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On-Line Edge-Coloring with a Fixed Number of Colors1

Lene Monrad Favrholdt2 and Morten Nyhave Nielsen2

Abstract. We investigate a variant of on-line edge-coloring in which there is a fixed number of colors
available and the aim is to color as many edges as possible. We prove upper and lower bounds on the performance
of different classes of algorithms for the problem. Moreover, we determine the performance of two specific
algorithms, First-Fit and Next-Fit.

Specifically, algorithms that never reject edges that they are able to color are called fair algorithms. We
consider the four combinations of fair/not fair and deterministic/randomized.

We show that the competitive ratio of deterministic fair algorithms can vary only between approximately
0.4641 and 1

2 , and that Next-Fit is worst possible among fair algorithms. Moreover, we show that no algorithm
is better than 4

7 -competitive.
If the graphs are all k-colorable, any fair algorithm is at least 1

2 -competitive. Again, this performance is
matched by Next-Fit while the competitive ratio for First-Fit is shown to be k/(2k − 1), which is significantly
better, as long as k is not too large.

Key Words. Edge-coloring, On-line algorithms, Competitive analysis, Fixed number of colors, Maxi-
mization problem, Fair algorithms, k-Colorable graphs, Accommodating sequences, Restricted adversary,
Randomization.

1. Introduction

The Problem. In this paper we investigate the on-line problem EDGE-COLORING defined
in the following way. A number k of colors is given. The algorithm is given the edges of a
graph one by one, each one specified by its endpoints. For each edge, the algorithm must
either color the edge with one of the k colors or reject it, before seeing the next edge.
Once an edge has been colored the color cannot be altered and a rejected edge cannot
be colored later. The aim is to color as many edges as possible under the constraint that
no two adjacent edges receive the same color.

Note that the problem investigated here is different from the classical version of the
edge coloring problem, which is to color all edges with as few colors as possible. In [2] it
is shown that, for the on-line version of the classical edge coloring problem, the greedy
algorithm (the one that we call First-Fit) is optimal.

The Measures. To measure the quality of the algorithms, we use the competitive ratio
which was introduced in [5] and has become a standard measure for on-line algorithms.
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For the problem EDGE-COLORING addressed in this paper, the competitive ratio of an
algorithm A is the worst case ratio, over all possible input sequences, of the number of
edges colored by A to the number of edges colored by an optimal off-line algorithm.

In some cases it may be realistic to assume that the input graphs are all k-colorable.
Therefore, we also investigate the competitive ratio in the special case where it is known
that the input graphs are k-colorable. This idea is similar to what was done in [1] and
[3]. In these papers the competitive ratio is investigated on input sequences that can be
fully accommodated by an optimal off-line algorithm with the resources available (in this
paper the resource is, of course, the colors). Such sequences are called accommodating
sequences. This is generalized in [4], where the competitive ratio as a function of the
amount of resources available is investigated.

This paper illustrates an advantage of analyzing accommodating sequences, apart
from tailoring the measure to the type of input. A common technique when constructing
a difficult proof is to start out investigating easier special cases. In our analysis of the
general performance guarantee, the case of k-colorable input graphs was used as such a
special case.

The Algorithms. We mainly consider fair algorithms. A fair algorithm is an algorithm
that never rejects an edge, unless all k colors have already been used on edges adjacent
to the new edge. Two natural fair algorithms are Next-Fit and First-Fit described in
Sections 3.4 and 3.5, respectively.

The Results. In Section 2.2 we show that any fair algorithm has a competitive ratio no
worse than 2

√
3−3 ≈ 0.4641. Furthermore, we show that no deterministic fair algorithm

is better than 1
2 -competitive, and that no algorithm can be better than 4

7 -competitive, even
if we allow randomization. In Section 4 we show that, in the case of k-colorable graphs,
any fair algorithm is 1

2 -competitive and that no deterministic algorithm is better than
2
3 -competitive.

The performance of the algorithm Next-Fit matches the performance guarantee for
fair algorithms in both the general case and in the special case where the input graphs are
all k-colorable. The algorithm First-Fit is only slightly better. It has a competitive ratio
no better than 2

9 (
√

10 − 1) ≈ 0.4805 in general and exactly k/(2k − 1) on k-colorable
graphs.

The Graphs. The performance guarantees proven in this paper are valid even if we allow
multigraphs, i.e., graphs that may have parallel edges, but no loops. The adversary graphs
used for proving the impossibility results are all simple graphs. Thus, the impossibility
results are valid even if we restrict ourselves to simple graphs. Furthermore, the adversary
graphs are all bipartite except one which could easily be changed to a bipartite graph.
Thus, the results are all valid for bipartite graphs too.

2. Preliminaries

2.1. Notation and Terminology. A k-coloring is a coloring using at most k colors. We
label the colors 1, 2, . . . , k. For any i, j ∈ {1, 2, . . . , k}, we let Ci, j denote the subset
{i, i + 1, . . . , j} of the k colors.
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Km,n denotes the complete bipartite graph in which the two independent sets contain
m and n vertices, respectively.

An r-regular graph is a graph in which every vertex has degree r . A biregular graph
is a graph in which each vertex has one of two possible vertex degrees.

