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‘ Biological Background I

The human chromosome is a DNA molecule with about 108 base

pairs.

Consider the problem of creating physical maps of entire

chromosomes or of significants fractions of the chromosomes.

A physical map tell us the location of certain markers along

the chromosome.

A marker is a precisely known small DNA sequence.
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‘Sketch of a physical map'
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‘Use of a physical map'

e A physical map help molecular biologists to explore the

genome.

e An example:
Assume that we have a completely sequenced piece S of DNA. If
we know which chromosome S comes from and we have a
physical map of this chromosome, then we can try to find one of
the map’s markers in S. If one of the map’s markers is found in

S, then we have located S in the chromosome.
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‘Construction of physical maps'

Make several copies of the DNA molecule (denoted as the target
DNA) we want to map.

For each copy, break up this copy into several fragments (by

using restriction enzymes).

Note that in general the fragments are to long to be completely

sequenced.
Generate fingerprints of the fragments.

Compare the fragments by observing overlaps between fragments

/

and thus determine the relative order of the fragments.




‘Construction of physical maps'

There are two commonly used approaches of getting

fingerprints:
1. Restriction Site Mapping.

2. Hybridization Mapping.

.




Restriction Site Mapping'

A restriction site is a specific point in a DNA sequence.

A restriction map is a map of all restriction sites in a DNA

sequence.

Restriction enzymes (proteins) are used in this method. A
restriction enzyme cuts the DNA molecule in all places (on all
restriction sites) where a certain sequence appears, thus creating

a set of fragments. For example, EcoRI is a restriction enzyme
that cuts DNA wherever the sequence GAATTC is found.

The fingerprints are the lengths of the fragments.
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Double Digest Problem - Generating the Data'

Assume we have two restriction enzymes, A and B, each recognizing

a different sequence (restriction site).

e Apply A to one copy of the target DNA.

e Apply B to another copy of the target DNA.

e Apply both A and B to a third copy of the DNA.
High-level idea:

We want to order all the obtained fragments in such a way that the
order is consistent with the experimental results and simultaneously,

we locate the restriction sites (markers) in the DNA sequence.
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/ ‘Deﬁnition of Double Digest Problem' \

e Input:
0A - the set of fragments lengths from the digest with first
restriction enzyme A
0B - the set of fragments lengths from the digest with second
restriction enzyme B
0X - the set of fragments lengths from the digest with both

restriction enzymes A and B.

e Output:
A - location of the cuts in the restriction map for the first
restriction enzyme.

B - location of the cuts in the restriction map for the second

\\ restriction enzyme. /
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Double Digest Problem - An Example'

Fragments of the following lengths for A: {3,6,8,10}.
Fragments of the following lengths for B: {4,5,7,11}.

Fragments of the following lengths for both A and B: {1,2,3,3,5,6,7}.

The solution:

A | 3 6 10
B 4 11 7
AB| 3 |1 6 7
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/ NP-Completeness of Double Digest' \

1. Given the permutations of A and B, denoted by m4 and wp. It is
possible to check, in polynomial time, if the pair (w4,75) is a

possible solution or not.

2. Prove that the Set Partition problem can be reduced to the

Double Digest problem in polynomial time.

Set Partition Problem: Given a set of integers X = {x1,...,z,},
can the set X be partitioned into two sets X; and X5 such that

SRED P
r,€X1 x;€Xo
i.e., the sum of the elements in X; equals the sum of the elements in

NG /
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NP-Completeness of Double Digest (cont’ d)

Instance of the Set Partition Problem:
X =A{z1,...,2,}

A solution to the following instance of Double Digest Problem would
give a solution to the above instance of Set Partition Problem:
A=X={x1,...,2,}

B={K/2,K/2}, where K =}y x;

C=A={x,...,x,}

. /
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NP-Completeness of Double Digest (cont’ d)

K/2
| | | |

~

I | T4 | T2 | I3 | Is5

X1 ={x1,x4}

X2 = {$2,$3,x5}
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‘Partial Digest Approach'

e The sample of DNA is exposed to one restriction enzyme for only

a limited amount of time to prevent it from being cut at all

restriction sites.

e We assume that with this method biologists can generate the set

of all possible restriction fragments between every two cuts.

e We assume that multiplicity of a fragment can be detected, i.e.,
the number of restriction fragments of the same length can be

determined.

