reducing the number
of conflicts on the textual level. If the document is a book, for example, it is
divided into chapters, sections and so forth. This makes each individual text
small, and changes developers making in the same text less likely.

Figure 1 Snapshot of the COOP/Orm client.



3

Figure 1 depicts the user interface of the COOP/Orm client. We have in this
example opened the document Demo.orm. In the lower part the document con-
tents is shown, containing hierarchically structured text (here a class contain-
ing its procedures and documentation). The hierarchy, which has an unlimited
number of levels, is presented using nested windows and a structure editor
allows the user to create new (or delete) folders and leaf nodes. The text in each
leaf node is edited using an integrated text editor.

Above, in the window called ‘Versions’, the version graph of the document is
visualized. Each numbered square represents a version, and the lines between
them the revision-of relation. In this example we can see that there has been
parallel development, started from version 2, that were later merged into ver-
sion 7. We can also see that the parallel work is continued in both alternatives
after the merge.

The version graph is also used for quick and simple interaction, such as
changing which version of the document to view. By clicking directly in the
graph versions are selected and the view of the document is instantly changed
to reflect the selected version. By selecting a range of versions the differences
between two versions are highlighted (henceforth we call these two versions
Viewed and Compare). In Figure 1 version 10 is viewed and deltas between ver-
sion 3 and 10 are highlighted in the document contents.

At the structure level the differences are marked with the signs +, -, and !,
meaning added, deleted, and changed respectively. A node is considered
changed when either the contents of the node is changed, or if the node is a
folder, any son is changed. This works recursively down the hierarchy and
results in change-marks propagated up the hierarchy when a leaf node is
changed, making it very easy to find the changed places. In the leaf nodes
changes are marked as underlined or overstroken, marking added and deleted
text respectively.

3 The COOP/Orm architecture

COOP/Orm has a client-server architecture in order to cope with the primary
requirements: distribution and synchronization between clients. We have taken
the distribution requirement one step further so we also have server-server
communication to handle distribution over wide area networks. The server-
server protocol is, however, not further elaborated in this paper. One decision
necessary to make when designing a client-server architecture is how general
(or the other way around, how specific) the server and the client-server protocol
should be. The hierarchical structure and the integrated version control are in
our model fundamental, and are therefore known by all parts of the system,
including the server. This also means that version numbers and addresses of
specific nodes in the document hierarchy are included in the client-server proto-
col. Figure 2 depicts the client-server architecture. The tree in the client reflects
the hierarchical structure of a specific version of a document. This hierarchy is
visualized by nested windows in the user interface. Attached to each node is the



4

text presented in the windows, handled by the integrated editor. The more com-
plicated structure in the server stores all the versions of the document. Or more
precisely all the changes made to the document, making it possible to retrieve
any version of it. Therefore, a client’s request for node data, must both include
the node address and the version of the document required. The example in the
figure shows such a command requesting data.

Server storage
One question that arises when all versions of a document are stored is the size
of the document file. In COOP/Orm, unchanged parts of the document are
shared between versions rather than copied. Figure 3a depicts the conceptual
model of two versions of a document, here with one leaf node changed in the
younger version, n+1. In our model, all nodes not changed are shared as
depicted in Figure 3b. In changed nodes, the contents is stored using delta-tech-
nique. The (new) full text in the changed node is stored in the edited version
(n+1). The backward delta (i.e. the delta required together with the new full text
to rebuild the old text) is stored in the preceding version (n), replacing the previ-
ously stored full (old) text. If yet another version (n+2) is created and the same
node is changed, the same procedure results in that the new text is stored (full)
in version n+2, and the new backward delta is stored in version n+1. I.e. to
rebuild version n of this node, the full text and both deltas now are required.

An editor in our model must understand and support versions and deltas.
When a node is changed both the new full text and the delta are constructed by
the editor and sent to the server. This in contrast to systems where only the new
full text is sent, and then the delta is calculated in the server, using diffing algo-
rithms to find out what was really changed. In fact we do not use the delta tech-

Figure 2 Client-Server architecture

GetData(Ver,Node)

GetDataReply(Data,Deltas)

Client Server

Figure 3 Sharing of node versions

version n version n+1

edited

version n version n+1

(a) Conceptual view (b) Sharing node versions

full textdelta



5

nique primarily to save disk space, but to be able to present accurate deltas
between versions to the user.