The terms fairD, fairR, on-lineD, and on-lineR denote arbitrary on-line algorithms from
the classes “fair deterministic”, “fair randomized”, “deterministic”, and “randomized,”
respectively, for the EDGE-COLORING problem. The term off-line denotes an optimal
off-line algorithm for the problem.

2.2. The Competitive Ratio. We give a formal definition of the competitive ratio for
the problem EDGE-COLORING. Note that since the EDGE-COLORING problem is a max-
imization problem, lower bounds on the competitive ratio are performance guarantees
and upper bounds are impossibility results.

DEFINITION 2.1. For any algorithm A and any sequence S of edges, let A(S) be the
number of edges colored by A and let OPT(S) be the number of edges colored by an
optimal off-line algorithm. Furthermore, let 0 ≤ C ≤ 1.

An on-line algorithm A is C-competitive if A(S) ≥ C · OPT(S), for any sequence S
of edges.

The competitive ratio of A is CA = sup{C | A is C-competitive}.

3. General Graphs

3.1. A Tight Performance Guarantee for Fair Algorithms. In this section a tight per-
formance guarantee for fair algorithms is given. Actually, Theorem 3.1 as well as the
performance guarantee in Section 4.1 holds with the weaker assumption that the algo-
rithm never rejects an edge e, unless there are at least k colored edges adjacent to e.

The idea behind the proof is the following. For each edge that fairR colors, it earns
one unit of some value. If, for some fraction C of a unit, fairR can buy all edges colored
by off-line, paying at least C for each of them, the number of edges colored by fairR is
at least the fraction C of the number of edges colored by off-line. If this is the case for
any sequence of edges, fairR is C-competitive.

THEOREM 3.1. For any fair on-line algorithm fairR for EDGE-COLORING,

CfairR (k) ≥ min
d∈C1,k

{
k2 + d2 − kd

2k2 − kd

}
≥ 2

√
3 − 3 ≈ 0.4641.

PROOF. Let Ec denote the set of edges colored by fairR, let Eu denote the set of edges
colored by off-line and not by fairR, and let Ed denote the set of edges colored by both
off-line and fairR. Thus, Eu∪Ed are the edges colored by off-line, and Ed ⊆ Ec. Similarly,
for any vertex x , let dc(x), du(x), and dd(x) denote the number of edges incident to x
colored by fairR, not colored by fairR, and colored by both fairR and off-line, respectively.

Assume that, for each edge e ∈ Ec, fairR earns one unit of some value. We determine
a C , 0 < C < 1

2 , such that, for any sequence of edges, the total value earned by fairR
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suffices to buy all edges colored by off-line, paying at least C for each. Since Ec are
the edges colored by fairR, and Ed ∪ Eu are the edges colored by off-line, this can be
expressed as |Ec| ≥ C(|Ed| + |Eu|).

Assume that fairR starts out buying all edges in Ed, paying C for each. This is clearly
possible, since Ed ⊆ Ec. The remaining value is distributed to the edges in Eu in two
steps. In the first step, each vertex x receives the value m(x) = 1

2 (dc(x)−Cdd(x)). Note
that

∑
x∈V m(x) = |Ec|− C |Ed|. In the next step, the value on each vertex is distributed

equally among the edges in Eu incident to it. Thus, each vertex x with du(x) ≥ 1 gives
the value mu(x) = m(x)/du(x) to each edge in Eu incident to it.

Note that∑
(x,y)∈Eu

(mu(x) + mu(y)) ≤
∑

(x,y)∈Eu

(mu(x) + mu(y)) +
∑

du(x)=0

m(x)

=
∑
x∈V

m(x) = |Ec| − C |Ed|.

Thus, if mu(x) + mu(y) ≥ C for any edge (x, y) ∈ Eu, then

C |Eu| ≤
∑

(x,y)∈Eu

(mu(x) + mu(y)) ≤ |Ec| − C |Ed|,

yielding |Ec| ≥ C(|Eu| + |Ed|).
What remains to be done is to find a value of C such that mu(x)+ mu(y) ≥ C for any

edge (x, y) ∈ Eu. This is done using calculations based on two simple observations:

(1) For any vertex x ∈ V , dd(x) + du(x) ≤ k, since off-line can color at most k edges
incident to x .

(2) For each edge (x, y) ∈ Eu, dc(x) + dc(y) ≥ k, since fairR is a fair algorithm.

For any edge (x, y) ∈ Eu,

mu(x) + mu(y) = 1

2

(
dc(x) − Cdd(x)

du(x)
+ dc(y) − Cdd(y)

du(y)

)

(1)≥ 1

2

(
dc(x) − Cdd(x)

k − dd(x)
+ dc(y) − Cdd(y)

k − dd(y)

)
.

Let

mx = dc(x) − Cdd(x)

k − dd(x)
and my = dc(y) − Cdd(y)

k − dd(y)
.

By (2) it can be assumed without loss of generality that dc(y) ≥ k/2. For dc(x) ≤ kC,
mx is a monotonically decreasing function of dd(x), and, for dc(x) > kC, mx is a
monotonically increasing function of dd(x). Similarly, since dc(y) ≥ k/2 > kC, my is a
monotonically increasing function of dd(y).

