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Biologi
al Ba
kground

• The human 
hromosome is a DNA mole
ule with about 108 basepairs.

• Consider the problem of 
reating physi
al maps of entire
hromosomes or of signi�
ants fra
tions of the 
hromosomes.

• A physi
al map tell us the lo
ation of 
ertain markers alongthe 
hromosome.

• A marker is a pre
isely known small DNA sequen
e.
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Sket
h of a physi
al map

marker A
Chromosome

marker B marker C marker D

Smarker B marker C
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Use of a physi
al map

• A physi
al map help mole
ular biologists to explore thegenome.
• An example:Assume that we have a 
ompletely sequen
ed pie
e S of DNA. Ifwe know whi
h 
hromosome S 
omes from and we have aphysi
al map of this 
hromosome, then we 
an try to �nd one ofthe map's markers in S. If one of the map's markers is found inS, then we have lo
ated S in the 
hromosome.
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Constru
tion of physi
al maps

• Make several 
opies of the DNA mole
ule (denoted as the targetDNA) we want to map.
• For ea
h 
opy, break up this 
opy into several fragments (byusing restri
tion enzymes).
• Note that in general the fragments are to long to be 
ompletelysequen
ed.

• Generate �ngerprints of the fragments.
• Compare the fragments by observing overlaps between fragmentsand thus determine the relative order of the fragments.
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Constru
tion of physi
al maps

There are two 
ommonly used approa
hes of getting�ngerprints:1. Restri
tion Site Mapping.2. Hybridization Mapping.
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Restri
tion Site Mapping

• A restri
tion site is a spe
i�
 point in a DNA sequen
e.

• A restri
tion map is a map of all restri
tion sites in a DNAsequen
e.

• Restri
tion enzymes (proteins) are used in this method. Arestri
tion enzyme 
uts the DNA mole
ule in all pla
es (on allrestri
tion sites) where a 
ertain sequen
e appears, thus 
reatinga set of fragments. For example, E
oRI is a restri
tion enzymethat 
uts DNA wherever the sequen
e GAATTC is found.
• The �ngerprints are the lengths of the fragments.
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Double Digest Problem - Generating the Data

Assume we have two restri
tion enzymes, A and B, ea
h re
ognizinga di�erent sequen
e (restri
tion site).
• Apply A to one 
opy of the target DNA.
• Apply B to another 
opy of the target DNA.
• Apply both A and B to a third 
opy of the DNA.High-level idea:We want to order all the obtained fragments in su
h a way that theorder is 
onsistent with the experimental results and simultaneously,we lo
ate the restri
tion sites (markers) in the DNA sequen
e.
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De�nition of Double Digest Problem

• Input:
δA - the set of fragments lengths from the digest with �rstrestri
tion enzyme A

δB - the set of fragments lengths from the digest with se
ondrestri
tion enzyme B

δX - the set of fragments lengths from the digest with bothrestri
tion enzymes A and B.
• Output:

A - lo
ation of the 
uts in the restri
tion map for the �rstrestri
tion enzyme.

B - lo
ation of the 
uts in the restri
tion map for the se
ondrestri
tion enzyme. 9
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Double Digest Problem - An Example

Fragments of the following lengths for A: {3,6,8,10}.Fragments of the following lengths for B: {4,5,7,11}.Fragments of the following lengths for both A and B: {1,2,3,3,5,6,7}.The solution:

AB

B

A 3 8 10

4 5 11 7

3 1 5 2 6 7

6

3
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NP-Completeness of Double Digest

1. Given the permutations of A and B, denoted by πA and πB. It ispossible to 
he
k, in polynomial time, if the pair (πA,πB) is apossible solution or not.2. Prove that the Set Partition problem 
an be redu
ed to theDouble Digest problem in polynomial time.Set Partition Problem: Given a set of integers X = {x1, . . . , xn},
an the set X be partitioned into two sets X1 and X2 su
h that

