
ple-
pro-
ase

n an
sup-
, for
pro-
ble to

in the
een
pre-
uture

gar-
phys-
case
lated
. An
Runtime performance evaluation of embedded software

Anders Ive
Dept of Computer Science, Lund University

Box 118, S-221 00 Lund, Sweden
e-mail: Ive@dna.lth.se

Abstract. When developing real-time system software it is often desired to
study the execution timing of processes and programs. Worst-case execution
times, location of bottlenecks, processor utilization could be found if the pro-
grammer could analyze programs at runtime. The system software described in
this paper provides a way to measure the execution times. The system makes
minor changes to the performance and enables flexibility to the evaluation
method. The system, and the changes made in the real-time kernel in order to
implement the system, are described. It was experienced during evaluation of a
real-time garbage collector that the system was a valuable debugging and verifi-
cation tool.

1 Introduction

The purpose of this project was to develop support to evaluate time aspects of im
mented code. The primary focus was to measure execution times of real-time
cesses in a runtime system. It can be difficult to calculate or predict worst-c
execution time by static analysis alone. A way to analyze execution times is to ru
application, and measure the times with a clock. The goal was to provide software
port to do these kinds of measurements with an external measuring device
instance, a logic analyzer. Another interesting aspect is to follow the scheduling
cess, and study a system’s runtime behavior. The programmer should also be a
insert signals to keep track of when a specific code sequence is executing.

The process supervision system has been implemented, and is described
report. Firstly, the new functionality is covered, along with the changes that have b
made in the real-time kernel. A case study of a real-time garbage-collector is
sented, with focus on the supervision system. The concluding sections describe f
development and future usages of the supervision system.

2 Background

The initial purpose of this project was to study the execution times of a real-time
bage collector. The calculated execution times of the garbage collector had to be
ically verified. With the aid of the supervision system this has been done. The
study is covered in Section 5. This section relates the supervision system with re
techniques. A brief introduction of the hardware used in the project is described
example of the output from the supervision system is presented and described.



done
ni-

sed to
then

ard-
into

can
zer,
ysi-

with
f the
d tool

ware
plica-
here
es.
opri-

to

rties

eds

atic
1].
e, the
the

on is
in
2.1 Related techniques

Visualization or measurement of execution times and context switches has been
in different ways ever since development of multitasking software started. At our u
versity this started 25 years ago on PDP-11 computers. One analog output was u
track the current running concurrent process. The information of the output was
used to visualize the different processes.

Numerous vendors of development tools nowadays provide various types of h
ware and software support for this. However, these available tools can be classified
two categories, each with certain drawbacks.

1. Hardware-based tools like in-circuit emulators and logic analyzers, which
be aware of the running program with symbol tables loaded into the analy
are powerful tools but they are costly, complicated to learn, and require ph
cal reconfiguration of the system.

2. Software-based tools are quite flexible and avoid most of the drawbacks
the hardware-based tools, but they interfere with the real-time properties o
system, since they use system resources. An example of a software-base
can be found in [RTI94].

Thus, the available tools are most suitable when debugging includes finding hard
faults (case 1 above), or when focus is on real-time performance at the user or ap
tion level (case 2 above). At the system level of software development, however, t
is a need for a solution that combines the benefits of the just mentioned techniqu

The principle presented in this paper is believed to provide a unique and appr
ate combination of:

• Timing measurements down to the level of microseconds.
• Insignificant changes of real-time properties.
• Process-level timing analysis without software changes.
• Possibilities to add specific checkpoints in the application.
• Flexible configuration of timing result output (to shared memory, to log files,

digital IO, etc.).
• Possibilities to let additional processors analyze and adjust real-time prope

on line.
We think our solution is particularly useful when optimized real-time software ne
to be developed using a minimum of resources.

2.2 System description

The real-time kernel that was modified, was developed at the Institute of Autom
Control, Lund University. More information about the kernel can be found in [AnB9
The kernel is used in many research projects, and in the education. For instanc
robot-laboratory computers controls robots with the aid of the kernel. To host
supervision system, the real-time kernel had to be modified. The kernel in questi
implemented in Modula-2. Time-critical parts, like the process switch, are written 



t’s
was
iffer-

er.
bility
at
very
nction
out-

ment
r is

aced
e 2.
ntain
the

tion
ly-

are
the

ula-
cal-

idle
imes.
cution
assembler. Changes in the kernel are discussed in Section 4.
The underlying system is a robot control computer which controls a robo

motion. The kernel runs on a Motorola 68040, 25MHz-processor. A logic analyzer
added to keep track of the output of the supervision system. Figure 1 shows the d
ent parts of the system.