We can now conclude that,

for dc(x) > kC,

mu(x) + mu(y) ≥ 1

2

(
dc(x)

k
+ dc(y)

k

)
(2)≥ 1

2
> C,
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and for dc(x) ≤ kC,

mu(x) + mu(y) ≥ 1

2

(
dc(x) − Cdc(x)

k − dc(x)
+ dc(y)

k

)
(since dd(x) ≤ dc(x))

(2)≥ 1

2

(
dc(x) − Cdc(x)

k − dc(x)
+ k − dc(x)

k

)
.

Now,

1

2

(
dc(x) − Cdc(x)

k − dc(x)
+ k − dc(x)

k

)
≥ C ⇐⇒ k2 + (dc(x))2 − kdc(x)

2k2 − kdc(x)
≥ C.

Thus,

CfairR ≥ min
d∈C1,k

{
k2 + d2 − kd

2k2 − kd

}
≥ min

d∈(0;k]

{
k2 + d2 − kd

2k2 − kd

}
= 2

√
3 − 3.

In Section 3.4 it is shown that the competitive ratio of Next-Fit exactly matches the
performance guarantee of Theorem 3.1.

The next section in conjunction with Theorem 3.1 shows that all deterministic fair
algorithms must have very similar competitive ratios.

3.2. An Impossibility Result for Fair Deterministic Algorithms

THEOREM 3.2. Any deterministic fair algorithm for EDGE-COLORING is at most 1
2 -

competitive.

PROOF. The adversary constructs a simple graph G = (V1 ∪ V2, E) in two phases. In
Phase 1 only vertices in V1 are connected. In Phase 2 vertices in V2 are connected to
vertices in V1. Let |V1| = |V2| = n for some large integer n.

In Phase 1 the adversary gives an edge between two unconnected vertices x, y ∈ V1

with a common unused color. Since the edge can be colored, fairD will do so. This
process is repeated until no two unconnected vertices with a common unused color can
be found. At that point Phase 1 ends.

For any vertex x , let C̄(x) denote the set of colors not represented at x . At the end of
Phase 1, the following holds true. For each color c and each vertex x such that c ∈ C̄(x),
x is already connected to all other vertices y with c ∈ C̄(y). Since c ∈ C̄(x), x is
connected to at most k − 1 other vertices. Thus, each of the k colors are missing at at
most k vertices:

∑
x∈V1

C̄(x) ≤ k2.
The edges given in Phase 2 are the edges of a k-regular bipartite graph with V1 and

V2 forming the two independent sets. Note that, by König’s theorem [6, p. 209], such a
graph can be k-colored.

In Phase 2 fairD colors at most k2 edges, but off-line rejects all edges from Phase 1
and colors all edges from Phase 2, giving a performance ratio of at most

1
2 (nk − k2) + k2

nk
= nk + k2

2nk
= 1

2
+ k

2n
.

If we allow n to be arbitrarily large, this can be arbitrarily close to 1
2 .
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Fig. 1. Structure of the adversary graph for the general impossibility result.

Note that for k = 1, Phase 1 may include only one edge. Thus, for k = 1, a graph
with only three edges gives a ratio of exactly 1

2 .

Note that the proof of Theorem 3.2 can be easily modified to be valid even if the input
graphs are restricted to being bipartite. The vertex set V1 should be replaced by two sets
V L

1 and V R
1 , and the edges of Phase 1 should connect vertices in V L

1 to vertices in V R
1 . In

this case, at the end of Phase 1, each color is missing at at most 2k − 2 vertices, because,
if a color is missing at a vertex in V L

1 , then it can be missing at at most k − 1 vertices in
V R

1 and vice versa. Clearly, half of the vertices of Phase 2 should be connected to V L
1 ,

the other half to V R
1 .

3.3. A General Impossibility Result. Now follows an impossibility result for any type
of algorithm for EDGE-COLORING, fair or not fair, deterministic or randomized.

THEOREM 3.3. Any algorithm for EDGE-COLORING is at most 4
7 -competitive.

PROOF. The structure of the adversary graph is depicted in Figure 1. Each box contains
k vertices. When two boxes are connected, there are k2 edges in a complete bipartite
graph between the 2k vertices inside the boxes. Note that this bipartite graph can be
k-colored. The edges of the graph are divided into n levels, level 1, . . . , n. The adversary
gives the edges, one level at a time, according to the numbering of the levels. The edges
of level i are given in three consecutive phases:

1. Hi : Internal (horizontal) edges at level i . In total k2 edges.
2. Vi : Internal (vertical) edges between level i and level i + 1. In total 2k2 edges.
3. Ei : External edges at level i . In total 2k2 edges.

Vertices that are endpoints of internal edges are called internal vertices.
Let XHi be a random variable counting how many edges on-lineR will color from the

set Hi , and let XVi and XEi count the colored edges from Vi and Ei , respectively.
For i = 0, . . . , n, let EXTi and INTi be random variables counting the sum of all

external and internal edges, respectively, colored by on-lineR after level i is given, i.e.,
EXTi = ∑i

j=1 XEj and INTi = ∑i
j=1(XVj + XHj ). Note that EXT0 = INT0 = 0.

If the adversary stops giving edges after Phase 1 of level i , off-line will color k2(2i −1)

edges in total. These are the edges in the sets E1, E2, . . . , Ei−1, and Hi . If the adversary
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stops giving edges after Phase 2 (or 3) of level i , off-line will color 2k2i edges. These
are the edges in the sets E1, E2, . . . , Ei−1, and Vi .

