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Biologial Bakground

• The human hromosome is a DNA moleule with about 108 basepairs.

• Consider the problem of reating physial maps of entirehromosomes or of signi�ants frations of the hromosomes.

• A physial map tell us the loation of ertain markers alongthe hromosome.

• A marker is a preisely known small DNA sequene.
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Sketh of a physial map

marker A
Chromosome

marker B marker C marker D

Smarker B marker C
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Use of a physial map

• A physial map help moleular biologists to explore thegenome.
• An example:Assume that we have a ompletely sequened piee S of DNA. Ifwe know whih hromosome S omes from and we have aphysial map of this hromosome, then we an try to �nd one ofthe map's markers in S. If one of the map's markers is found inS, then we have loated S in the hromosome.
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Constrution of physial maps

• Make several opies of the DNA moleule (denoted as the targetDNA) we want to map.
• For eah opy, break up this opy into several fragments (byusing restrition enzymes).
• Note that in general the fragments are to long to be ompletelysequened.

• Generate �ngerprints of the fragments.
• Compare the fragments by observing overlaps between fragmentsand thus determine the relative order of the fragments.
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Constrution of physial maps

There are two ommonly used approahes of getting�ngerprints:1. Restrition Site Mapping.2. Hybridization Mapping.
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Restrition Site Mapping

• A restrition site is a spei� point in a DNA sequene.

• A restrition map is a map of all restrition sites in a DNAsequene.

• Restrition enzymes (proteins) are used in this method. Arestrition enzyme uts the DNA moleule in all plaes (on allrestrition sites) where a ertain sequene appears, thus reatinga set of fragments. For example, EoRI is a restrition enzymethat uts DNA wherever the sequene GAATTC is found.
• The �ngerprints are the lengths of the fragments.
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Double Digest Problem - Generating the Data

Assume we have two restrition enzymes, A and B, eah reognizinga di�erent sequene (restrition site).
• Apply A to one opy of the target DNA.
• Apply B to another opy of the target DNA.
• Apply both A and B to a third opy of the DNA.High-level idea:We want to order all the obtained fragments in suh a way that theorder is onsistent with the experimental results and simultaneously,we loate the restrition sites (markers) in the DNA sequene.
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De�nition of Double Digest Problem

• Input:
δA - the set of fragments lengths from the digest with �rstrestrition enzyme A

δB - the set of fragments lengths from the digest with seondrestrition enzyme B

δX - the set of fragments lengths from the digest with bothrestrition enzymes A and B.
• Output:

A - loation of the uts in the restrition map for the �rstrestrition enzyme.

B - loation of the uts in the restrition map for the seondrestrition enzyme. 9
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Double Digest Problem - An Example

Fragments of the following lengths for A: {3,6,8,10}.Fragments of the following lengths for B: {4,5,7,11}.Fragments of the following lengths for both A and B: {1,2,3,3,5,6,7}.The solution:

AB

B

A 3 8 10

4 5 11 7

3 1 5 2 6 7

6

3
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NP-Completeness of Double Digest

1. Given the permutations of A and B, denoted by πA and πB. It ispossible to hek, in polynomial time, if the pair (πA,πB) is apossible solution or not.2. Prove that the Set Partition problem an be redued to theDouble Digest problem in polynomial time.Set Partition Problem: Given a set of integers X = {x1, . . . , xn},an the set X be partitioned into two sets X1 and X2 suh that

∑

xi∈X1

xi =
∑

xj∈X2

xji.e., the sum of the elements in X1 equals the sum of the elements in
X2? 11
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NP-Completeness of Double Digest (ont' d)

Instane of the Set Partition Problem:
X = {x1, . . . , xn}A solution to the following instane of Double Digest Problem wouldgive a solution to the above instane of Set Partition Problem:

A = X = {x1, . . . , xn}

B = {K/2, K/2}, where K =
∑

xi∈X xi

C = A = {x1, . . . , xn}

12



'

&

$

%

NP-Completeness of Double Digest (ont' d)

K/2

x3 x5x2x4x1

X1 = {x1, x4}

X2 = {x2, x3, x5}
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Partial Digest Approah

• The sample of DNA is exposed to one restrition enzyme for onlya limited amount of time to prevent it from being ut at allrestrition sites.
• We assume that with this method biologists an generate the setof all possible restrition fragments between every two uts.

