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Abstract

Let S be a set of n points in a metric space, and k a positive integer.
Algorithms are given that construct k-fault-tolerant spanners for S.
If in such a spanner at most k vertices and/or edges are removed,
then each pair of points in the remaining graph is still connected by a
\short" path. First, an algorithm is given that transforms an arbitrary
spanner into a k-fault-tolerant spanner. For the Euclidean metric in
R
d , this leads to an O(n logn + ckn){time algorithm that constructs

a k-fault-tolerant spanner of degree O(ck), whose total edge length is
bounded by O(ck) times the weight of a minimum spanning tree of S,
for some constant c. For constant values of k, this result is optimal.
In the second part of the paper, an algorithm is presented for the
Euclidean metric in Rd . This algorithm constructs in O(n log n+k2n)
time a k-fault-tolerant spanner with O(k2n) edges.

1 Introduction

Spanners have applications in the design of networks. Consider a set S of n
points in a metric space. A network on S can be modeled as an undirected

�Portions of this work appear, in preliminary form, in [10]. The present paper improves
some of the results presented in [10].
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graph G with vertex set S and with edges e = (a; b) of length jej that is
de�ned as the distance jabj between its two endpoints a and b. Let p and q
be two points of S, and let P be a pq-path in G, i.e., a path in G between p
and q. The length jP j of P is de�ned as the sum of the lengths of the edges
of P .

Let t > 1 be a real number. We say that G is a t-spanner for S, if for
each pair of points p; q 2 S, there exists a pq-path in G of length at most t
times the distance between p and q. If S is a set of points in R

d for some
constant d, and the metric is the Euclidean metric, then we call the graph G
a Euclidean t-spanner.

The problem of constructing spanners has been investigated by many
researchers. For general metric spaces, Alth�ofer et al. [1], and Chandra et
al. [5] showed that a natural greedy algorithm computes, for any constant
t > 1, a t-spanner with O(n1+2=(t�1)) edges, in O(n3+4=(t�1)) time.

For the Euclidean case in R
2 , Keil and Gutwin [8] showed that for any

constant t > 1, a t-spanner for S having O(n) edges can be constructed
in O(n logn) time. Salowe [11], Vaidya [13] and Callahan and Kosaraju [3]
showed the same result for any �xed dimension d. Later work concentrated
on constructing Euclidean spanners that have other properties, such as low
degree and low total edge length. For example, Das and Narasimhan [7]
gave an O(n log2 n)-time algorithm that constructs for any set S of n points
in R

d , and any constant t > 1, a Euclidean t-spanner for S in which the
degree of every point is bounded by a constant, and whose total edge length
is proportional to the weight of a minimum spanning tree of S. The time
complexity was later improved by Arya et al. [2] to O(n logn).

In this paper, we show that it is possible to incorporate fault-tolerance into
such networks. Fault tolerance is intimately related to the graph-theoretic
concept of connectivity. The edge (vertex) connectivity of a graph is the
minimum number of edges (vertices) that need to be removed in order to
disconnect it. Fault-tolerant networks are usually designed by making them
highly connected.

We construct networks that are more than just resilient to edge or vertex
faults. Our networks have the property that after removing at most k vertices
and/or edges, the remaining graph still contains \short" paths between each
pair of points. Before we can de�ne this formally, we have to introduce the
following notation.

If S is a set of points, then KS denotes the complete graph on S. Let
G = (S;E) be a graph, E 0 a subset of E, and S 0 a subset of S. We denote
by G n S 0 the graph with vertex set S n S 0, and edge set the set of all edges
of E that have both endpoints in S n S 0. Similarly, G nE 0 denotes the graph
(S;E nE 0). Finally, Gn (S 0; E 0) denotes the graph with vertex set S nS 0, and
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edge set the set of all edges of E n E 0 that have both endpoints in S n S 0.

De�nition 1 Let S be a set of n points in a metric space, t > 1 a real
number, k a positive integer, and G = (S;E) an undirected graph.

1. G is called a k-vertex fault-tolerant t-spanner for S, or (k; t)-VFTS,
if for each subset S 0 of S having size at most k, the graph G n S 0 is a
t-spanner for the points of S n S 0.

2. G is called a k-edge fault-tolerant t-spanner for S, or (k; t)-EFTS, if
the following holds for each subset E 0 of E having size at most k:

� For each pair p and q of distinct points in S, the graph G n E 0

contains a pq-path having length at most t times the length of a
shortest pq-path in the graph KS n E 0.