. /
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‘Partial Digest Problem - (GGenerating Data'

rlestriction site

3 8 6 10
11
17
27
8
14
24
_ 6
16
10

~
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‘Deﬁnition of the Partial Digest Problem'

Input: A (multi)set S of lengths.

Output: A set of locations of the restriction sites (cut sites), such

that the set of differences between all locations equals the set S.
More formally:

Let X be a set of points on a line.

Input: AX = {|z1 — x3| : 1,25 € X}

Output: X

. /
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‘Partial Digest Problem - An Examplel

Example:
If AX ={2,5,7,7,9,9,14,14, 16,23}, then X ={0,7,9,14,23} is one

feasible solution.

. /
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Partial Digest - Backtracking algorithm'

AX: all pairwise distance.

1. Find L, the longest distance in AX.
2. AX = AX-L.

3. Find d, the longest distance in AX and position a cut site at
point d or L — d.

4. Check that all the other resulting length are in AX.
If they are, remove them from AX. If AX is empty we are done.

Otherwise repeat from step 3.
If not all distances are in AX backtrack.

. /
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‘Backtracking algorithm - An Example'

AX ={2,2,3,3,4,5,6,7,8,10}

AX =1{2,2,3,3,4,5,6,7,8}

AX =1{2,3,3,4,5,6,7}

1is not in AX

AX =1{2,3,4,6}

AX = {} Done!

A solution to the PDP: X = {0,2,4,7,10}.

. /
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‘Backtracking algorithm - An Examplel
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Partial Digest - Backtracking algorithm (cont’ d)I

Runtime:

e O(n?logn) expected time - fast in practice.

e Worst case exponential

But experimental PDP data is hard to obtain.

.
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/ Hybridization mapping I \

e Make several copy of the target DNA. For each of these copies,
we break it up into fragments (cut at random positions in the

DNA sequence). The fragments obtained are called clones.

e Each fragment is cloned (copied), and this cloning process

results in a collection of many thousands of clones.
Hybridization experiment:

e For each clone we apply a set of different probes (short DNA
sequences). If a probe occurs as a substring of the clone then the
probe hybridizes (bind) to the clone.

e The fingerprint of a clone is the set of probes that hybridize to

\ the clone. /
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Hybridization Mapping (cont’ d)

e We assume that a probe only binds to the DNA sequence at one
location.

e Two clones that bind to the same probe overlap.

e Overlaps give us the relative order of the probes along the target
DNA.

Clone A

e

®

|
|
Clone B :

¢ |

Y x z w

. /
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/ ‘Mathematical model - Interval Graph' \

Interval graph:

An undirected graph G = (V, F) obtained from a collection C' of
intervals on the real line. To each interval in C' there corresponds a
vertex in (G; we place an edge between vertices v and v if and only if

their intervals have a nonempty intersection.

Hybridization mapping:
e A vertex in interval graph H = (V, F) corresponds to a clone.
e There is an edge in H if clone v; € V and clone v; € V' overlap.

e Note: If we had complete and correct information about clone

overlapping, then H would be an interval graph.

. /
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Mathematical model - Interval Graph (cont’ d)

Given a graph G, = (V, E,). If (e;,e;) € E,, then we know for sure
that clones v; and v; overlap. Given a second graph G; = (V, E}),
where F; represent known plus unknown overlap information (thus
E,. C E}). G4 is not necessarily complete (we may know for sure that

certain pairs of clones do not overlap).

Problem:
Does there exist a graph G5 = (V, Ey) such that E,. C F; C E; and
such that G is an interval graph?

Computational Complexity:

e NP-hard.