• We assume that multipliity of a fragment an be deteted, i.e.,the number of restrition fragments of the same length an bedetermined.
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Partial Digest Problem - Generating Data
10

16
6

24
14

8
27

11
17

10683

restriction site
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De�nition of the Partial Digest Problem

Input: A (multi)set S of lengths.Output: A set of loations of the restrition sites (ut sites), suhthat the set of di�erenes between all loations equals the set S.More formally:Let X be a set of points on a line.Input: ∆X = {|x1 − x2| : x1, x2 ∈ X}Output: X
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Partial Digest Problem - An Example

Example:If ∆X = {2, 5, 7, 7, 9, 9, 14, 14, 16, 23}, then X = {0, 7, 9, 14, 23} is onefeasible solution.
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Partial Digest - Baktraking algorithm

∆X : all pairwise distane.1. Find L, the longest distane in ∆X .2. ∆X = ∆X-L.3. Find d, the longest distane in ∆X and position a ut site atpoint d or L − d.4. Chek that all the other resulting length are in ∆X .If they are, remove them from ∆X . If ∆X is empty we are done.Otherwise repeat from step 3.If not all distanes are in ∆X baktrak.
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Baktraking algorithm - An Example

∆X = {2, 2, 3, 3, 4, 5, 6, 7, 8, 10}

∆X = {2, 2, 3, 3, 4, 5, 6, 7, 8}

∆X = {2, 3, 3, 4, 5, 6, 7}1 is not in ∆X

∆X = {2, 3, 4, 6}

∆X = {} Done!A solution to the PDP: X = {0, 2, 4, 7, 10}.
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Baktraking algorithm - An Example

10

8 2

1 27

3 5 2

2233 markermarkermarkermarkermarker
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Partial Digest - Baktraking algorithm (ont' d)

Runtime:

• O(n2 log n) expeted time - fast in pratie.
• Worst ase exponentialBut experimental PDP data is hard to obtain.
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Hybridization mapping

• Make several opy of the target DNA. For eah of these opies,we break it up into fragments (ut at random positions in theDNA sequene). The fragments obtained are alled lones.

• Eah fragment is loned (opied), and this loning proessresults in a olletion of many thousands of lones.Hybridization experiment:
• For eah lone we apply a set of di�erent probes (short DNAsequenes). If a probe ours as a substring of the lone then theprobe hybridizes (bind) to the lone.
• The �ngerprint of a lone is the set of probes that hybridize tothe lone. 22
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Hybridization Mapping (ont' d)

• We assume that a probe only binds to the DNA sequene at oneloation.
• Two lones that bind to the same probe overlap.

• Overlaps give us the relative order of the probes along the targetDNA.Clone A
Clone B

zxy w
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Mathematial model - Interval Graph

Interval graph:An undireted graph G = (V, E) obtained from a olletion C ofintervals on the real line. To eah interval in C there orresponds avertex in G; we plae an edge between verties u and v if and only iftheir intervals have a nonempty intersetion.Hybridization mapping:
• A vertex in interval graph H = (V, E) orresponds to a lone.

• There is an edge in H if lone vi ∈ V and lone vj ∈ V overlap.

• Note: If we had omplete and orret information about loneoverlapping, then H would be an interval graph.
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Mathematial model - Interval Graph (ont' d)

Given a graph Gr = (V, Er). If (ei, ej) ∈ Er, then we know for surethat lones vi and vj overlap. Given a seond graph Gt = (V, Et),where Et represent known plus unknown overlap information (thus

Er ⊆ Et). Gt is not neessarily omplete (we may know for sure thatertain pairs of lones do not overlap).Problem:Does there exist a graph Gs = (V, Es) suh that Er ⊆ Es ⊆ Et andsuh that Gs is an interval graph?Computational Complexity:

• NP-hard.
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An Example

a

ed

b c

Clone overlapping Interval graph

a
e

d

b

c
⇒
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De�nition of CIP Problem

Given a binary matrix M , where entry Mij tells whether probe jhybridize to lone i (Mij=1) or not (Mij=0).Conseutive 1s Problem (C1P Problem):Find a permutation of the olumns (probes) suh that all 1s in eahrow (lone) are onseutive.De�nition: A matrix for whih there exists a permutation of theolumns suh that all 1s in eah row are onseutive is said to haveConseutive 1s Property (CP1)
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Physial Map Constrution and the C1P problem

• A lones �ngerprint is the set of probes that bind to it.