2.3 Supervision output

The output of the supervision system is dependent on theoutput function, which duty
is to perform the supervision. The function is specified by the application programm
Thus, the supervision system does not provide an output function. The responsi
of the real-time kernel is to provide the output function with correct information
proper situations. For instance, the kernel automatically calls the output function e
time a process switch takes place. In the case study (see Section 5), the output fu
consisted of a single assembler instruction, transferring the input argument to the
put port. The port was connected to an external logic analyzer.

Every process is given an identification number. This number is used as argu
when the kernel calls the output function. As the process is running, its numbe
transferred to the output port by the output function, thus the execution can be tr
on the logic analyzer. An example of the system’s output can be viewed in Figur
The top line is set and reset by the application, thus the source code must co
explicit calls to use these lines. There are no limitations on the implementation of
output function, since it is specified by the programmer. An alternative output func
could, for example, buffer the identification number with timestamps, for later ana
sis.

Figure 2 shows the scheduling of four processes, named A, B, C and D. They
given one line each. The horizontal axis displays the time. A routine that handles
clock interrupt, is displayed at the bottom. The top line show when a specific calc
tion is made in process A. As the calculation starts, the line is raised, and when the
culation is finished, the line is lowered. Another interesting line, represents the
process. It is active when the processor is idle. The logic analyzer can measure t
These measurements can be used to calculate processor utilization, mean exe
time of a process, worst-case execution time and the like.

Logic analyzer

Control CPU, 68040 ABB, Industrial Robot 2000

Output port

Fig. 1. The parts of the supervision system.



ation
utput
n of
ality,

must
ecut-

the
tion
nter-
tput
can

lock
ter-
func-

y to
ith
olled
ailed
mea-
over
3 Functionality description

To keep track of the processes in an application, they must have a unique identific
number. The identification is used as an argument to the programmer-specified o
function. The output function is called every time there is a change in the executio
a process, e.g. another process is scheduled to run. To host the new function
changes in the real-time kernel have to be made. New calls to the output function
be added in the kernel. The task of the output function is to register a change of ex
ing process, in a programmer-specified way. The identification number enables
output function to keep track of the different processes. The process identifica
numbers are explicitly set in the application program; only the processes that are i
esting from the programmer’s view are given a unique identification. Since the ou
function is specified by the application programmer, changes in the output function
be made without recompilation of the kernel.

Other situations that have to be supervised are interrupts. In particular, the c
interrupt has to be modified to call the output function each time it runs. Other in
rupt handlers can easily be modified to perform the necessary calls to the output
tion.

Apart from the automatic runtime supervision behavior, there is a manual wa
use the output function. The programmer can explicitly call the output function w
any argument, called event identification number. These numbers are solely contr
by the programmer; the real-time kernel does not affect them. This enables det
studies of parts of processes. Execution time of a calculation can, for example, be
sured. The internal states of a process, could be monitored. An event can last

Fig. 2. Activities on the output port, presented by a logic analyzer.



ls are
osing
.
acti-

ivated
lcu-
s. The
to an
n be

g can
s can
ution

er.
any

es. A
her
can
unc-
s the
cific
could

ation
ifica-
ut
ber

fica-

ith
the
ows

r the
tion.
s so
several process switches. Event identification numbers in manual supervision cal
superimposed on the automatic calls. The programmer is thus responsible of cho
relevant identifications that do not conflict with the identifications of the processes

Another process, created by the system, is the idle process. This process is
vated each time the processor has nothing to do. The idle process is never act
then the processor is fully utilized. The utilization of the processor can thus be ca
lated when execution times are measured for the idle process, and other processe
supervision system gives the possibility to adapt the scheduling of the processes
optimal performance. More information on how to use the supervision system ca
found in Section 6.

The supervision system supports many interesting areas of use. The schedulin
be tracked in detail. Execution times can be measured. Worst-case execution time
be estimated, although a more exhaustive examination of the worst-case exec
time has to be performed before the definite time limit can be determined.

The functionality of the output function has to be specified by the programm
This makes the supervision flexible, since the output function can be adapted to
specific hardware. The function should be short, because it is executed many tim
possible algorithm is a direct transfer of the identification to an output port. Anot
version can provide logging of processes and switch times. Trigger functionality
be implemented to start the logging at a desired situation. At runtime, the output f
tion can easily be removed, or the output function can be changed. This increase
flexibility of the supervision system. For example, one process could use a spe
output function to handle an event occurring in the process, and other processes
use a default output function.