3. G is called a k-fault-tolerant t-spanner for S, or (k; t)-FTS, if the fol-
lowing holds for each subset S 0 of S and each subset E 0 of E such that
jS 0j+ jE 0j � k:

� For each pair p and q of distinct points in S n S 0, the graph G n
(S 0; E 0) contains a pq-path having length at most t times the length
of a shortest pq-path in the graph KS n (S 0; E 0).

Note that in a vertex and/or edge fault-tolerant t-spanner, our de�nition
insists that between every pair of points there is a path whose length is at
most t times the best possible path under the circumstances, i.e., the shortest
path in the graph KS n S 0, KS n E 0, or KS n (S 0; E 0).

In the de�nition of a (k; t)-VFTS, we could have required that for each
pair p and q of distinct points in S n S 0, the graph G n S 0 contains a pq-path
having length at most t times the length of a shortest pq-path P in the graph
KS n S

0. Since KS n S
0 is the complete graph on the point set S n S 0, this

shortest path P , however, consists of the single edge (p; q). Hence, G n S 0 is
indeed a t-spanner for S n S 0.

1.1 Our results

It is clear that any (k; t)-FTS is also a (k; t)-VFTS and a (k; t)-EFTS. In
Section 2, we will prove the converse. That is, we show that any (k; t)-VFTS
is in fact a (k; t)-FTS and, hence, in particular, a (k; t)-EFTS. As a result, it
su�ces to show how to construct spanners that are resilient to vertex faults.

In Section 3, we give a simple construction that transforms any t-spanner
G0 into a (k; t)-VFTS G. If the degree of each vertex in G0 is bounded by D,
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then each vertex of G has degree O(Dk+1). Moreover, in this case the total
edge length of G is proportional to k �Dk times that of G0. The running time
of the algorithm that transforms G0 into G is bounded by O(Dk+1n).

For the Euclidean metric in Rd , Arya et al. [2] show how to compute in
O(n logn) time, a t-spanner G0 whose total edge length is proportional to the
weight of a minimum spanning tree of S, and in which each point has a degree
that is bounded by a constant D, that only depends on d and t. Combining
this with our transformation of Section 3 and our result of Section 2, gives
an algorithm that constructs in O(n logn+Dk+1n) time, a Euclidean (k; t)-
FTS whose total edge length is proportional to k �Dk times the weight of a
minimum spanning tree of S, and in which each point has degree O(Dk+1).
If k is a constant, then this result is optimal. The optimality of the running
time follows from Chen et al. [6], who proved that computing any Euclidean
t-spanner takes 
(n logn) time in the algebraic computation tree model.

In Section 4, we show that a Euclidean (k; t)-FTS having O(k2n) edges
can be constructed in O(n logn+ k2n) time, where the constant factors only
depend on t and the dimension d. Our construction is based on the well-
separated pair decomposition of Callahan and Kosaraju [4]. They show in [3]
that a Euclidean t-spanner with O(n) edges can be obtained from this de-
composition. We extend this result to fault-tolerant spanners.

2 It su�ces to construct vertex fault-tolerant

spanners

In this section, we prove the following theorem.

Theorem 1 Let S be a set of n points in a metric space, k a positive integer,
t > 1 a real constant, and G = (S;E) an undirected graph. Then G is a
(k; t)-VFTS for S if and only if it is a (k; t)-FTS for S.

It is clear that a (k; t)-FTS is also a (k; t)-VFTS. To prove the converse,
assume that G is a (k; t)-VFTS for S. Let S 0 be a subset of S of size k0, and
let E 0 be a subset of E of size k00, such that k0 + k00 � k. We may assume
without loss of generality that no edge of E 0 is incident to any point of S 0;
otherwise, we can decrease k00 accordingly.

Let p and q be two distinct points of S n S 0. We have to show that the
graph G n (S 0; E 0) contains a pq-path of length at most t times the length
of a shortest pq-path in KS n (S

0; E 0). This follows from the following two
lemmas.
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Lemma 1 Assume that (p; q) is an edge of KS n (S 0; E 0). Then G n (S 0; E 0)
contains a pq-path of length at most t times the distance between p and q.