To prove the bound we use the following observations. Let Gi denote the graph
consisting of the first i levels. Consider the subgraph G ′

i of Gi colored by on-lineR.
Summing over all internal vertices, the total vertex degree in G ′

i is at most 2k2i . An
internal edge (excluding Vi ) contributes two to this number, whereas an external edge
(plus edges in Vi ) will only contribute one. Thus, the expected number of edges in Gi

colored by on-lineR is

E[INTi ]+E[EXTi ] = (E[INTi ]−E[XVi ])+(E[EXTi ]+E[XVi ])(1)

≤ 1
2 (2k2i − E[EXTi ] − E[XVi ]) + (E[EXTi ] + E[XVi ])

= k2i + 1
2 (E[EXTi ] + E[XVi ]).

The rest of the proof is divided into two cases.

Case 1: There exists a level i ≤ n, where E[EXTi ] > 2
7 k2i . We will show by contra-

diction that in this case on-lineR is not 4
7 -competitive. Let i denote the first level such

that E[EXTi ] > 2
7 k2i . Then

E[EXTi−1] ≤ 2
7 k2(i − 1)(2)

and

E[XEi
] > 2

7 k2.(3)

Assume that the number of edges colored by on-lineR is at least 4
7 of the number of

edges colored by off-line. If the adversary stops the sequence after Phase 1 of level i , the
following inequality must hold:

E[INTi−1] + E[EXTi−1] + E[XHi ] ≥ 4
7 k2(2i − 1).(4)

If the adversary stops the sequence after Phase 2 of level i , the following inequality
must hold:

E[INTi−1] + E[EXTi−1] + E[XHi ] + E[XVi ] ≥ 4
7 k22i.(5)

If on-lineR is 4
7 -competitive, both inequalities must hold. Adding inequalities (4) and

(5) yields

2(E[INTi−1] + E[EXTi−1]) + 2E[XHi ] + E[XVi ] ≥ 16
7 k2i − 4

7 k2.(6)

Furthermore,

E[XVi−1 ] + 2E[XHi ] + E[XVi ] ≤ 2k2 − E[XEi
] < 12

7 k2,(7)

where the first inequality follows from the fact that the number of colored edges incident
to the internal vertices at level i is at most 2k2, and the second inequality follows from
(3). Combining inequality (1) (for i −1) with (6) and then using (7) yields a contradiction
with (2). Thus, in this case on-lineR is not 4

7 -competitive.
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Case 2: For all i ≤ n, E[EXTi ] ≤ 2
7 k2i . By (1), the expected number of edges colored

by on-lineR is

E[INTn] + E[EXTn] ≤ k2n + 1
2 (E[EXTn] + E[XVn ])

= k2n + 1
2 E[EXTn−1] + 1

2 (E[XEn ] + E[XVn ])

≤ k2n + 1
7 k2(n − 1) + 1

2 2k2

= 8
7 k2n + 6

7 k2.

Thus, we get an upper bound on the performance ratio of ( 8
7 k2n+ 6

7 k2)/2nk2 = 4
7 +3/7n,

which can be arbitrarily close to 4
7 , if we allow n to be arbitrarily large.

Thus, even if we allow randomized algorithms that are not necessarily fair, no algo-
rithm is more than 0.11 apart from the worst fair algorithm when comparing competitive
ratios.

3.4. The Algorithm Next-Fit. The algorithm Next-Fit (NF) is a fair algorithm that uses
the colors in a cyclic order. Next-Fit colors the first edge with the color 1 and keeps
track of the last used color clast. When coloring an edge (u, v) it uses the first color in
the sequence 〈clast + 1, clast + 2, . . . , k, 1, 2, . . . , clast〉 that is not yet used on any edge
incident to u or v, if any.

Intuitively, this is a poor strategy and it turns out that its worst case performance
matches the performance guarantee of Section 3.1. Thus, this algorithm is mainly de-
scribed here to show that the performance guarantee cannot be improved.

When proving impossibility results for Next-Fit, the following claim is useful.

CLAIM 3.4. Any coloring in which each color is used on exactly n or n + 1 edges, for
some n ∈ N, can be produced by Next-Fit, for some ordering of the input sequence. The
colors just need to be permuted so that the colors used on n + 1 edges are the lowest
numbered colors. With the colors permuted this way, the adversary can give an edge with
color 1 followed by an edge with color 2, and so on until all k colors have been used.
This pattern is followed n times and, finally, remaining edges are given, again ordered
according to color.

Now follows a theorem showing that Next-Fit is worst possible among fair algorithms.

THEOREM 3.5.

CNF(k) ≤ min
d∈C1,k

{
k2 + d2 − kd

2k2 − kd

}
and inf

k∈N

{CNF(k)} ≤ 2
√

3 − 3 ≈ 0.4641.

PROOF. The adversary constructs a graph GNF in the following way. It chooses a d ∈
C1,k close to (2 − √

3)k and constructs a d-regular bipartite graph G1 = (L1 ∪ R1, E1)

with |L1| = |R1| = k and a graph G2 = (L2 ∪ R2, E2) isomorphic to Kk−d,k−d (K1,1 if
k = 1). Now, each vertex in R1 is connected to each vertex in L2 and each vertex in R2

is connected to each vertex in L1. Call these extra edges E12. The graph GNF for k = 4
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Fig. 2. The graph GNF when k = 4 and d = 1, showing that CNF(4) ≤ 13
28 ≈ 0.4643.

is depicted in Figure 2. Note that the three leftmost vertices are the same as the three
rightmost vertices.