∑

xi∈X1

xi =
∑

xj∈X2

xji.e., the sum of the elements in X1 equals the sum of the elements in
X2? 11
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NP-Completeness of Double Digest (
ont' d)

Instan
e of the Set Partition Problem:
X = {x1, . . . , xn}A solution to the following instan
e of Double Digest Problem wouldgive a solution to the above instan
e of Set Partition Problem:

A = X = {x1, . . . , xn}

B = {K/2, K/2}, where K =
∑

xi∈X xi

C = A = {x1, . . . , xn}
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NP-Completeness of Double Digest (
ont' d)

K/2

x3 x5x2x4x1

X1 = {x1, x4}

X2 = {x2, x3, x5}
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Partial Digest Approa
h

• The sample of DNA is exposed to one restri
tion enzyme for onlya limited amount of time to prevent it from being 
ut at allrestri
tion sites.
• We assume that with this method biologists 
an generate the setof all possible restri
tion fragments between every two 
uts.

• We assume that multipli
ity of a fragment 
an be dete
ted, i.e.,the number of restri
tion fragments of the same length 
an bedetermined.
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Partial Digest Problem - Generating Data
10

16
6

24
14

8
27

11
17

10683

restriction site
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De�nition of the Partial Digest Problem

Input: A (multi)set S of lengths.Output: A set of lo
ations of the restri
tion sites (
ut sites), su
hthat the set of di�eren
es between all lo
ations equals the set S.More formally:Let X be a set of points on a line.Input: ∆X = {|x1 − x2| : x1, x2 ∈ X}Output: X
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Partial Digest Problem - An Example

Example:If ∆X = {2, 5, 7, 7, 9, 9, 14, 14, 16, 23}, then X = {0, 7, 9, 14, 23} is onefeasible solution.
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Partial Digest - Ba
ktra
king algorithm

∆X : all pairwise distan
e.1. Find L, the longest distan
e in ∆X .2. ∆X = ∆X-L.3. Find d, the longest distan
e in ∆X and position a 
ut site atpoint d or L − d.4. Che
k that all the other resulting length are in ∆X .If they are, remove them from ∆X . If ∆X is empty we are done.Otherwise repeat from step 3.If not all distan
es are in ∆X ba
ktra
k.
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Ba
ktra
king algorithm - An Example

∆X = {2, 2, 3, 3, 4, 5, 6, 7, 8, 10}

∆X = {2, 2, 3, 3, 4, 5, 6, 7, 8}

∆X = {2, 3, 3, 4, 5, 6, 7}1 is not in ∆X

∆X = {2, 3, 4, 6}

∆X = {} Done!A solution to the PDP: X = {0, 2, 4, 7, 10}.
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Ba
ktra
king algorithm - An Example

10

8 2

1 27

3 5 2

2233 markermarkermarkermarkermarker
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Partial Digest - Ba
ktra
king algorithm (
ont' d)

Runtime:

• O(n2 log n) expe
ted time - fast in pra
ti
e.
• Worst 
ase exponentialBut experimental PDP data is hard to obtain.
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Hybridization mapping

• Make several 
opy of the target DNA. For ea
h of these 
opies,we break it up into fragments (
ut at random positions in theDNA sequen
e). The fragments obtained are 
alled 
lones.

• Ea
h fragment is 
loned (
opied), and this 
loning pro
essresults in a 
olle
tion of many thousands of 
lones.Hybridization experiment:
• For ea
h 
lone we apply a set of di�erent probes (short DNAsequen
es). If a probe o

urs as a substring of the 
lone then theprobe hybridizes (bind) to the 
lone.
• The �ngerprint of a 
lone is the set of probes that hybridize tothe 
lone. 22
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Hybridization Mapping (
ont' d)

• We assume that a probe only binds to the DNA sequen
e at onelo
ation.
• Two 
lones that bind to the same probe overlap.