Proof. Let S 00 be any set of at most k00 vertices of S nfp; qg, that is obtained
by taking for each edge of E 0 an arbitrary endpoint that is not equal to p or
q. Since (p; q) is not an edge of E 0, this is possible. (For example, if (a; b)
and (b; c) are edges of E 0, then S 00 can contain the endpoints a and b; or a
and c; or b and c; or only b.) De�ne G0 := G n (S 0 [ S 00). Note that

jS 0 [ S 00j = jS 0j+ jS 00j � k0 + k00 � k:

Since G is a (k; t)-VFTS for S, the graph G0 is a t-spanner for S n (S 0 [ S 00).
Since p and q are vertices of G0, this graph contains a pq-path P of length at
most tjpqj. This path neither contains vertices of S 0, nor edges of E 0. That
is, P is a pq-path in G n (S 0; E 0).

Lemma 2 The graph Gn(S 0; E 0) contains a pq-path of length at most t times
the length of a shortest pq-path in KS n (S

0; E 0).

Proof. Let P = (p0 = p; p1; p2; : : : ; pl = q) be a shortest pq-path in KS n
(S 0; E 0). Then for each i, 0 � i < l, (pi; pi+1) is an edge of KS n (S

0; E 0).
Hence by Lemma 1, the graph G n (S 0; E 0) contains a path Qi between pi
and pi+1 having length at most tjpipi+1j. Let Q be the concatenation of
Q0; Q1; : : : ; Ql�1. Then, Q is a pq-path in G n (S 0; E 0), having length

l�1X

i=0

jQij �
l�1X

i=0

tjpipi+1j = tjP j:

This proves the lemma.

3 Fault-tolerant spanners in general metric

spaces

In this section, we give a simple transformation that turns any spanner G0

into a fault-tolerant spanner G. If the degree of G0 is bounded by D, then
the degree of G is proportional to Dk+1. Moreover, in this case, the trans-
formation increases the total edge length by at most a factor proportional to
k �Dk.

Let S be a set of n points in a metric space, t > 1 a real number, and k
a positive integer. Let G0 be an arbitrary t-spanner for S. For each vertex
p 2 S, let N(p) be the set of all vertices of S n fpg that are connected to p,
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in G0, by a path consisting of at most k+1 edges. De�ne Ep := f(p; q) : q 2
N(p)g. The transformed graph G has the points of S as its vertices, and it
has edge set E := [p2SEp. Note that G0 is a subgraph of G.

Lemma 3 The graph G is a (k; t)-FTS for S.

Proof. By Theorem 1, it su�ces to show that G is a (k; t)-VFTS for S.
Let S 0 be a subset of S having size at most k, and let p and q be two

distinct points of S n S 0. We will show that the graph G n S 0 contains a
pq-path of length at most t times the distance between p and q.

Since G0 is a t-spanner for S, there is a pq-path

P = (q0 = p; q1; q2; : : : ; ql = q)

in G0 of length at most tjpqj. We will construct a pq-path Q in G n S 0 that
is a subpath of P . Then, the triangle inequality implies that the length of Q
is at most that of P . This will prove the lemma.

First assume that l � k+1. Then, q 2 N(p) and, hence, (p; q) is an edge
of G. Since p and q are both vertices of S nS 0, (p; q) is an edge of GnS 0, and
we can take for Q the path consisting of this single edge.

Assume that k + 2 � l. The following algorithm constructs the path
Q = (p0; p1; : : :) incrementally.
Step 1: De�ne p0 := p, i := 0, and j := 0. Go to Step 2.
Step 2: At this moment, Q = (p0; p1; : : : ; pi) is a path in G n S 0, j is the
index such that pi = qj, and j + k + 2 � l. (In particular, pi 6= q, and
qj 2 S n S 0.)

If there is an index m, j +1 � m � j + k+1, such that (i) m+ k+2 � l
and (ii) qm is a vertex of S n S 0, then go to Step 3. Otherwise, go to Step 4.
Step 3: Since qj and qm are both vertices of S n S 0, and qm 2 N(qj), we
know that (qj; qm) is an edge of G n S 0. Therefore, we de�ne pi+1 := qm, set
i := i+ 1 and j := m, and go to Step 2.
Step 4: We know that pi = qj and j + k + 2 � l. Moreover, for all m,
j+1 � m � j+k+1, such that qm is a vertex of SnS 0, we have m+k+1 � l.