4 Implementation issues

One primary aspect of the supervision system is to give each process an identific
number. We have coded the identification number as an integer. To store the ident
tion, eachprocess record, containing essential information to the runtime system abo
the process, was expanded with an extra slot for the integer. This identification num
is used by the runtime system. In addition, there is a global slot for an event identi
tion number which the programmer handles manually.

Automatically, when a process switch takes place, the identification is “ored” w
the number of the event identification. The result is placed in another global slot,
current identification, and sent as an argument to the output function. Figure 3 sh
an overview of this proceeding.

The reason to store the current identification number is to give the programme
ability to read it during execution, thus gaining access to the state of the applica
Thus, the application programmer should divide the range of identification number



er Y

oes
exist-

y is
tra

in
enti-

Two
r the
se is
the

Set pro umber is set.

Set on r.

Set ev

Read c n

Set ou

Reset 

Call ou

Is ther
that e.g. the lower X bits are used for process identification numbers and the high
bits for event identification numbers.

If there is no output function specified then the work described in Figure 3, d
not have to be performed. To ensure this behavior, there are checks to ensure the
ence of an output function. If it does not exist, the runtime supervision functionalit
skipped. The kernel will then behave like the original kernel, except for the ex
checks. The cost for the extra checks is presented in Table 2.

An overview of the programming interface of the supervision system, is found
Table 1. The usual way to set the identification of the process is by assigning an id
fication when the process is created.

The supervision kernel brings extra overhead, compared to the original kernel.
expenses are obvious, extra memory and performance loss. Extra memory, fo
identification, is allocated in every process that is created. Another memory expen
in the runtime system itself, to keep track of the event identification number, and
current identification number. These memory costs are negligible.

Procedure Argument Remark

cess identification 32-bit integer The currently running process’s identification n

e bit of the identification 32-bit integer Only one bit is set in the identification numbe

ent identification 32-bit integer The output function is also called.

urrent identification Return the argument given to the output functio

tput function Function pointer

output function Clear the function pointer

tput function 32-bit integer Explicit call form the application program.

e a output function? Returns boolean

Table 1 Programming interface of the supervision system.

...01100000

...01100100 Argument to output function call

Process identification

Event identification
Current identification

Automatically accessed by real-time kernel,
 occurring at process switch.

...00000100

OR

1

2

3

Fig. 3. The supervision routine of the runtime system, at a process switch.



stem.
tine in
ured.
when
ists

utput
out-
ple-
, but
er-
e the
he

rrupt
pro-

ution
sured
ude

xam-
ocess

wn.
s and
sed
loop

e

The performance loss depends on the extra overhead due to the supervision sy
To measure the overhead, four different measurements on the process switch rou
the kernel, have been made. First, the original kernel’s execution time is meas
Three other measurements are conducted on the supervision-modified kernel:
there exists an implementation of the output function, when the output function ex
but does nothing, and when there is no output function. In the case where the o
function is implemented it transfers the argument to an output port. In this case the
put function consists of a single line of assembler; it can represent an common im
mentation of the output function. More advanced implementations could be made
their execution time must not exceed the interval of time of the clock interrupt. Oth
wise the execution of the system cannot be guaranteed to work properly, becaus
kernel will call the output function before the previous call is finished executing. T
results are presented in Table 2.

To measure the execution time of the process switch routine and the clock inte
handler, a line of code is added before and after the routines. These two extra lines
duce a signal to an output port, which is connected to a logic analyzer. The exec
times can thus be monitored. The extra time these lines take has also been mea
and presented in Table 3. The benefit of inlining the output port code is to excl
extra overhead that would result from a function call.

4.1 Supervision example

To give a concrete form to the use of the supervision system, we show a simple e
ple. Two processes, named Luke and Ben, are created. There is also an idle pr
created implicitly by the real-time kernel. The clock interrupt handler is also sho
The process Ben has higher priority than the process Luke. Luke does three loop
then rests for 100 milliseconds. The ability to manually trace the execution is also u
in the Luke process, after each loop. Ben, on the other hand, only executes one

Kernel Clock interrupt Process switch

Original (µs) 54.90 - 110.9 29.20 - 30.90

No output function (µs) 56.90 - 112.9 29.80 - 31.45

Output function (no functionality) (µs) 63.75 - 121.7 32.45 - 34.75

Output function (Transfer argument to output) (µs) 66.75 - 123.7 33.55 - 36.45

Table 2 Comparison of execution times of the original real-time kernel, and th
supervision-modified kernel.

Time to set and reset output 1.500µs

Table 3 Execution time to set and reset an output port.



sses.
on-
ture

gher

f the
roces-

pre-
before resting for 100 milliseconds. Figure 4 shows pseudo code for the two proce
The output function is only transferring its argument to an output port, which is c
nected to a logic analyzer. The output of the analyzer is shown in Figure 5. The pic
is taken when the system is running. Notice that Ben interrupts Luke, due to its hi
priority.