• Overlaps give us the relative order of the probes along the targetDNA.Clone A
Clone B

zxy w
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Mathemati
al model - Interval Graph

Interval graph:An undire
ted graph G = (V, E) obtained from a 
olle
tion C ofintervals on the real line. To ea
h interval in C there 
orresponds avertex in G; we pla
e an edge between verti
es u and v if and only iftheir intervals have a nonempty interse
tion.Hybridization mapping:
• A vertex in interval graph H = (V, E) 
orresponds to a 
lone.

• There is an edge in H if 
lone vi ∈ V and 
lone vj ∈ V overlap.

• Note: If we had 
omplete and 
orre
t information about 
loneoverlapping, then H would be an interval graph.
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Mathemati
al model - Interval Graph (
ont' d)

Given a graph Gr = (V, Er). If (ei, ej) ∈ Er, then we know for surethat 
lones vi and vj overlap. Given a se
ond graph Gt = (V, Et),where Et represent known plus unknown overlap information (thus

Er ⊆ Et). Gt is not ne
essarily 
omplete (we may know for sure that
ertain pairs of 
lones do not overlap).Problem:Does there exist a graph Gs = (V, Es) su
h that Er ⊆ Es ⊆ Et andsu
h that Gs is an interval graph?Computational Complexity:

• NP-hard.
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An Example

a

ed

b c

Clone overlapping Interval graph

a
e

d

b

c
⇒
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De�nition of CIP Problem

Given a binary matrix M , where entry Mij tells whether probe jhybridize to 
lone i (Mij=1) or not (Mij=0).Conse
utive 1s Problem (C1P Problem):Find a permutation of the 
olumns (probes) su
h that all 1s in ea
hrow (
lone) are 
onse
utive.De�nition: A matrix for whi
h there exists a permutation of the
olumns su
h that all 1s in ea
h row are 
onse
utive is said to haveConse
utive 1s Property (CP1)
27
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Physi
al Map Constru
tion and the C1P problem

• A 
lones �ngerprint is the set of probes that bind to it.

• Assume that probes only bind to DNA at one lo
ation in thetarget DNA.

• Assume that there are no errors.
• We have all possible data (from ea
h 
lone-probe experiment).A solution to the C1P Problem 
orresponds to a solution to the�physi
al map 
onstru
tion with probes as markers�-problem.
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CIP Problem - An Algorithm

This algorithm �nds a permutation of the rows su
h that ea
h rowsonly has 
onse
utive 1s.Algorithm:1. Divide the rows into di�erent 
omponents by building a graph G.2. For ea
h 
omponent in G �nd permutations with C1P.3. Join 
omponents in G to �nd permutation(s) for the wholematrix.
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CIP Problem - An Algorithm (
ont' d)

De�nition:For ea
h row i of M , let Si be the set of 
olumns j where Mi,j = 1.Step 1: Divide the rows into di�erent 
omponents by building agraph G.For two rows i and j we have three possible 
ases:1. Si ∩ Sj=Ø.2. Si ⊆ Sj or Sj ⊆ Si.3. Si ∩ Sj 6=Ø∧ Si 6⊆ Sj ∧ Sj 6⊆ Si.
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CIP Problem - An Algorithm (
ont' d)

Build undire
ted graph G graph from M with verti
es 
orrespondingto rows in M . There is an edge in G if and only if 
ase 3 holds forrows i and j.
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0 00

0

0 0 0 0

0 0 0 0 00 0

0 0 0 0 0 0

0

0

0 0 0 0 0 0

0 0 0 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8 c9

l1

l2

l3

l4

l5

l6

l7

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

l8 0 0 0 1 1 0 0 0 1

32



'

&

$

%

l1

l2

l3

l4

l5

l7l6

l8

β

γ

α

δ
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CIP Problem - An Algorithm (
ont' d)

Step 2: For ea
h 
omponent in G �nd permutations with C1P.