We claim that there is an index m, j + 1 � m � j + k + 1, such that
(qj; qm) and (qm; q) are both edges of G n S 0.

Assume this claim is true. Then we de�ne pi+1 := qm and pi+2 := q, and
the construction of the pq-path Q is complete.

It remains to prove the claim. Since S 0 has size at most k, there is an
index m, j + 1 � m � j + k + 1, such that qm 2 S n S 0. Hence, qm 2 N(qj)
and (qj; qm) is an edge of G nS 0. Our assumption implies that m+ k+1 � l.
Therefore, q = ql 2 N(qm) and (qm; q) is an edge of G. Since qm and q are
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both contained in S n S 0, edge (qm; q) is contained in G n S 0. This proves the
claim.

Why does this algorithm terminate? Each time Step 3 is executed, path
Q is extended by a new point. Therefore, at some moment, Step 4 must be
executed. At that moment, Q reaches q, and the algorithm terminates.

Lemma 4 Assume that each point of S has degree at most D in G0. Then

1. each point of S has degree at most 2 �Dk+1 in G, and

2. the total edge length of G is at most 8(k + 1) �Dk times that of G0.

Proof. Let p 2 S. Then

jN(p)j � D +D2 +D3 + � � �+Dk+1 � 2 �Dk+1:

Since q 2 N(p) if and only if p 2 N(q), it follows that each point has degree
at most 2 �Dk+1 in G.

To bound the total edge length of G, we use the following charging
scheme. Let (p; q) be any edge of G, and consider any pq-path P = (p0 =
p; p1; p2; : : : ; pl = q) in G0 containing l � k + 1 edges. (Note that P exists.)
We charge the length jpqj of edge (p; q) to the edges of P , in such a way
that no edge (pi; pi+1), 0 � i < l, is charged by more than jpipi+1j. Since
jpqj � jP j, this is possible. We do this for all edges of G.

For each edge e of G0, let ne be the number of times this edge is charged.
Then the total edge length of G is at most equal to

P
e2G0

ne � jej. We will

show that ne � 8(k + 1) �Dk. This will imply that the total edge length of
G is at most 8(k + 1) �Dk �

P
e2G0

jej, which is equal to 8(k + 1) �Dk times
the total edge length of G0.

Let e be an edge of G0, and let it have endpoints a and b. Every time
e is charged, there are two points p and q, such that there is a pq-path in
G0 containing at most k + 1 edges, e being one of them. Assume w.l.o.g.
that a occurs before b on this path. Let i be the number of edges on the
subpath from p to a. Then 0 � i � k. If j denotes the number of edges on
the subpath from b to q, then 0 � j � k � i.

If we �x i and j, then the number of possibilities for p is at most

D +D2 +D3 + � � �+Di � 2 �Di;

and the number of possibilities for q is at most

D +D2 +D3 + � � �+Dj � 2 �Dj:
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It follows that

ne �
kX

i=0

2 �Di
k�iX

j=0

2 �Dj

= 4
kX

i=0

Di
�
1 +D +D2 + � � �+Dk�i

�

� 8
kX

i=0

Di �Dk�i

= 8(k + 1)Dk:

We now apply these results to the Euclidean case.

Theorem 2 Let S be a set of n points in Rd , k a positive integer, and t > 1
a real constant. There exists a Euclidean (k; t)-FTS for S

1. in which each point has degree at most �dk+d, for some constant � that
only depends on t, and

2. whose total edge length is at most k�dk times the weight of a minimum
spanning tree of S.

This (k; t)-FTS can be computed in O(n logn + �dk+dn) time. If t # 1, then
� � c=(t� 1) for some constant c.

Proof. In [2], it is shown that inO(n logn+�dtn) time, a Euclidean t-spanner
G0 can be constructed whose degree D is bounded by �dt, and whose total
edge length is proportional to �dt times the weight of a minimum spanning
tree of S. The value of �dt only depends on d and t, and if t # 1, then
�dt � (c0=(t� 1))d for some constant c0.

Let G be the graph obtained by applying our transformation to G0. By
Lemma 3, G is a Euclidean (k; t)-FTS. The bounds on the degree and total
edge length of G follow from Lemma 4. The de�nition of G immediately
leads to an algorithm for constructing it from G0, in time O(

P
p2S jN(p)j) =

O(Dk+1n).