• Assume that probes only bind to DNA at one loation in thetarget DNA.

• Assume that there are no errors.
• We have all possible data (from eah lone-probe experiment).A solution to the C1P Problem orresponds to a solution to the�physial map onstrution with probes as markers�-problem.
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CIP Problem - An Algorithm

This algorithm �nds a permutation of the rows suh that eah rowsonly has onseutive 1s.Algorithm:1. Divide the rows into di�erent omponents by building a graph G.2. For eah omponent in G �nd permutations with C1P.3. Join omponents in G to �nd permutation(s) for the wholematrix.
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CIP Problem - An Algorithm (ont' d)

De�nition:For eah row i of M , let Si be the set of olumns j where Mi,j = 1.Step 1: Divide the rows into di�erent omponents by building agraph G.For two rows i and j we have three possible ases:1. Si ∩ Sj=Ø.2. Si ⊆ Sj or Sj ⊆ Si.3. Si ∩ Sj 6=Ø∧ Si 6⊆ Sj ∧ Sj 6⊆ Si.
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CIP Problem - An Algorithm (ont' d)

Build undireted graph G graph from M with verties orrespondingto rows in M . There is an edge in G if and only if ase 3 holds forrows i and j.
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1

1

1

1

1

1

1
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1

1

1

1
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l8 0 0 0 1 1 0 0 0 1
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l1

l2

l3

l4

l5

l7l6

l8

β

γ

α

δ
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CIP Problem - An Algorithm (ont' d)

Step 2: For eah omponent in G �nd permutations with C1P.

00

0

0 0

c1 c2 c3 c4 c5 c6 c7 c8

l1

l2

l3

1

1

1

1

1

1

1

0

1 0

0

0

0

0

0

0

1

0

1
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l1 → . . . 0 1 1

{5} {2, 7} {8}{2, 7}

l1 → . . . 0

l2 → . . . 0

1

1

1

1

1

0

{2, 7, 8} {2, 7, 8} {2, 7, 8}

1

0

1

0 . . .

0 . . .

0 . . .

0l3 → . . . 0 0 1 1 1 1 0 . . .

0 . . .00011l2 → . . . 0 1

l1 → . . . 0 0 1 1 1 0 0 0 . . .

{5} {2} {7} {8} {1, 4} {1, 4}
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CIP Problem - An Algorithm (ont' d)

Step 2: For eah omponent in G �nd permutations with C1P.If |S1 ∩ S3| > min(|S1 ∩ S2|, |S2 ∩ S3|) then row 3 has to be plaed onthe opposite side of row 1 ompared to row 2.If |S1 ∩ S3| < min(|S1 ∩ S2|, |S2 ∩ S3|) then row 3 has to be plaed onthe same side of row 1 as row 2.
S1 = {2, 7, 8}, S2 = {2, 5, 7}, S3 = {1, 4, 7, 8}

S1 ∩ S3 = {7, 8}, S1 ∩ S2 = {2, 7}, S2 ∩ S3 = {7}

S3 goes to the left in this example.
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CIP Problem - An Algorithm (ont' d)

Step 2: For eah omponent in G �nd permutations with C1P.Add the rest of the rows in the omponent one by one.Add row k by �nding two rows i and j where edges (i, k) and (j, k)are in the graph and hek the above ondition.Chek that we still have valid permutations.Running time:

• Time to add one row: O(m)

• Number of rows: O(n)

• Total time: O(nm)
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CIP Problem - An Algorithm (ont' d)

Step 3: Join omponents in G to �nd permutation(s) for the wholematrix.Build a new direted graph GM with the omponents in G asverties. There is a direted edge (α, β) between verties α and β in

GM if the sets Si for all i ∈ β are ontained in at least one set Sj ofomponent α.
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l2
l3

l4

l5

l6l7

l8

l1

β

γ

δ

β

γδ

α

α
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CIP Problem - An Algorithm (ont' d)

Step 3: Join omponents in G to �nd permutation(s) for the wholematrix.Lemma: If there exist i ∈ β and j ∈ α and moreover Si ⊂ Sj then

Sl ⊂ Sj for all l ∈ β.Proof: By ontradition.Fat: GM is ayli.Proess the verties in GM one by one in topologial order. Use thetopologial order α, β, δ, γ here.
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CIP Problem - An Algorithm (ont' d)