00

0

0 0

c1 c2 c3 c4 c5 c6 c7 c8

l1

l2

l3

1

1

1

1

1

1

1

0

1 0

0

0

0

0

0

0

1

0

1
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l1 → . . . 0 1 1

{5} {2, 7} {8}{2, 7}

l1 → . . . 0

l2 → . . . 0

1

1

1

1

1

0

{2, 7, 8} {2, 7, 8} {2, 7, 8}

1

0

1

0 . . .

0 . . .

0 . . .

0l3 → . . . 0 0 1 1 1 1 0 . . .

0 . . .00011l2 → . . . 0 1

l1 → . . . 0 0 1 1 1 0 0 0 . . .

{5} {2} {7} {8} {1, 4} {1, 4}
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CIP Problem - An Algorithm (
ont' d)

Step 2: For ea
h 
omponent in G �nd permutations with C1P.If |S1 ∩ S3| > min(|S1 ∩ S2|, |S2 ∩ S3|) then row 3 has to be pla
ed onthe opposite side of row 1 
ompared to row 2.If |S1 ∩ S3| < min(|S1 ∩ S2|, |S2 ∩ S3|) then row 3 has to be pla
ed onthe same side of row 1 as row 2.
S1 = {2, 7, 8}, S2 = {2, 5, 7}, S3 = {1, 4, 7, 8}

S1 ∩ S3 = {7, 8}, S1 ∩ S2 = {2, 7}, S2 ∩ S3 = {7}

S3 goes to the left in this example.
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CIP Problem - An Algorithm (
ont' d)

Step 2: For ea
h 
omponent in G �nd permutations with C1P.Add the rest of the rows in the 
omponent one by one.Add row k by �nding two rows i and j where edges (i, k) and (j, k)are in the graph and 
he
k the above 
ondition.Che
k that we still have valid permutations.Running time:

• Time to add one row: O(m)

• Number of rows: O(n)

• Total time: O(nm)
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CIP Problem - An Algorithm (
ont' d)

Step 3: Join 
omponents in G to �nd permutation(s) for the wholematrix.Build a new dire
ted graph GM with the 
omponents in G asverti
es. There is a dire
ted edge (α, β) between verti
es α and β in

GM if the sets Si for all i ∈ β are 
ontained in at least one set Sj of
omponent α.
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l2
l3

l4

l5

l6l7

l8

l1

β

γ

δ

β

γδ

α

α
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CIP Problem - An Algorithm (
ont' d)

Step 3: Join 
omponents in G to �nd permutation(s) for the wholematrix.Lemma: If there exist i ∈ β and j ∈ α and moreover Si ⊂ Sj then

Sl ⊂ Sj for all l ∈ β.Proof: By 
ontradi
tion.Fa
t: GM is a
y
li
.Pro
ess the verti
es in GM one by one in topologi
al order. Use thetopologi
al order α, β, δ, γ here.
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CIP Problem - An Algorithm (
ont' d)

Step 3 
ont' d: Permute the 
olumns (
orre
tly) of all 
omponentsindividually. Then sele
t all verti
es in GM without in
oming edgesand freeze their 
olumns. Then, take the next vertex in topologi
alorder. Suppose we are following edge (α, β). Find a referen
e 
olumnin 
omponent α (this 
olumn tells us how to pla
e the rows of β).Now, 
hoose the row l from β that has the leftmost 1, and 
all the
olumn where this 1 is cβ . We know (from Lemma) that Sl is
ontained in some Si of α but not in others. Find all rows from αthat 
ontain Sl, and �nd the leftmost 
olumn where all su
h rowshave 1s (and 
all this 
olumn cα). This is the referen
e 
olumn, sin
ewe 
an now make cα and cβ one and the same.Illustrating example follow... 41
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1 1 11 0 0

1 1

11

0

0

1

{1} {2, 4, 5, 7, 9} {3, 6, 8}

. . .l1 → . . .

l2 → . . . 1 1 1 1 1 . . .

