
FRAGMENT ASSEMBLY

based on chapter 4 of Setubal, Meidanis:
Introduction to Computational molecular biology

and Blum et.al:
Linear Appriximation of Shortest Superstrings



Motivation

The shotgun method gives a number of fragments from an
unknown position of an unknown strand.

Typical situation:
"Target sequence of 30−100 kbp (known within 10%)
"500−2000 fragments
"Each fragment 200−700 bp long



Example:

ACCGT
CGTGC
TTAC
TACCGT

−−ACCGT−−
−−−−CGTGC
TTAC−−−−−
−TACCGT−−
_________

TTACCGTGC

input:

Layout:

Target sequence: (?)



Complications

"Errors
/ base call errors
/ chimeric fragments
/ contamination
"Unknown orientation
"Repeated regions
"Lack of coverage



Base call errors

"1−5 errors per 100 bp
"concentrated at one end
"majority voting

ACCGT
CGTGC
TTAC
TGCCGT

−−ACCGT−−
−−−−CGTGC
TTAC−−−−−
−TGCCGT−−
_________

TTACCGTGC



Chimeric fragments

"Two fragments from different parts joins
"Can be detected in preprocessing if only one of its kind

Contamination

"Unrelated DNA−fragments in input
"From host used for copying
"Detected at preprocessing since host DNA known



Unknown orientation

Two posibilities:
"As given directed from 5’ to 3’          AACTG
"Other strand, reversed complement   CAGTT

Testing all combinations would be exponetiall



Repeated Regions

Not a problem if fragment exists that cover
the entire repeat.

Most difficult are inverted repeats

   −−AACTG CCTAGCTCAGTT−−
        TGCCTA
            TAGCTCA

   −−AACTG AGCTAGGCAGTT−−
        TGAGCTA
             TAGGCA

f
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:

f
2
:

or

f
2
:

f
1
:



Lack of coverage

Definitions:
�Coverage of a position is # overlapping fragments at that point
�Mean coverage
�Contigs is continously covered areas

A high mean coverage can avoid gaps (in practice 8 is "high")

Shotgun method is random but directed sequencing to fill gaps
is possible but expensive

Desirable to have entire sequence covered with fragments from
both strands as one strand can be prone to errors



Lack of coverage

formulas:

Number of expected contigs = ne

Expected fraction covered
by exactly k fragments       = 

−n(l−t)/T

e  c
 k!

−c k

n = #sampeled fragments
l = length of each fragment
t = needed overlap to be recognized as such
T = Length of molecule
c = mean coverage (nl/T)



Alternative methods for DNA sequencing

"Direct sequencing to fill gaps, can build from end of gap 
using primer
"Dual end sequencing can sequence ends of longer sequences, 
gets approximate distance
"Sequencing by hybridization (SBH) tests target sequence for 
existence (only) of a k−tuple for all k−tuples (k≤8)



Models

"Shortest common superstring
"Reconstruction
"Multicontig

Increasingly "better" but more difficult to compute



Shortest common superstring

Given: F = {S
1
,S

2
,...,S

n
}

Find: A shortest string S with strings of F
as substrings

Problems: Assumes no errors and known orientations.
Shortests may also be wrong, repeats are not well handled
(if sequence repeated many times all all fragments from
those parts may be concentrated at only one instance −
no desire to get "even coverage")
NP−hard



 Reconstruction

Given: F = {S
1
,S

2
,...,S

n
} and error tolerance ε

Find: A shortest string S with strings of F or their reverse
complement as approximate substrings

approximate = edit distance ≤ ε |S
i
| ignoring gaps at ends

Problems: Still problem with repeats and coverage and actual
size of target not taken into account
and NP−hard...



 Multicontig

Given: F = {S
1
,S

2
,...,S

n
}, error tolerance ε and an integer t

Find: A partition of F into C
1
...C

k
 such that every C

i
 admits

a t−contig with ε−consensus

t−contig = overlaps by at least t
ε−consensus = every fragment S

i
 has edit distance ≤ ε |S

i
|

to consensus string

Problems: Size of target and some repeats
and NP−hard...



Computational Biology Shortest Superstring

Problem Formulation

� Given: Strings S1; S2; :::; Sn over a �nite alphabet �.

� Find: Shortest string S containing each Si.

ATAT ..ATAT....

TATT ...TATT...

TTAT .....TTAT.