Note that G1 is d-colorable and G2 is (k −d)-colorable. If the edges of G1 are colored
with C1,d , each of the d colors will be represented at each vertex of G1. Similarly, if G2

is colored with Cd+1,k , each color in Cd+1,k will be represented at each vertex of G2.
After this, none of the edges in E12 can be colored. However, the edge set E1 ∪ E12 can
be k-colored.

The adversary uses k copies of GNF, G1
NF, . . . , Gk

NF. Consider a coloring where G1
1

is colored with C1,d and G1
2 is colored with Cd+1,k , G2

1 is colored with C2,d+1 and G2
2 is

colored with Cd+2,k ∪ {1}, . . . , Gk
1 is colored with {k} ∪ C1,d−1 and Gk

2 is colored with
Cd,k−1. That is, to obtain the coloring of Gi+1

j from Gi
j , the colors are shifted once. In

this coloring, each color is used the same number of times, so, by Claim 3.4, it can be
produced by Next-Fit. Hence, for any d ∈ C1,k , the competitive ratio of Next-Fit can be
no more than

|E1| + |E2|
|E1| + |E12| = kd + (k − d)2

kd + 2k(k − d)
= k2 − kd + d2

2k2 − kd
.

This ratio attains its minimum value of 2
√

3−3 when d = (2−√
3)k. Thus, by allowing

arbitrarily large values of k, it can be arbitrarily close to 2
√

3 − 3.

3.5. The Algorithm First-Fit. The algorithm First-Fit (FF) is a fair algorithm. For each
edge e that it is able to color, it colors e with the lowest numbered color possible.

The following theorem gives an impossibility result for First-Fit.

THEOREM 3.6.

CFF(k) ≤ min
d∈C1,k

{
2k2 − 2kd + d2

4k2 − 3kd

}
and inf

k∈N

{CFF(k)} ≤ 2
9 (

√
10 − 1) ≈ 0.4805.

PROOF. The adversary graph GFF of this proof is inspired by the graph GNF. It is not
possible, though, to make First-Fit color the subgraph G2 of GNF with Cd+1,k . Therefore,
the graph is extended to contain an extra copy of G2, G ′

2. Each vertex in R2 is connected
to exactly d vertices in L ′

2 and vice versa. Now, E2 denotes the edges in G2 and G ′
2 and

the edges connecting them. Finally, 2k(k − d) new vertices are added, and each vertex
in R2 ∪ L ′

2 is connected to k of these vertices. Let E3 denote the set of these extra edges.
The graph GFF for k = 4 is depicted in Figure 3.
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Fig. 3. The graph GFF when k = 4, showing that CFF(4) ≤ 25
52 ≈ 0.4808.

If the edges in G1 and the edges between R2 and L ′
2 are given first (one perfect

matching at a time), followed by the edges in G2 and G ′
2 (one perfect matching at

a time), First-Fit will color E1 and the edges between R2 and L ′
2 with C1,d and the

remaining edges in E2 with Cd+1,k . After this, First-Fit will not be able to color any
more edges of GFF. On the other hand, it is possible to k-color the set E1 ∪ E12 ∪ E3 of
edges. Thus, the competitive ratio of First-Fit can be no more than

|E1| + |E2|
|E1| + |E12| + |E3| = kd + 2(k − d)2 + (k − d)d

kd + 2k(k − d) + 2k(k − d)
= 2k2 − 2kd + d2

4k2 − 3kd
.

This ratio attains its minimum value of 2
9 (

√
10 − 1), when d = 1

3 (4 − √
10)k. Thus,

for the graph GFF, we choose d to be an integer close to 1
3 (

√
10 − 1)k, and by allowing

arbitrarily large values of k, the ratio can be arbitrarily close to 2
9 (

√
10 − 1).

4. k-Colorable Graphs. Now that we know that the competitive ratio cannot vary
much between different kinds of algorithms for the EDGE-COLORING problem, it would
be interesting to see what happens if we know something about the input graphs—for
instance that they are all k-colorable. In this section we investigate the competitive ratio
in the case where the input graphs are known to be k-colorable.

4.1. A Performance Guarantee for Fair Algorithms. In this section a performance
guarantee for any fair algorithm is given. As in the proof of Theorem 3.1 the idea is
that each colored edge is worth one unit of some value. Again the value of each colored
edge e is distributed equally among its endpoints and, from there, redistributed to the
uncolored edges adjacent to e. If each uncolored edge receives a total value of at least
one, then there are at least as many colored edges as uncolored edges.

THEOREM 4.1. On k-colorable graphs, any fair algorithm for EDGE-COLORING is 1
2 -

competitive.