More details about the server database representation and the integrated
editor can be found in [MAM93] and in [Ols96].

Server reply
In the example in Figure 2 the client requested node data from the server. As
response to that request the server returns the full text stored in the latest
changed version, and all the deltas needed to rebuild the requested version of
the node. Note that the server, by itself, finds out in which version the full text is
stored and the deltas that are needed. This is an example of how the server
understands both versions and the delta technique used. The contents of the
data and the deltas themselves are, however, only understood by the editor.

Scalability
One very important issue easy to forget when building a prototype is to make it
scalable, i.e. making not only small examples possible but real industry projects
as well. In a large document with a long history consisting of many versions,
retrieving an old version could potentially be a timeconsuming operation. In the
situation with the user often changing the viewed version and frequently com-
paring it to other versions (which is possible in our model), long delays are not
acceptable. In order to scale up to handle large documents with many version it
is important to reduce the communication between the client and the server. In
connection to data retrieval COOP/Orm ‘optimize’ the communication in two
dimensions, both in space and time:

• lazy data and delta retrieval. The hierarchical structure is utilized to
limit the data retrieved when, for example, a new version of the document
is viewed. Only data for open windows are retrieved, i.e. if a window, in
the user interface, is iconized and consequently there is no need for data
for the corresponding node, no data is retrieved. The request is delayed
and instead made on demand when windows are opened. In this way com-
plete subtrees can be loaded lazy, which makes the number of nodes that
retrieve data proportional to the number of open windows and not to the
document size.

• caching delta in the client. Attached to each delta returned from the
server are two version numbers (specifying the link between these two
versions) telling the client where the delta belongs. This makes it possible
for the client to treat each delta individually, which in turn makes it possi-
ble to incrementally retrieve deltas for a node instead of reload the entire
history every time. Figure 4a depicts a version graph for a document
where version 4 is viewed and Compared is set (differences are high-
lighted) to version 2. If Compare in this situation is moved to version 1,
only the delta between version 1 and 2 is retrieved (and only for the visi-
ble nodes). The new delta is then, in the presentation, concatenated to the
already presented. If instead Compare is moved to version 3 no deltas are
needed at all, but the delta between 2 and 3 can be dropped and is not
shown anymore.



6

Version tube
The two well motivated ‘optimizations’ mentioned above, together with support
for parallel development and merge, made it necessary to extend the client-
server protocol with more elaborate version information. It is not always enough
to only give a particular version, but the path to a particular end version must
be known. We call the data structure to specify such a path for a ‘version tube’.

Figure 4a depicts a version graph with Viewed set to version 4 and Compare
set to version 2. This means that for all open windows full data of version 6, del-
tas to rebuild version 4, as well as deltas between version 2 and version 4 to
highlight differences, are loaded. If a window is opened and new data and deltas
are needed the data request will return the required data without any problem.
This example is simple to handle because in the version history without
branches there is no ambiguity of which delta to retrieve.

The situation gets, however, more complicated when the development
branches into parallel alternatives. Figure 4b depicts a situation where a ver-
sion older than the split version is viewed. If a window is opened in this situa-
tion, the question arises: from which alternative should data and deltas be
retrieved to rebuild version 3? The already loaded nodes got their data from one
of the alternatives (7 or 6), but which one depends on how the user came to this
situation.

A similar problem in the same example arises if Viewed is moved to, for
example, version 5. If this alternative was used rebuilding version 3 no deltas
are needed at all, but if the other alternative was used, both data and delta
rebuilding version 3 using the new alternative instead, must be retrieved. Thus,
the questions are, which alternative did we get the data from, and can we
retrieve delta from the same alternative again?

An underlaying assumption is that we do not want to create a situation with
data and deltas from different alternatives for different nodes, since this should
increase the complexity of the caching delta-algorithms mentioned above.

Figure 4 Versiongraphs depicting different Viewed and Compare situations

(a) single development line (b) branching into two alternatives

Figure 5 Situations occuring when merge have been done

(a) Are deltas already retrieved between
version 3 and 5?