. /
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An Example I

d
Clone overlapping Interval graph

/
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Definition of CIP Problem'

Given a binary matrix M, where entry M;; tells whether probe j
hybridize to clone ¢ (M;;=1) or not (M;;=0).

Consecutive 1s Problem (C1P Problem):

Find a permutation of the columns (probes) such that all 1s in each

row (clone) are consecutive.

Definition: A matrix for which there exists a permutation of the
columns such that all 1s in each row are consecutive is said to have

Consecutive 1s Property (CP1)

. /
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‘Physical Map Construction and the C1P problem'

e A clones fingerprint is the set of probes that bind to it.

e Assume that probes only bind to DNA at one location in the
target DNA.

e Assume that there are no errors.
e We have all possible data (from each clone-probe experiment).

A solution to the C1P Problem corresponds to a solution to the

“physical map construction with probes as markers™problem.

. /
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‘CIP Problem - An Algorithm'

This algorithm finds a permutation of the rows such that each rows

only has consecutive 1s.

Algorithm:
1. Divide the rows into different components by building a graph G.
2. For each component in G find permutations with C1P.

3. Join components in G to find permutation(s) for the whole

matrix.

. /
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CIP Problem - An Algorithm (cont’ d)I

Definition:

For each row ¢ of M, let .S; be the set of columns 5 where M; ; = 1.

Step 1: Divide the rows into different components by building a
graph G.

For two rows 72 and § we have three possible cases:
1. 5;NS;=0.
2.5, CS;orS; C68;.
3. SiNS; #ON S; € S; NS; € S;.

. /
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CIP Problem - An Algorithm (cont’ d)

Build undirected graph G graph from M with vertices corresponding
to rows in M. There is an edge in G if and only if case 3 holds for

rows ¢ and j.

. /
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c1 C2 c3 C4 Cs C6 c7 cs Co
[1 1 1 0 1 1 0 1 0 1
l2 0 1 1 1 1 1 1 1 1
[3 0 1 0 1 1 0 1 0 1
l4 0 0 1 0 0 0 0 1 0
l5 0 0 1 0 0 1 0 0 0
le 0 0 0 1 0 0 1 0 0
l7 0 1 0 0 0 0 1 0 0
ls 0 0 0 1 1 0 0 0 1

32
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CIP Problem - An Algorithm (cont’ d)

Step 2: For each component in G find permutations with C1P.

C1 C2 C3 Cq Cs Ce C7 Cs
[ 0 0 0 0 0 1 1
lo 0 0 0 1 0 1 0
l3 1 0 1 0 0 1 1
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{2,7,8}

2,7}

{2,7,8}
1

{2
{2,7}
1
1
{8}
1
0
1

, 7,8}
1 0...
18}
1 0...
0 0...
{1,4}
0
0
1

1,4}
0

0

35




CIP Problem - An Algorithm (cont’ d)I

Step 2: For each component in G find permutations with C1P.

If |S1 N S3| > min(]Sy N Sa|,|S2 N S3]) then row 3 has to be placed on
the opposite side of row 1 compared to row 2.

If |S1 N S3| < min(]Sy N Sa|,|S2 N S3]) then row 3 has to be placed on

the same side of row 1 as row 2.
S1=12,7,8}, So ={2,5,7}, S3={1,4,7,8}
S1NS3={7,8}, 51 NSy ={2,7}, SoNS3={7}

S3 goes to the left in this example.

. /
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CIP Problem - An Algorithm (cont’ d)

Step 2: For each component in G find permutations with C1P.
Add the rest of the rows in the component one by one.

Add row k by finding two rows ¢ and j where edges (i, k) and (7, k)

are in the graph and check the above condition.
Check that we still have valid permutations.
Running time:

e Time to add one row: O(m)

e Number of rows: O(n)

e Total time: O(nm)
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CIP Problem - An Algorithm (cont’ d)I

Step 3: Join components in G to find permutation(s) for the whole

matrix.