TATA ......TATA

TAAT TAAT......

AATA .AATA.....

TAATATTATA

� Strings S1; S2; :::; Sn are substringfree.

� NP-hard. Transformation from Vertex Cover for cubic
graphs.

� Remains NP-hard if all strings have up to 8 letters and
contain no repeated letters.

� Solvable in polynomial time if all strings have at most
2 letters.



Computational Biology Shortest Superstring

Basic De�nitions

� Let s and t be two, not necessarily distinct, strings.

� The overlap between s and t is the longest string v such
that s = uv and t = vw. The length of the overlap is
jvj and is also denoted by o(s; t).

UNDERGROUND u=UNDERGRO v=UND w=ERSTAND

UNDERSTAND

� Substring u is called the pre�x of s with respect to t.
It is denoted by p(s; t), and d(s; t) = jp(s; t)j.

� o(s; t) + d(s; t) = jsj.



Computational Biology Shortest Superstring

Overlap Graphs 1

ATAT

TATT

TTAT

TATA

TAAT

AATA

TT

TAT
TA

AAT

TATATA

TA

T

T

TA

T

T

T

T

TA

T

AT

T

AT

TAT

ATA
TA A

T

G(O) 1

2

3

4

5

6

O =

0
BBBBBBBBBBBB@

� 3 1 3 1 0
0 � 2 1 1 0
2 1 � 3 1 0
3 2 0 � 2 1
2 1 1 1 � 3
3 2 0 2 2 �

1
CCCCCCCCCCCCA

O� =

0
BBBBBBBBBBBB@

2 3 1 3 1 0
0 1 2 1 1 0
2 1 1 3 1 0
3 2 0 2 2 1
2 1 1 1 1 3
3 2 0 2 2 1

1
CCCCCCCCCCCCA

1Not all edges shown.



Computational Biology Shortest Superstring

Distance Graphs 2

ATAT

TATT

TTAT

TATA

TAAT

AATA

A A

TA

TTA

T AA

TA

AA

TT

A
T

AA TA

G(D)
1

2

3

4

5

6

D =

0
BBBBBBBBBBBB@

� 1 3 1 3 4
4 � 2 3 3 4
2 3 � 1 3 4
1 2 4 � 2 3
2 3 3 3 � 1
1 2 4 2 2 �

1
CCCCCCCCCCCCA

2Not all edges shown.



Computational Biology Shortest Superstring

Greedy Algorithm

ATAT

TATT

TTAT

TATA

TAAT

AATA

TT

TAT
TA

AAT

TATATA

TA

T

T

TA

T

T

T

T

TA

T

AT

T

AT

TAT

ATA
TA A

T

G(O) 1

2

3

4

5

6

� S = fS1; S2; :::; Sng.

� While jSj � 1:

{ Select s; t 2 S, s 6= t, with greatest overlap (ties
broken arbitrarily). Let q = p(s; t)t

{ Add q to S (replacing s and t).

� Overlap of q with remaining strings in S does not need
to be recomputed.

s

t

� Conjecture:
GRD(S)

OPT (S)
� 2



Computational Biology Shortest Superstring

Shortest Superstring and TSP

� Solve TSP in the distance graph.

� TSP (D): string associated with the solution.

� A superstring TSP (S) is obtained by breaking TSP (D)
after any pre�x and adding the rest of its string.

� Assume that strings are ordered S1; S2; :::; Sn inOPT (S).

jTSP (D)j � jOPT (S)j � o(Sn; S1) �

jOPT (S)j � jTSP (D)j+min
i
fjSijg

ATAT

TATT

TTAT

TATA

TAAT

AATA

START1:

A+TA+T+TA+T+A + ATA

START2:

T+A+A+TA+T+TA + TA

1

2

A A

TA

TTA

T AA

TA

AA

TT

A
T

AA TA

� TSP is NP-hard.

� Since G(D) is directed and asymmetric, no approxima-
tion algorithm with constant error bound is available.



Computational Biology Shortest Superstring

Minimum Cycle Cover Algorithm

� Assume that G(D) is given.

� Determine minimum cycle cover MMC(D) of G(D)
(can be done in O(n3) when G(D) is given).