(b) A version tube



7

Another situation depicted in figure 5a occurs when Compare and Viewed
spans a ‘split-merge’. Both loading a node (as a consequence of opening a win-
dow), or moving Compare to version 4 or 5 gives the client the same situation of
not knowing which alternative to retrieve deltas from or if they already are
retrieved.

In COOP/Orm the requirements addressed by the examples above are imple-
mented using the ‘version tube’, which is a data structure representing a path
through the version graph. A tube always starts from the Compare version,
runs through Viewed, and ends in the last version of an alternative, see
Figure 5b. Each client creates its own tube when the first data is requested and
uses it to remember the way deltas have been retrieved. To guarantee delta to
be retrieved the same way again when new windows are opened, the version
tube is used as parameter to the data request operation. The server still must
support the versions and the delta technique, but is now limited to the sequen-
tial version history in the tube when it searches for data and delta. The same
example as depicted in Figure 4b, but now with a version tube defined, is
depicted in Figure 5b. The tube drawn in the figure symbolize how the client
remembers from which alternative deltas were retrieved. If Viewed in this situ-
ation is moved to version 5 the client knows that the deltas needed for the new
situation already are loaded and no deltas are requested.

4 Summary

We have presented a data structure called a version tube as one technique meet-
ing the new requirements raised when integrating fine-grained version control
into a database server. We have shown how, well motivated, optimizations
together with the possibility to merge parallel development lines leads to prob-
lems that can be solved by this data structure.

The presented technique is however not the only solution to the problem. The
presentation in this paper is based on the requirement that all nodes in a docu-
ment must retrieve their deltas from the same alternative, i.e. using the same
version tube. If this requirement is given up, it also removes the need to force
the server to follow a certain path when a node is loaded. Thus, is the ‘version
tube’-extension of the client-server protocol not needed. The drawback of this
solution, however, is that the optimization in time (retrieving deltas incremen-
tally) must be done for each node instead of for the document. I.e. the client
must have one version tube for each document node, instead of one for the entire
document.

The contribution of this paper is, however, not to find all possible trade-offs,
but to show how an advanced editing model adds new requirements to the
server, and how these requirements are fulfilled in the COOP/Orm prototype.

References

[Ask94] Ulf Asklund. Identifying Conflicts During Structural Merge. In Boris
Magnusson, Görel Hedin, and Sten Minör, editors, Proceedings of the
Nordic Workshop on Programming Environment Research, Lund
University of Technology. LU-CS-TR:94-127, Lund, January 1-3 1994.



8

[Gus90] A. Gustavsson. Software Configuration Management in an Integrated
Environment. Licentiate thesis, Lund University, Dept. of Computer
Science, Lund, Sweden, 1990.

[KLMM93] J.L. Knudsen, M. Löfgren, O. L. Madsen, and B. Magnusson, editors.
Object-Oriented Environments - The Mjølner Approach. Prentice-Hall,
1993.

[MA96] Boris Magnusson and Ulf Asklund. Fine-Grained Version Control of
Configurations in COOP/Orm. In Proceedings of the Sixth International
Workshop on Software Configuration Management (Ed. I. Sommerville),
Berlin, 25-26 March 1996.

[MAM93] Boris Magnusson, Ulf Asklund, and Sten Minör. Fine-Grained Revision
Control for Collaborative Software Development. In Proceedings of ACM
SIGSOFT’93 - Symposium on the Foundations of Software Engineering,
Los Angeles, California, 7-10 December 1993.

[MM93] Sten Minör and Boris Magnusson. A Model for Semi-(a)Synchronous
Collaborative Editing. In Proceedings of the Third European Conference
on Computer Supported Cooperative Work, Milano, Italy, 1993. Kluwer
Academic Publishers.

[MMH+90] Boris Magnusson, Sten Minör, Görel Hedin, Mats Bengtsson, Lars-Ove
Dahlin, Göran Fries, Anders Gustavsson, Dan Oscarsson, and Magnus
Taube. An Overview of the Mjølner Orm Environment. In J. Bezivin
et al., editors, Proceedings of the 2nd International Conference TOOLS
(Technology of Object-Oriented Languages and Systems), Paris, June
1990. Angkor.

[Ols96] Torsten Olsson. A View of A Merge. In proceedings of the Nordic
Workshop on Programming Environment Research, Aalborg, Denmark,
May 29-31 1996.