Information that can be extracted from the logic analyzer are execution times o
processes, and how much time internal phases take for the Luke process. The p
sor utilization can be calculated. The different execution times of the processes are
sented in Table 4.

Process Luke {
SetPriority (LowPrio );
SetProcessIdentification(LukeID );
LoopForever {

SetEventIdentification(High );
loop 1500 times;
SetEventIdentification(Middle );
loop 1000 times;
SetEventIdentification(Low );
loop 500 times;
WaitTime(100 ms );

}
}

Process Ben {
SetPriority(HighPrio );
SetProcessIdentification(BenID );
LoopForever {

loop 3000 times;
WaitTime(100 ms );

}
}

Fig. 4. Pseudo-code for the processes Luke and Ben.

Fig. 5. Output of the logic analyzer.



gar-
f the
ma-

s. Its
erify

ring
with
TGC
s are
ur-
cess

tion
ana-
ure
ess,
the
by

GC
ority
after
ter-

t its
ance
ove-
g a
the

ring
ution
5 Case study of a real-time garbage collector

The supervision system has been used in a study of the execution of a real-time
bage collector (RTGC). The purpose of this section is to emphasize the benefits o
supervision system, and not to explore the intricate execution of the RTGC. Infor
tion about the RTGC can be found in [Hen96].

The RTGC is a predictable garbage collector suitable for hard real-time system
execution can be calculated beforehand, making it a design-phase problem. To v
these calculated execution times, the supervision system has been used.

The RTGC groups processes into low-priority and high-priority processes. Du
the execution of low-priority processes, the garbage collecting work is interleaved
the execution of the application process, i.e. each time memory is allocated the R
performs some garbage collecting work. On the other hand, high-priority processe
more time critical. A minimum amount of garbage collecting work is performed d
ing their execution. Instead the work is collected, and performed by the RTGC pro
after a high-priority process is done executing.

The supervision system monitors the execution of the RTGC. The output func
simply transfers its input argument to an output port, which is connected to a logic
lyzer. A snapshot of the logic analyzer display is shown in Figure 6. The lines in Fig
6 are representing, from bottom upwards, the clock interrupt handler, the idle proc
a low-priority process, the RTGC process, a high-priority process, and the time
RTGC uses to accomplish its work. In the figure, the low-priority process is aborted
the high-priority process. After the execution of the high-priority process, the RT
process resumes the execution, tidying up the memory heap. Then the low-pri
process is allowed to continue its execution. The RTGC process is not activated
the execution of the low-priority process, since the RTGC is handling the heap in
leaved with the execution of the low-priority process.

The new supervision aspect of the RTGC revealed interesting information abou
behavior. Its execution was verified, but new ideas on how to increase the perform
of the RTGC were found. Bugs were also found and corrected. One major impr
ment, resulting from the study, was to make it possible to abort the RTGC durin
memory copy in the heap. The supervision system showed long periods where
interrupts were deactivated. No high-priority processes could start to execute du
these periods. During these long periods, the RTGC moved a large object. The sol

Execution time, Ben 3.520 ms

Execution time, Luke 3.360 ms

Time during idle 95.04 ms

Cycle time 102.1 ms

Processor utilization 7%

Table 4 Information extracted from the output of the supervision.



ro-

ource

e fea-
ion
unc-
ssor.

r-
rocess

ple-
tions
r to

Inte-
tical
or “A
sup-
evel-
oject
nd
tem
is of
was to modify the copy-routine and make it abortable, thus allowing high-priority p
cesses to abort the execution of the garbage collector.

These corrections and discoveries are not easy to penetrate by looking at the s
code, but they appear rather obvious when the runtime behavior is visualized.

6 Future development and use

The supervision system could be complemented, or changed in some details. On
ture is to provide functionality to measure the execution time of the output funct
itself, or to measure the amount of overhead in the runtime system. The output f
tion must not load the execution too much, and steal too much time from the proce
The programmer should be issued a warning if it is too large.

More flexibility could be added if more runtime functions were introduced. Diffe
ent functions could be called whenever there is a change of the processes, e.g. p
switch, a process waits, a process is blocked etc. Those functions should be im
mented by the programmer. The changes in the kernel would be to call these func
at the proper time. Functionality like event identification, is left to the programme
implement in the new functions.