PROOF. Let G = (V, E) be an arbitrary k-colorable graph. Let Ec denote the set of
edges colored by fairR, and let Eu denote the set of edges not colored by fairR. Similarly,
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for any vertex x , let dc(x) denote the number of edges incident to x that are colored by
fairR, and let du(x) denote the number of edges incident to x that are not colored by
fairR. Then fairR is 1

2 -competitive if |Ec| ≥ |Eu|.
Now, for each vertex x ∈ V , let m(x) = 1

2 dc(x). Note that
∑

x∈V m(x) = |Ec|. For
each vertex x ∈ V such that du(x) ≥ 1, define mu(x) = m(x)/du(x). Then

∑
(x,y)∈Eu

(mu(x) + mu(y)) ≤
∑

(x,y)∈Eu

(mu(x) + mu(y)) +
∑

du(x)=0

m(x)

=
∑
x∈V

m(x) = |Ec|.

In what follows we will prove that mu(x) + mu(y) ≥ 1 for every edge (x, y) ∈ Eu,
giving the desired inequality:

|Eu| ≤
∑

(x,y)∈Eu

(mu(x) + mu(y)) ≤ |Ec|.

Let (x, y) ∈ Eu. Since G is k-colorable, dc(x)+du(x) ≤ k, yielding the first inequality
below. Note that, since du(x), du(y) ≥ 1, this means that dc(x), dc(y) ≤ k − 1. Thus,
the two divisions on the right-hand side of the inequality are not divisions by zero. The
second inequality follows from the fact that dc(x) + dc(y) ≥ k, since fairR is a fair
algorithm. Finally, the last inequality holds, since x + 1/x ≥ 2, for any x > 0.

mu(x) + mu(y) = 1

2

(
dc(x)

du(x)
+ dc(y)

du(y)

)
≥ 1

2

(
dc(x)

k − dc(x)
+ dc(y)

k − dc(y)

)

≥ 1

2

(
dc(x)

k − dc(x)
+ k − dc(x)

dc(x)

)
≥ 1.

In Section 4.3 it is shown that, on k-colorable graphs, the competitive ratio of the
algorithm Next-Fit is 1

2 for all even k. Thus, the result in Theorem 4.1 is tight.

4.2. An Impossibility Result for Deterministic Algorithms. If k = 1, any fair algo-
rithm is clearly 1-competitive on k-colorable graphs. The following theorem gives an
impossibility result for all other values of k.

THEOREM 4.2. When k ≥ 2, any deterministic algorithm for EDGE-COLORING is at
most 2

3 -competitive, even on k-colorable graphs.

PROOF. The adversary gives a �k/2�-regular bipartite graph G = (L ∪ R, E) with
|L| = |R| = N , for some large integer N . For each vertex x ∈ L ∪ R, let C(x) be the set
of colors with which on-lineD has colored the edges incident to x . Let p = ∑�k/2�

i=0

(k
i

)
.

Then there are p possibilities C1, C2, . . . , C p for C(x). Let SL
i = {x ∈ L | C(x) = Ci }

and SR
i = {x ∈ R | C(x) = Ci }. For each i , the vertices in SL

i are partitioned into
�|SL

i |/k� subsets of size k and at most one subset of size |SL
i | − k�|SL

i |/k�. The same
is done to SR

i . Let S be the family of all these subsets. Then |S| ≥ 2(N − (k − 1)p)/k.
Thus, if N is chosen sufficiently large, the number of vertices contained in the sets in S



On-Line Edge-Coloring with a Fixed Number of Colors 187

will be much larger than the number of vertices not contained in the sets in S. Thus, we
can ignore the edges not contained in the sets in S.

Now, for each set S ∈ S, �k/2� new vertices are created, and each of these �k/2�
vertices are connected to each vertex in S. Assume that for each vertex x ∈ S, |C(x)| = d.
Note that d ≤ �k/2�. Then on-lineD can color at most k −d edges incident to each of the
new vertices. Now, looking at the subgraph colored by on-lineD and summing the vertex
degrees of the vertices in S and the �k/2� new vertices, we get at most kd+2·�k/2�(k−d),
which reduces to k2 if k is even and to k2 − k + d ≤ k2 − 1

2 k + 1
2 if k is odd. Since

S ⊆ L or S ⊆ R, the whole graph is bipartite. Furthermore, it has maximum degree
k. Thus, by König’s theorem, it can be k-colored off-line. Looking at the whole graph,
and summing the vertex degrees of the vertices in S and the �k/2� new vertices, we get
k2 + �k/2� · k which reduces to 3

2 k2, if k is even, and to 3
2 k2 − 1

2 k, if k is odd. Thus, for
any deterministic algorithm A for EDGE-COLORING,

CA(k) ≤




k2

3
2 k2

= 2

3
if k is even,

k2 − 1
2 k − 1

2
3
2 k2 − 1

2 k
= 2

3
− k − 3

9k2 − 3k
≤ 2

3
if k ≥ 3 and odd.

4.3. The Algorithm Next-Fit. The following theorem shows that Next-Fit is worst pos-
sible among fair algorithms.

THEOREM 4.3. On k-colorable graphs,

CNF(k) ≤




1

2
if k is even,

1

2
+ 1

2k2
if k is odd.

