
Department of Computer Science

Lund Institute of Technology
Lund University

Box 118, S-221 00 Lund, Sweden

APPLAB — A Laboratory for Application Languages

Elizabeth Bjarnason

LU-CS-TR:96-177
LUTEDX/(TECS-3073)/1-5/(1996)

Also published in: Proceedings of NWPER’96, Nordic Workshop on
Programming Environment Research, L. Bendix, K. Nørmark,

and K. Østerbye (eds), Aalborg, Demark, May 1996.
Aalborg University, Technical Report R-96-2019.



1

APPLAB — A Laboratory For Application
Languages

Elizabeth Bjarnason

Dept of Computer Science, Lund University
Box 118, S-221 00 Lund, Sweden

e-mail: Elizabeth.Bjarnason@dna.lth.se

APPLAB (APPlication language LABoratory) is an environment that
supports the interactive development of application languages. The
system allows the language designer to edit a language description and
simultaneously edit a program in the new (changing) language. The
system also supports the design of static semantics for the language.
APPLAB is used in a case study looking at the different levels of pro-
gramming involved in programming industrial robots.

1 Introduction

Designing a new language is an iterative process where language constructs are
designed and tested in a prototypical fashion. Application-specific languages,
i.e. languages designed to be used within a specific application domain, are often
revised and extended as new needs arise, as opposed to general-purpose lan-
guages which are rarely changed. When working with application domain lan-
guages it is desirable to have an environment that supports the process of
designing and extending languages in an iterative and integrated fashion. We
call such an environment a language laboratory. The environment should allow
the language designer to switch freely between editing the language description
and editing a program in the (changing) new language. Examples of such sys-
tems include GIPE [Kli91], DOSE [FJS86], and Orm [MHM+90]. An example of
an environment that is designed to support the language design process, but
does not offer immediate feedback on editing operations performed on the lan-
guage description is TaLE [JKP91, JK93]. Our language laboratory, APPLAB
[Bja95] (APPlication language LABoratory) is an extension of the grammar
environment part of Orm. Like Orm, it is based on grammar interpretation
[MH93], i.e. the grammar of a language is interpreted to supply language-spe-
cific behaviour to the system, thus avoiding a compilation and linking phase
after each grammar change to keep the language-specific features of the system
consistent with the current grammar description.

2 Editing in APPLAB

The SbyS editor [Min90] originally developed within the Mjølner/Orm project
[KLMM93] is used in APPLAB. When editing a program the SbyS editor sup-
ports the user in editing language constructs defined by the grammar given



2

for the language. The grammar itself can also be edited in APPLAB using an
instance of the same structure editor, since it is expressed in a language
described by a (meta-)grammar. When performing structure-oriented editing,
constructs are inserted into a program by selecting them from a menu. The
menu always contains exactly all the available constructs at the current posi-
tion in the program as described by the grammar. Any construct of the language
can also be edited as text using an instance of the Grammar Interpretive Parser,
GRIP [BH96]. The edited text is then mapped to the corresponding language
construct and inserted into the program.

The editing style provided by a grammar-interpreting structure editor is ide-
ally suited for application languages. The grammar-interpreting features allow
an instant feedback on new grammar rules, thus allowing the language
designer to work in an experimental fashion, trying out new language con-
structs interactively, as they are defined. Programming applications using an
application language is, or could be, done by someone who is more familiar with
the application area than with actual programming. Also, since application lan-
guages often are changed and expanded, a structure-oriented editor is of great
use to an application programmer. It relieves him of having to remember the
correct syntax and constructs of the current version of the application language.

3 Static Semantics in APPLAB

One of the major advantages of using an application language when program-
ming in a specific application domain is that the conventions for using lower
level library routines can be expressed as static semantic rules for the applica-
tion language instead of having to rely on the programmer to correctly use the
library routines [Hed96]. APPLAB lets the language designer add static seman-
tics to a language by means of an attribute grammar notation. Some initial sup-
port for this is already implemented. Our goal is to give full support for
specifying Door AG:s [Hed92], an extended AG formalism suitable for efficient
incremental evaluation. The Door AG will be interpreted and the defined
semantic checks performed as the application programmer edits a program
written in the application language.

4 Case Study: Robot Programming

We are currently involved in a case study in cooperation with the Department of
Automatic Control at Lund University, looking at the problems involved in pro-
gramming industrial robots. APPLAB is used both to design an application lan-
guage suitable for robot programming, and as a programming interface using
the designed language.

When programming industrial robots there are several different levels of
programming involved. The manufacturer of the industrial robot delivers the
product together with a programming interface for the basic motion control of
the robot. The application developer then uses this interface to specialize the
robot for a specific application, e.g. welding or gluing. At the moment this phase
is most often done by the manufacturers themselves, since there are so many
conventions to follow when using the motion-control interface that it is not con-



3

sidered safe to release the code of the interface for general use. The resulting,
specialized robot is delivered to a customer who wishes to use the robot to man-
ufacture some product. The customer then programs the robot to perform the
required task. E.g. to weld a hull of a ship according to data from a CAD/CAM
system. See figure 1, and [Nil92] .

Our idea is to introduce an application language for each level of programming.
The application language for each layer should contain the constructs needed
for that layer, and handle the conventions attached to the underlying interface
and support the programmer in using them. This results in a hierarchy of lan-
guages which are implemented on top of each other.

5 Current Status

Currently, new languages can be defined and edited in APPLAB, as well as pro-
grams expressed in those languages. The structure-oriented editor has been
augmented to also allow textual editing. This was done by adding a Grammar
Interpreting Parser component. which also makes it possible to import programs
in textual form from other systems. The support for static semantics is, at
present, supplied by a demand-attribute evaluator for a subset of Door AG:s.
The demand-attribute evaluator is not grammar interpretive and, thus,
requires some preprocessing to work according to the current static semantic
grammar. In the future it is desirable to have a grammar-interpretive semantic
component that supports (full) Door AG:s and incremental attribute evaluation.