The supervision system will be used in a newly started research project called
grated Control and Scheduling. The project is hosted by ARTES and aimed at prac
management of hard real-time demands in embedded software. ARTES stands f
network for Real-Time research and graduation Education in Sweden” and is
ported by the Swedish Foundation for Strategic Research (SSI). The project is d
oping, new, more dynamic, methods of scheduling hard real-time systems. The pr
will have two different aspects. First, the introduction of feedback from code a
external devices. The information will aid the scheduler and the controllers of a sys
to change behavior to suit the situation. The other approach will be a timing analys

Fig. 6. Snapshot of the logic analyzer output, taken when the
behavior of the RTGC is studied.



and
veri-

er-
line.
lated
ervi-
how

l have
ed, are

case
y the
f the
TGC
t the
een
ore,

ossi-
set-
this
r, that
tion

ders

nt

.

the worst-case behavior of software. This solution incorporates attribute grammars
incremental semantic analysis. The supervision system could aid the project with
fication.

7 Conclusion

In the real-time community, a program is correct if it can perform its task within a c
tain period of time, i.e. the program must perform its computation before a dead
Execution times can be hard to predict, or to calculate beforehand. The calcu
results tend to be pessimistic, in order to ensure the deadline to be met. The sup
sion system is a tool to verify execution times of processes. This report describes
the system can be used, and what it can perform. Changes in the real-time kerne
been described to host the system. Measurements on the extra overhead introduc
done and compared to the original kernel.

The programmer’s interface is described along with an example of its use. In a
study of a real-time garbage collector, the supervision system was used to verif
operation of the garbage collector. Other benefits came out as well from the use o
supervision system. Bugs were found, and new ideas on the operation of the R
were invented. These modifications were not easy to penetrate by looking a
source-code. Using in-circuit emulators or special profiler tools would have b
costly in terms of money (hardware) and/or time (operation, setup, etc.). Furtherm
our solution's connectability to, for instance, additional CPU-boards creates new p
bilities for on-line (and possibly autonomous) supervision and tuning of real-time
ting (sampling periods, control performance, time-out exceptions, etc.). Even if
has not been exploited yet in our research, we claim, based on experiences so fa
the techniques presented in this paper form a powerful ‘no-cost’ tool for execu
time analysis.

Acknowledgments

The persons I thank for their support are Roger Henriksson, Klas Nilsson, An
Blomdell, Görel Hedin, Boris Magnusson and Patrik Persson.

References

1. [AnB91] Leif Andersson, Anders Blomdell. A Real-Time Programming Environme
and a Real-Time Kernel.National Swedish Symposium on Real-Time Systems, Dept. of
Computer Systems, Uppsala University, Uppsala, Sweden, 1991.

2. [Hen96] Roger Henriksson.Scheduling Real-Time Garbage Collection. Licentiate the-
sis, Dept. of Computer Science, Lund Institute of Technology, Lund, January 1996

3. [RTI94] Real Time Innovations, Inc.Stethoscope - Real-Time Graphical Monitoring
and Data Collection Utility - User’s Manual. October, 1994.


	Runtime performance evaluation of embedded software
	Anders Ive
	Dept of Computer Science, Lund University
	Box 118, S-221 00 Lund, Sweden
	e-mail: Ive@dna.lth.se
	1 Introduction
	2 Background
	2.1 Related techniques
	1. Hardware-based tools like in-circuit emulators and logic analyzers, which can be aware of the ...
	2. Software-based tools are quite flexible and avoid most of the drawbacks with the hardware-base...

	2.2 System description
	Fig. 1.� The parts of the supervision system.

	2.3 Supervision output
	Fig. 2.� Activities on the output port, presented by a logic analyzer.


	3 Functionality description
	4 Implementation issues
	Fig. 3.� The supervision routine of the runtime system, at a process switch.
	Table 1 � Programming interface of the supervision system.
	Table 2 � Comparison of execution times of the original real-time kernel, and the supervision-mod...
	Table 3 � Execution time to set and reset an output port.
	4.1 Supervision example
	Fig. 4.� Pseudo-code for the processes Luke and Ben.
	Fig. 5.� Output of the logic analyzer.
	Table 4 � Information extracted from the output of the supervision.


	5 Case study of a real-time garbage collector
	Fig. 6.� Snapshot of the logic analyzer output, taken when the behavior of the RTGC is studied.

	6 Future development and use
	7 Conclusion
	Acknowledgments
	References
	1. [AnB91] Leif Andersson, Anders Blomdell. A Real-Time Programming Environment and a Real-Time K...
	2. [Hen96] Roger Henriksson. Scheduling Real-Time Garbage Collection. Licentiate thesis, Dept. of...
	3. [RTI94] Real Time Innovations, Inc. Stethoscope - Real-Time Graphical Monitoring and Data Coll...