� Open up cycles and concatenate to obtain a solution
MCC(S).

jMCC(D)j � jTSP (D)j � jOPT (S)j

D =

0
BBBBBBBBBBBB@

� 1 3 1 3 4
4 � 2 3 3 4
2 3 � 1 3 4
1 2 4 � 2 3
2 3 3 3 � 1
1 2 4 2 2 �

1
CCCCCCCCCCCCA

1��2��3��4��1; 5��6��5

1. ATAT 5. TAAT

2. TATT 6. AATA

3. TTAT 5. TAAT

4. TATA

1. ATAT

ATATT TAA

ATATTATA TAATA

ATATTATATAATA



Computational Biology Shortest Superstring

Periodicity of Strings

� A string t is irreducible if all cycle shifts of t yield dif-
ferent strings.

� Every string s has a unique pre�x t such that t is irre-
ducible and s = tk for some k � 1.

TATA = (TA)2

� t is called the period of s.



Computational Biology Shortest Superstring

Cycles of MCC are Irreducible

� Strings associated with cycles in MCC(D) are irre-
ducible.

1

2

3
4

5

6

7

1

2

3
2’

4

4’

5

5’
6

7

ABCDEFGABCDEFG
ABCDEFG



Computational Biology Shortest Superstring

Cycles of MCC are Distinct

� No pair of cycles in MCC(D) has the same strings.

2

4

6

ABCDEFGABCDEFG

1

3

5

7

ABCDEFGABCDEFG

1

2

3
4

5

6

7

ABCDEFGABCDEFG



Computational Biology Shortest Superstring

Bounding Length of Cycle Concatenation

� Let Ci and Cj denote two cycles of MCC(D).

� Let Si be a string in Ci.

� Let Sj be a string in Cj.

� Claim: o(Si; Sj) < jCij+ jCjj.

� Proof by contradiction. Assume that o(Si; Sj) � jCij+
jCjj.

� Case 1: jCij = jCjj. Then Ci = Cj. This is impossible
since Ci and Cj were taken from MCC(D).

� Case 2: jCij > jCjj.

Si

Sj

Ci

Cj

� jCij divisble by jCjj. Then Ci is reducible, a contradic-
tion.

� Otherwise Cj is reducible.



Computational Biology Shortest Superstring

Error Ratio

MCC(D) =
pX

i+1

jCij � jTSP (D)j � jOPT (S)j

� Let Li denote the longest string in Ci.

� The overlap between Li and Lj is less than jCij+ jCjj.

� Let L = fL1; L2; :::; Lpg and assume w.l.o.g that L1; L2; :::; Lp

appear in that order in OPT (L).

jOPT (S)j � jOPT (L)j �
pX

i=1

(jLij�2jCij)+jC1j+jCpj �
pX

i=1

(jLij�2jCij)

� Error ratio follows now immediately:

jMCC(S)j �
pX

i=1

(jLij+jCij) =
pX

i=1

(jLij�2jCij)+
pX

i=1

3jCij �

jOPT (S)j+ 3jOPT (S)j = 4jOPT (S)j



Computational Biology Shortest Superstring

Greedy Cycle Cover Algorithm

� S = fS1; S2; :::; Sng, T = ;.

� While S 6= ;:

{ Select s; t 2 S (s = t not excluded) with greatest
overlap.

{ Remove s and t from S. Let q = p(s; t)t.

{ If s 6= t, then add q to S.

{ If s = t, then add q to T .

� Concatenate strings in T .



Computational Biology Shortest Superstring

Greedy Cycle Cover Algorithm - Example

1. ATAT 2 3 1 3 1 0

2. TATT 0 1 2 1 1 0 Delete row 1

3. TTAT 2 3 1 3 1 0 Delete clumn 2

4. TATA 3 2 0 2 2 1

5. TAAT 2 1 1 1 1 3

6. AATA 3 2 0 2 2 1

12. ATATT 0 2 1 1 0

3. TTAT 2 1 3 1 0

4. TATA 3 0 2 2 1

5. TAAT 2 1 1 1 3

6. AATA 3 0 2 2 1

12. ATATT 0 2 1 0

34. TTATA 3 0 2 1

5. TAAT 2 1 1 3

6. AATA 3 0 2 1

3412. TTATATT 2 1 0

5. TAAT 1 1 3

6. AATA 0 2 1

3412. TTATATT 2 1

56. TAATA 0 2

341256. TTATATT+TAATA



Computational Biology Shortest Superstring

Greedy Cycle Cover = Minimum Cycle Cover

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAB

B

AAAAAAAAAAA A

A
 e1

e2

f1

f2

� Consider strings e1; e2; f1; f2 such that

o(e1; e2) � maxfo(e1; f1); o(e2; f2)g

� Then

o(e1; e2) + o(f1; f2) � o(e1; f1) + o(e2; f2)



Computational Biology Shortest Superstring

Greedy Cycle Cover = Minimum Cycle Cover

� N = GCC(D), M =MCC(D).