Build a new directed graph G; with the components in G as
vertices. There is a directed edge («, 3) between vertices o and ( in
G if the sets S; for all ¢ € B are contained in at least one set S; of

component .

. /
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CIP Problem - An Algorithm (cont’ d)

Step 3: Join components in G to find permutation(s) for the whole

matrix.

Lemma: If there exist ¢ € § and j € a and moreover S; C S; then

S;p C Sjforalll € 5.
Proof: By contradiction.
Fact: G, is acyclic.

Process the vertices in Gj; one by one in topological order. Use the

topological order «, (3,9, here.

. /
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/ CIP Problem - An Algorithm (cont’ d) \

Step 3 cont’ d: Permute the columns (correctly) of all components
individually. Then select all vertices in G, without incoming edges
and freeze their columns. Then, take the next vertex in topological
order. Suppose we are following edge («, ). Find a reference column
in component « (this column tells us how to place the rows of 3).
Now, choose the row [ from 3 that has the leftmost 1, and call the
column where this 1 is cg. We know (from Lemma) that .S; is
contained in some S; of & but not in others. Find all rows from «
that contain S;, and find the leftmost column where all such rows
have 1s (and call this column ¢,). This is the reference column, since

we can now make ¢, and cg one and the same.

Illustrating example follow... /
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{1}

{2, 4
1 1
1 1

{2, 4
1 1
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a, 3 joined:

l1—>...

{1}
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LS SR ©J S CF 8}

{4}

5}

-

{1} {9

) joined:

1 — ...

l2—>...

l3 — ...

l6—>...

lr — ...

18}

137

16}

l4—>...

ls — ...
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op 4y ATy {2y {6F {3} {8}

{1} {9,

v joined:

l1—>

lg—>

l3—>

l6—>

l7—>

l8—>

l4—>

l5—>
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/ CIP Problem - An Algorithm (cont’ d) \

Step 3: Join components in G to find permutation(s) for the whole

matrix.
Running time:
e Topological sorting: O(n 4+ m).

e Preprocessing: Store first column with 1 for each row in O(nm)

time.

e Joining: O(n) time to find rows + O(m) time to join

permutations.

Total time: O(nm)

Best known algorithm: O(n + m + r), where r is the number of 1s

\31 the matrix. /
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‘Hybridization Mapping with Errors' \

4 B ¢ b E 4
I I I I I I
T E——— —— - o
A B C D E F

c1 1 1 0 0 0 O «—correct
Ca 0 0 0 1 1 O «—correct
c3 0 1 1 0 0 O «—correct
c4 1* O 0 1 1 1 «false positive
cs 1 o 1 0) O «false negative
C6 0 1* 0 0 1* 1* «chimeric clone

/
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‘Hybridization Mapping with Errors'

Three types of errors:
e False positive
e False negative
e Chimeric clone

Note: All three types give gaps in the (true) matrix. There may not

be a solution to the C1P problem for an instance with errors.

Gap Minimization(Optimization problem): Given a binary matrix

with n rows and m columns.

Problem: Find a permutation where the total number of gaps in the

\inatrix 1s minimized. /
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Hybridization Mapping with Errors (cont’ d) I

Traveling Salesman Problem (TSP): Given a complete

undirected weighted graph.

Problem: Find a Hamiltonian cycle (a cycle such that every vertex in
the graph is in the cycle but each vertex appears exactly once) of

minimum weight.
Fact:

TSP is NP-hard. Good approximation exist.

. /
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Hybridization Mapping with Errors (cont’ d) I

Reduction of Gap Minimization to TSP.

Construction:

(GG. An edge e € E has weight equal to the Hamming distance
between rows u € V and v € U, where the Hamming distance

between to binary strings is equal to the number of positions where

and 10100 is 2.

\jz M with minimum number of gaps.

Let M be a (clone-probe) binary matrix and G = (V, E) a complete

undirected graph. A column (probe) in M corresponds to a vertex in

the two strings differ, e.g., the Hamming distance between v = 10010

A minimum-weight cycle in G corresponds to a column permutation

~

/
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