APPLAB has been integrated into the Robotics lab at the Department of
Automatic Control, Lund University, and is used as a programming interface to
an ABB Irb-6 robot. An extended version of ABB’s robot programming language
ARL[ABB94] has been implemented in APPLAB, and simple programs have
been entered into APPLAB and executed on the robot. The demand-attribute
evaluator has been used to generate C code from ARL which is dynamically
linked into the motion control of the robot

APPLAB is also used in a master thesis project in cooperation with SAAB
Military Aircrafts, Linköping. In this project, APPLAB has been integrated with
the Verilog CASE environment which supports graphical development of real-
time systems. APPLAB is used to view and edit the finite state machine specifi-
cations, thus integrating structure-based editing into a graphical environment.

Motion control

Interface

Welding package

Welding application

Figure 1 The Different Levels Of Robot Programming

Kockums Computer Systems
(customer)

Application developer

ABB (robot manufacturer)



4

6 Future Work

In the case study on robot programming we intend to look into the language
design level in more detail, and try to identify the set of domain-specific proper-
ties that need to be included in an application language for robot programming.
It would also be interesting to consider if there are any general techniques use-
ful for identifying such properties and including them in the design of an appli-
cation language.

Another interesting area of research is modular grammars. When defining a
new language, in APPLAB, or for a compiler-compiler tool, the language descrip-
tion is written as one document. If the language designer wishes to reuse parts
of an old description these have to be copied into the new language description.
It is desirable to be able construct a language by combining a number of differ-
ent basic language blocks, e.g. expressions, statements, declarations. Also, e.g.
in robot programming, it is of interest to support the design of a new language
on top of an old one. I.e. to have several layers of grammars define a language.
Tools and techniques for supporting the construction and use of such modular
grammars are interesting research topics. Some related work has been done in
this direction, e.g. [GCN92], [Bos95].

7 References

[ABB94] ABB Robotics. ARL Reference Manual, 1st edition, February 1994.
[BH96] Elizabeth Bjarnason and Görel Hedin. A Grammar-Interpreting Parser

in a Language Design Laboratory. In Proceedings of the Poster Session of
CC’96 (International Conference on Compiler Construction). P. Fritzson
(ed.), pp 15-24, LiTH-IDA-R-96-12, Dept. of Computer Science, Linköping
University, Sweden, April 1996.

[Bja95] Elizabeth Bjarnason. APPLAB: User’s Guide (version 1.0). Technical
Report LU-CS-IR:95-2, Department of Computer Science, Lund
University, September 1995.

[Bos95] Jan Bosch. Layered Object Model—Investigating Paradigm Extensibility.
PhD thesis, Department of Computer Science, Lund University, October
1995.

[FJS86] Peter H Feiler, Fahimeh Jalili, and Johann H Schlichter. An Interactive
Prototyping Environment for Language Design. In Proceedings of the
Nineteenth Annual Hawaii International Conference on System Sciences,
volume II, pages 106–116. IEEE, 1986.

[GCN92] D. Garlan, L. Cai, and R. L. Nord. A Transformational Approach to
Generating Application-Specific Environments. In H. Weber, editor,
Proceedings of the 5th ACM SIGSOFT Symposium on Software
Development Environments, pages 68 – 77, Tyson’s Corner, Va.,
December 1992. ACM. SIGSOFT Software Engineering Notes, 17(5).

[Hed92] Görel Hedin. Incremental Semantic Analysis. PhD thesis, Department of
Computer Science, Lund University, Sweden, March 1992.

[Hed96] G. Hedin. Enforcing programming conventions by attribute extension in
an open compiler. In Proceedings of the Nordic Workshop on
Programming Environment Research (NWPER’96), Aalborg, Denmark,
May 1996.



5

[JK93] Esa Järnvall and Kai Koskimies. Computer-Aided Language
Implementation with TaLE. Technical Report A-1993-4, Department of
Computer Science, University of Tampere, Finland, July 1993.

[JKP91] Esa Järnvall, Kai Koskimies, and Jukka Paakki. The Design Of The
Tampere Language Editor (TaLE). Technical Report A-1991-10,
Department of Computer Science, University Of Tampere, December
1991.

[Kli91] P. Klint. A Meta-Environment For Generating Programming
Environments, pages 105–124. In Bergstra and Feijs, editors. Algebraic
Methods II: Theory, Tools and Applications. Springer-Verlag New York
Inc, 1991.

[KLMM93] J. L. Knudsen, M. Löfgren, O. L. Madsen, and B. Magnusson, editors.
Object-Oriented Environments. The Mjølner Approach. The Object-
Oriented Series. Prentice Hall, 1993.

[MHM+90] B. Magnusson, G. Hedin, S. Minör, et al. An overview of the Mjölner/Orm
environment. In J. Bezivin et al., editors, Proceedings of the 2nd
International Conference TOOLS (Technology of Object-Oriented
Languages and Systems), pages 635–646, Paris, June 1990. Angkor.

[MH93] Sten Minör and Görel Hedin. Grammar Interpretation in Orm, In
[KLMM93], chapter 20, pages 297–306. Prentice Hall, 1993.

[Min90] Sten Minör. On Structure-Oriented Editing. PhD thesis, Department Of
Computer Science, Lund University, 1990.

[Nil92] Klas Nilsson. Application Oriented Programming and Control of
Industrial Robots. Lic. thesis, Department of Automatic Control, Lund
Institute of Technology, July 1992.