Step 3 ont' d: Permute the olumns (orretly) of all omponentsindividually. Then selet all verties in GM without inoming edgesand freeze their olumns. Then, take the next vertex in topologialorder. Suppose we are following edge (α, β). Find a referene olumnin omponent α (this olumn tells us how to plae the rows of β).Now, hoose the row l from β that has the leftmost 1, and all theolumn where this 1 is cβ . We know (from Lemma) that Sl isontained in some Si of α but not in others. Find all rows from αthat ontain Sl, and �nd the leftmost olumn where all suh rowshave 1s (and all this olumn cα). This is the referene olumn, sinewe an now make cα and cβ one and the same.Illustrating example follow... 41
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1 1 11 0 0

1 1

11

0

0

1

{1} {2, 4, 5, 7, 9} {3, 6, 8}

. . .l1 → . . .

l2 → . . . 1 1 1 1 1 . . .

{2, 4, 5, 7, 9}

1 1 1 1 1 . . .l3 → . . .

β:

α:
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1 1 11 0 0

1 1

11

0

0

0

1

{1} {2, 4, 5, 7, 9} {3, 6, 8}

. . .l1 → . . .

l2 → . . .

l3 → . . .

1

1

1

1

1

1

1

1

1

1 0 0 0

{9,

0

0

1

5}

0

0

1

. . .

. . .

{4}

1

0

1

{7} {2}

0

1

0

. . .

. . .

. . .

1

1

0

l6 → . . .

l7 → . . .

l8 → . . .

δ:
α, β joined:
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{4} {7} {2} {3, 6,{9, 5}{1}

1 1 1 1 1 1 0 0

8}

0

0

0

0

0

0

1

1

0

0

1

1

1

0

0

1

1

1

1

0

1

1

1

1

1

0

1

1

0

1

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0 1

1

1

0

{8}{3}{6}

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

δ joined:

γ:

l5 → . . .

l4 → . . .

l8 → . . .

l7 → . . .

l6 → . . .

l3 → . . .

l2 → . . .

l1 → . . .
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{4} {7} {2}{9, 5}{1}

1 1 1 1 1 1

0

0

0

0

0

1

1

0

0

1

1

1

0

0

1

1

1

1

0

1

1

1

1

1

0

1

1

0

1

0

{6}

0

1

0

0

0

0

γ joined: {3}

0

1

0

0

0

0

{8}

0

1

0

0

0

0

l5 →

l4 →

l8 →

l7 →

l6 →

l3 →

l2 →

l1 →

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0
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CIP Problem - An Algorithm (ont' d)

Step 3: Join omponents in G to �nd permutation(s) for the wholematrix.Running time:
• Topologial sorting: O(n + m).
• Preproessing: Store �rst olumn with 1 for eah row in O(nm)time.

• Joining: O(n) time to �nd rows + O(m) time to joinpermutations.Total time: O(nm)Best known algorithm: O(n + m + r), where r is the number of 1sin the matrix. 46
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Hybridization Mapping with Errors
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c6

c1

A B C D FE

A

c1

c2

B C D E F

c3

c4

c5

c6 ←himeri lone

←false positive

←false negative

←orret←orret←orret
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Hybridization Mapping with Errors

Three types of errors:
• False positive
• False negative
• Chimeri loneNote: All three types give gaps in the (true) matrix. There may notbe a solution to the C1P problem for an instane with errors.Gap Minimization(Optimization problem): Given a binary matrixwith n rows and m olumns.Problem: Find a permutation where the total number of gaps in thematrix is minimized. 48
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Hybridization Mapping with Errors (ont' d)

Traveling Salesman Problem (TSP): Given a ompleteundireted weighted graph.Problem: Find a Hamiltonian yle (a yle suh that every vertex inthe graph is in the yle but eah vertex appears exatly one) ofminimum weight.Fat:TSP is NP-hard. Good approximation exist.
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Hybridization Mapping with Errors (ont' d)

Redution of Gap Minimization to TSP.Constrution:Let M be a (lone-probe) binary matrix and G = (V, E) a ompleteundireted graph. A olumn (probe) in M orresponds to a vertex in

G. An edge e ∈ E has weight equal to the Hamming distanebetween rows u ∈ V and v ∈ U , where the Hamming distanebetween to binary strings is equal to the number of positions wherethe two strings di�er, e.g., the Hamming distane between u = 10010and 10100 is 2.A minimum-weight yle in G orresponds to a olumn permutationin M with minimum number of gaps.50
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