{2, 4, 5, 7, 9}

1 1 1 1 1 . . .l3 → . . .

β:

α:
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1 1 11 0 0

1 1

11

0

0

0

1

{1} {2, 4, 5, 7, 9} {3, 6, 8}

. . .l1 → . . .

l2 → . . .

l3 → . . .

1

1

1

1

1

1

1

1

1

1 0 0 0

{9,

0

0

1

5}

0

0

1

. . .

. . .

{4}

1

0

1

{7} {2}

0

1

0

. . .

. . .

. . .

1

1

0

l6 → . . .

l7 → . . .

l8 → . . .

δ:
α, β joined:
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{4} {7} {2} {3, 6,{9, 5}{1}

1 1 1 1 1 1 0 0

8}

0

0

0

0

0

0

1

1

0

0

1

1

1

0

0

1

1

1

1

0

1

1

1

1

1

0

1

1

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0 1

1

1

0

{8}{3}{6}

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

δ joined:

γ:

l5 → . . .

l4 → . . .

l8 → . . .

l7 → . . .

l6 → . . .

l3 → . . .

l2 → . . .

l1 → . . .
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{4} {7} {2}{9, 5}{1}

1 1 1 1 1 1

0

0

0

0

0

1

1

0

0

1

1

1

0

0

1

1

1

1

0

1

1

1

1

1

0

1

1

0

1

0

{6}

0

1

0

0

0

0

γ joined: {3}

0

1

0

0

0

0

{8}

0

1

0

0

0

0

l5 →

l4 →

l8 →

l7 →

l6 →

l3 →

l2 →

l1 →

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0
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CIP Problem - An Algorithm (
ont' d)

Step 3: Join 
omponents in G to �nd permutation(s) for the wholematrix.Running time:
• Topologi
al sorting: O(n + m).
• Prepro
essing: Store �rst 
olumn with 1 for ea
h row in O(nm)time.

• Joining: O(n) time to �nd rows + O(m) time to joinpermutations.Total time: O(nm)Best known algorithm: O(n + m + r), where r is the number of 1sin the matrix. 46
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Hybridization Mapping with Errors

1

1

1

1

1

1

1

1

1 1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1*

0*

1* 1*1*

c2c3
c5

c4

c6

c1

A B C D FE

A

c1

c2

B C D E F

c3

c4

c5

c6 ←
himeri
 
lone

←false positive

←false negative

←
orre
t←
orre
t←
orre
t
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Hybridization Mapping with Errors

Three types of errors:
• False positive
• False negative
• Chimeri
 
loneNote: All three types give gaps in the (true) matrix. There may notbe a solution to the C1P problem for an instan
e with errors.Gap Minimization(Optimization problem): Given a binary matrixwith n rows and m 
olumns.Problem: Find a permutation where the total number of gaps in thematrix is minimized. 48
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Hybridization Mapping with Errors (
ont' d)

Traveling Salesman Problem (TSP): Given a 
ompleteundire
ted weighted graph.Problem: Find a Hamiltonian 
y
le (a 
y
le su
h that every vertex inthe graph is in the 
y
le but ea
h vertex appears exa
tly on
e) ofminimum weight.Fa
t:TSP is NP-hard. Good approximation exist.
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Hybridization Mapping with Errors (
ont' d)

Redu
tion of Gap Minimization to TSP.Constru
tion:Let M be a (
lone-probe) binary matrix and G = (V, E) a 
ompleteundire
ted graph. A 
olumn (probe) in M 
orresponds to a vertex in

G. An edge e ∈ E has weight equal to the Hamming distan
ebetween rows u ∈ V and v ∈ U , where the Hamming distan
ebetween to binary strings is equal to the number of positions wherethe two strings di�er, e.g., the Hamming distan
e between u = 10010and 10100 is 2.A minimum-weight 
y
le in G 
orresponds to a 
olumn permutationin M with minimum number of gaps.50
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