� Assume that N 6= M .

� Let e be an edge in the symmetric di�erence between
N and M . Assume that e is chosen such that it has
maximum overlap.

� Suppose that e 2M nN .

{ There is an edge f 2 N sharing either tail or head
with e.

{ f 62M since M is a cycle cover containing e.

{ Selection of f into N implies that f has greater
overlap than e. But this contradicts our choice of e.

e

f

e

f

� Suppose that e = e1 = (k; j) 2 N nM .

{ Let f1 = (i; j) and f2 = (k; l) be the edges in M .

{ They are not in N , and by the choice of e1, they are
both dominated by e1.

{ Replacing f1 and f2 by e1 and e2 = (i; l) yields
a cycle cover with no less overlap and with more
edges in common with N , a contradiction.

e

k

j

l i

f1
f2



Computational Biology Shortest Superstring

Improving Error Bound

� Consider an algorithmwhich works as the MCC-algorithm
except that in the last step strings are merged using
GRD-algorithm.

� It can be shown that this modi�cation leads to an ap-
proximation algorithm with error ratio at most 3.

� It can be shown that GRD-algorithm has error ratio at
most 4. Complicated proof.

� It has been conjectured that GRD-algorithm has error
ratio 2.

� Several approximation algorithms with error ratio be-
low 3 have been suggested. 22

3
-algorithm is currently

the best.

� Interesting generalization:

{ Given: A set of positive strings S = fS1; :::; Sng
and a set of negative strings T = fT1; :::; Tmg.

{ Find: A shortest superstring containing every string
from S but no string from T .

� No algorithm with constant error ratio is available.

Computational Biology Shortest Superstring

Sequencing by Hybridization

� 2-dimensional grid of all k-tuples.

� Cloned single-stranded DNA chains are labeled with a
radioactive or uorescent material.

� Each k-tuple present in the sample is hybridized with
its reverse complement in the matrix.



Acyclic Graphs

The NP−hardness can be avoided is a good sampling is 
available.

Definitions:

"A sampling of S is a collection A of intervals of S
"Two intervals are linked at level t if overlap ≥ t
"Entire sampling connected at level t if there is a path of intervals 
linked at level t between every pair in A
"A good sampling is connected at level t and covers S
"Sample is subinterval free if no interval is included in another



Acyclic Graphs

OG(F,t) is a directed graph with the set of fragments F 
as vertex set and an edge from S

1
 to S

2
 if the maximum 

overlap between S
1
 and S

2
 is ≥ t.

The weight of the edge is the size of the maximum 
overlap.



Acyclic Graphs

A false positive at level t is a pair of intervals α and β 
such that there is a w ≥ t and the contents of α and β
overlap by w but the interval themselves does not

Lemma: The existence of a false positive of level t
implies the existence of a repeat of size ≥ t

t=3

ATTGCCAGCCTA
  −−−− −−−−



Acyclic Graphs

Theorem: Let F be a collection generated by a 
sampling A of S. If OG(F,t) has a directed cycle then 
there is a repeat in S of size at least t.

Proof idea: there must be at least one false positive at 
level t

Conclusion: if the sample is "good enough" (at a level 
higher than the repeats) the graph of overlaps is acyclic 
and a layout can be easily found by topological sort. 



Acyclic Graphs

Example (t=3):

AGTATTGGCAATC−−−AATCGATG−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−ATGCAAACCT−−−−−
−−−−TTGGCAATCACT−−−−−−−−−−−−CCTTTTGG
____________________________________

ACTATTGGCAATCACTAATCGATGCAAACCTTTTGG

AGTATTGGCAATC−−−−−−−−CCTTTTGG−−−−−−−−
−−−−−−−−−AATCGATG−−−−−−−−TTGGCAATCACT
−−−−−−−−−−−−−−ATGCAAACCT−−−−−−−−−−−−−
_____________________________________

AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT

SCS

Length 36

Hamiltonian path
in OG(F,t)

Length 37

Longer string but more likely correct