PROOF. The adversary constructs a graph GNF in the following way. First it constructs
two complete bipartite graphs G1 = (L1 ∪ R1, E1) with |L1| = |R1| = �k/2� and
G2 = (L2 ∪ R2, E2) with |L2| = |R2| = �k/2� (see Figure 4). G1 can be colored with
�k/2� colors using each color �k/2� times, and G2 can be colored with �k/2� colors
using each color �k/2� times. The edges in these two graphs are given in an order such
that Next-Fit colors G1 with C1,�k/2� and G2 with C�k/2�+1,k . Now, each vertex in R1 is
connected to each vertex in L2 and each vertex in R2 is connected to each vertex in L1.
Let E12 denote these edges connecting G1 and G2. Next-Fit is not able to color any of
the edges in E12. It is, however, possible to color all edges in GNF with C1,k , since the
graph is bipartite and has maximum degree k. Thus, even in the case where the input
graphs are all k-colorable, the competitive ratio of Next-Fit can be no more than

|E1| + |E2|
|E1| + |E2| + |E12| = �k/2�2 + �k/2�2

�k/2�2 + �k/2�2 + 2�k/2��k/2� ,

which reduces to 1
2 when k is even, and to 1

2 + 1/2k2 when k is odd.
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Fig. 4. The graph GNF when k = 5.

4.4. The Algorithm First-Fit. We now show that for small values of k, the competitive
ratio of First-Fit on k-colorable graphs is significantly better than that of Next-Fit, but
the difference tends to zero as k approaches infinity.

THEOREM 4.4. On k-colorable graphs, CFF(k) = k/(2k − 1).

The theorem is an immediate consequence of the next two lemmas. First, the perfor-
mance guarantee.

LEMMA 4.5. On k-colorable graphs, CFF(k) ≥ k/(2k − 1).

PROOF. Let E be the edge set of an arbitrary k-colorable graph G. For c ∈ C1,k , let Ec

denote the set of edges that First-Fit colors with the color c. We will prove by induction
on c that, for all c ∈ C1,k ,

∑c
i=1 |Ei | ≥ (c/(2k − 1))|E |.

For the base case, consider c = 1. By the definition of First-Fit, each edge in E\E1

is adjacent to at least one edge in E1. Furthermore, since G is k-colorable, each edge
in E1 is adjacent to at most 2(k − 1) other edges. Thus, |E | ≤ 2(k − 1)|E1| + |E1|, or
|E1| ≥ (1/(2k − 1))|E |.

For the induction step, let c ∈ C1,k . Since each edge in Ec is adjacent to at least c − 1
edges in

⋃c−1
i=1 Ei , each edge in Ec is adjacent to at most 2(k −1)− (c −1) = 2k −c −1

edges in E\ ⋃c
i=1 Ei . On the other hand, each edge in E\ ⋃c

i=1 Ei is adjacent to at
least one edge in Ec. Therefore, |E\ ⋃c−1

i=1 Ei | ≤ (2k − c − 1)|Ec| + |Ec|, or |Ec| ≥
(1/(2k − c))|E\ ⋃c−1

i=1 Ei |. Thus,

c∑
i=1

|Ei | ≥
c−1∑
i=1

|Ei | + |E | − ∑c−1
i=1 |Ei |

2k − c
= |E | + (2k − c − 1)

∑c−1
i=1 |Ei |

2k − c

≥ |E |+(2k−c−1)((c−1)/(2k−1))|E |
2k−c

(by the induction hypothesis)

= |E | − ((c − 1)/(2k − 1))|E |
2k − c

+ c − 1

2k − 1
|E |

= (2k − 1) − (c − 1)

(2k − 1)(2k − c)
|E | + c − 1

2k − 1
|E |

= c

2k − 1
|E |.
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Fig. 5. The graphs G1 and G2 when k = 4. Next to each vertex v the color set C(v) is shown.

Next, the matching impossibility result.

LEMMA 4.6. On k-colorable graphs, CFF(k) ≤ k/(2k − 1).

PROOF. The edges of the adversary graph are given in two phases. In Phase 1 the edges
of k bipartite biregular graphs are given in an order such that First-Fit will color all of
them. In Phase 2 the bipartite graphs are connected through edges that First-Fit cannot
color. The resulting graph is called G. In G every vertex has degree k, and no edge is
adjacent to more than one edge of each color in the First-Fit coloring. For such a graph
the analysis in the proof of Lemma 4.5 is tight, meaning that First-Fit colors exactly
k/(2k − 1) of the edges. Furthermore, G is bipartite. Thus, off-line colors all of the
edges.

Phase 1. The building blocks are �k/2� bipartite biregular graphs, G1, G2, . . . , G�k/2�.
For each i , Gi has vertex partition (Xi , Yi ). Xi has one vertex corresponding to each
subset of C1,k of size k + 1 − i , and Yi has one vertex corresponding to each subset
of C1,k of size i (see Figure 5). For each vertex v in Gi , let C(v) denote the set of
colors corresponding to v and let C̄(v) = C1,k\C(v). Each vertex x ∈ Xi is connected
to every vertex in {y ∈ Yi | C(x) ∪ C(y) = C1,k}. Note that, for each edge (x, y),
|C(x)| + |C(y)| = (k + 1 − i) + i = k + 1. Thus, |C(x) ∩ C(y)| = 1. We now
investigate the coloring in which each edge (x, y) receives the color in C(x) ∩ C(y).

Let x ∈ Xi , for some i . Then, for each c ∈ C(x), there is exactly one vertex y ∈ Yi

such that C(x) ∩ C(y) = {c}. Similarly, if y ∈ Yi , then, for each c ∈ C(y), there is
exactly one vertex x ∈ Xi such that C(x)∩C(y) = {c}. This shows that no two adjacent
edges are given the same color. It also shows that each vertex x ∈ Xi has degree |C(x)|
and each vertex y ∈ Yi has degree |C(y)|.

Every edge (x, y) is adjacent to an edge of each color c ∈ C1,k\(C(x)∩C(y)). Thus,
the coloring is obtained if First-Fit is given the edges in order of nondecreasing color.

Finally, no edge (x, y) is adjacent to more than one edge of each color, since |C(x)|+
|C(y)\(C(x) ∩ C(y))| = k and C(x) ∪ C(y) = C1,k .

Now, k bipartite biregular graphs GL
1 , GL

2 , . . . , GL
�k/2�, and GR

1 , GR
2 , . . . , GR

�k/2� are
constructed. For i ∈ {1, 2 . . . , �k/2�}, GL

i consists of a number of copies of Gi . Let
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Fig. 6. The graph G when k = 4.

ni be the number of copies of Gi in GL
i . Then n1 = 1 and ni+1 = ((k − i)/ i)ni ,

for i ∈ {1, 2 . . . , �k/2� − 1}. For i ∈ {1, 2 . . . , �k/2�}, GR
i is isomorphic to GL

i (see
Figure 6).

Phase 2. Let i ∈ {1, 2, . . . , �k/2�− 1}. For each pair of vertices y ∈ Yi and x ∈ Xi+1,
|C(y)| + |C(x)| = i + k + 1 − (i + 1) = k. Thus, for each vertex y ∈ Yi , there is
exactly one vertex x ∈ Xi+1 such that C(y) ∪ C(x) = C1,k . Since GL

i+1 contains at
least k − i copies of Gi+1, each vertex y ∈ Y L

i can be connected to k − i vertices
in {x ∈ XL

i+1 | C(x) ∪ C(y) = C1,k}. Since the number of copies of Gi in GL
i is

exactly i/(k − i) times the number of copies of Gi+1 in GL
i+1, this can be done such

that every vertex in XL
i+1 is connected to exactly i vertices in Y L

i . All these edges are
now added, yielding a connected graph GL in which every vertex, except the vertices in
Y L

�k/2�, has degree k. A graph GR is constructed from GR
1 , GR

2 , . . . , GR
�k/2� in the same

way. Note that in GR, Y�k/2� plays the role of Y�k/2� in GL. Finally, GL and GR are
connected through edges connecting pairs of vertices yL ∈ Y L

�k/2� and yR ∈ Y R
�k/2� such

that C(yL) ∪ C(yR) = C1,k and in a way so that each vertex in Y L
�k/2� ∪ Y R

�k/2� ends up
having degree k. The resulting graph is denoted by G.
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For each edge (x, y) given in Phase 2, C(x) ∪ C(y) = C1,k . Thus, First-Fit cannot
color the edge. Furthermore, |C(x)|+ |C(y)| = k. Thus, (x, y) is not connected to more
than one edge of each color. This completes the proof.

5. Conclusion. We have proven that the competitive ratios of algorithms for EDGE-
COLORING can vary only between approximately 0.46 and 0.5 for fair deterministic
algorithms and between 0.46 and 0.57 for randomized algorithms (it can, of course,
be worse for algorithms that are not fair). Thus, we cannot hope for algorithms with
competitive ratios much better than those of Next-Fit and First-Fit. In the case of k-
colorable graphs the gap is somewhat larger: the (tight) performance guarantee for fair
algorithms is 1

2 and the impossibility result for deterministic algorithms is 2
3 . In this case

we have no impossibility result for randomized algorithms.
We have shown that Next-Fit is worst possible among fair algorithms in both the

general case and in the special case of k-colorable graphs. Furthermore, we have found
the exact competitive ratio of First-Fit on k-colorable graphs. For small values of k it
is significantly better than that of Next-Fit, but for large values of k they can hardly be
distinguished. In the general case, the competitive ratios of First-Fit and Next-Fit are
very close. We believe that the competitive ratio of First-Fit is a little better than that of
Next-Fit but we have not proven it.

References

[1] Yossi Azar, Joan Boyar, Lene M. Favrholdt, Kim S. Larsen, and Morten N. Nielsen. Fair versus Un-
restricted Bin Packing. In Proceedings of the Seventh Scandinavian Workshop on Algorithm Theory,
volume 1851 of Lecture Notes in Computer Science, pages 200–213. Springer-Verlag, Berlin, 2000.

[2] Amotz Bar-Noy, Rajeev Motwani, and Joseph Naor. The Greedy Algorithm Is Optimal for On-Line Edge
Coloring. Information Processing Letters, 44(5):251–253, 1992.

[3] Joan Boyar and Kim S. Larsen. The Seat Reservation Problem. Algorithmica, 25(4):403–417, 1999.
[4] Joan Boyar, Kim S. Larsen, and Morten N. Nielsen. The Accommodating Function—a Generalization

of the Competitive Ratio. SIAM Journal on Computing, 31(1):233–258, 2001.
[5] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Competitive Snoopy Caching.

Algorithmica, 3:79–119, 1988.
[6] Douglas B. West. Introduction to Graph Theory, page 209. Prentice-Hall, Englewood Cliffs, NJ, 1996.