4 Euclidean fault-tolerant spanners with a poly-

nomial number of edges

The number of edges in the Euclidean (k; t)-FTS of Theorem 2 is exponential
in k. In this section, we give an algorithm for constructing a (k; t)-FTS that
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uses only a polynomial number of edges. Unfortunately, we are not able to
prove non-trivial bounds on the degree and weight of this spanner. Before
we give our construction, we recall some facts about closest pairs and well-
separated pairs.

4.1 Closest pairs and well-separated pairs

Let S be a set of n points in R
d . Two distinct points p and q of S form a

closest pair, if jpqj = minfjxyj : x; y 2 S; x 6= yg. More generally, a sequence
(pi; qi), 1 � i � k, of pairs, where pi; qi 2 S, pi 6= qi, is called a sequence
of k closest pairs of S, if the distances jpiqij, 1 � i � k, are the k smallest
elements in the multiset fjxyj : x; y 2 S; x 6= yg. The following result is due
to Salowe [12], and Lenhof and Smid [9].

Theorem 3 ([12, 9]) Given a set S of n points in Rd and a positive integer
k, a sequence of k closest pairs in S can be computed in O(n logn+ k) time.

Our construction of fault-tolerant spanners is based on the notion of well-
separated pairs, which is due to Callahan and Kosaraju [4]. Before we can
de�ne this notion, we have to introduce the following notation.

If X is a bounded subset of Rd , then we denote by R(X) the smallest
axes-parallel d-dimensional rectangle that contains X. We call R(X) the
bounding rectangle of X.

De�nition 2 Let s > 0 be a real number, and let A and B be two �nite sets
of points in R

d . We say that A and B are well-separated w.r.t. s, if there
are two disjoint d-dimensional balls CA and CB, having the same radius,
such that (i) CA contains the bounding rectangle R(A) of A, (ii) CB contains
R(B), and (iii) the distance between CA and CB is at least equal to s times
the radius of CA.

See Figure 1 for an illustration. In this paper, s will always be a constant,
called the separation constant.

De�nition 3 ([4]) Let S be a set of n points in Rd , and s > 0 a real number.
A well-separated pair decomposition (WSPD) for S (w.r.t. s) is a sequence
of pairs of non-empty subsets of S,

fA1; B1g; fA2; B2g; : : : ; fAm; Bmg;

such that

1. Ai \Bi = ;, for all i = 1; 2; : : : ; m,
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Figure 1: Two planar point sets A and B that are well-separated w.r.t. s.
Both circles have radius �; their distance is at least s�.

2. for each unordered pair fp; qg of distinct points of S, there exists exactly
one pair fAi; Big in the sequence, such that p 2 Ai and q 2 Bi, and

3. Ai and Bi are well-separated w.r.t. s, for all i = 1; 2; : : : ; m.

The integer m is called the size of the WSPD.

Theorem 4 ([4]) Let S be a set of n points in R
d , and s > 0 a separation

constant. In O(n logn + �dsn) time, we can compute a WSPD for S of
size at most �dsn. The constant in the Big-Oh bound does not depend on s.
Moreover, for a large separation constant s, the value of �ds is proportional
to ((c+ 1)s)d for some constant c.

4.2 De�nition of the graph G

Let S be a set of n points in R
d , t > 1 a real constant, and k a positive

integer. Consider an arbitrary WSPD

fA1; B1g; fA2; B2g; : : : ; fAm; Bmg

for S, with separation constant s = 4(t+ 1)=(t� 1).
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We will de�ne a graph G based on closest pairs and the well-separated
pair decomposition, and show that it is a fault-tolerant spanner.

Our graph G has the points of S as its vertices. Below, we �rst de�ne a
set E0 of edges, and then for each i, 1 � i � m, a set Ei of edges. The edge
set E of G is then de�ned as E := [m

i=0Ei.
Let (pi; qi), 1 � i � kn, be a sequence of kn closest pairs in S. We de�ne

E0 := f(pi; qi) : 1 � i � kng:

Let 1 � i � m, and consider the well-separated pair fAi; Big. We assume
without loss of generality that jAij � jBij. To de�ne Ei, we distinguish three
cases.
Case 1: jBij � k + 1.

Choose k+1 arbitrary, but pairwise distinct points aj 2 Ai, 1 � j � k+1,
and k+1 arbitrary, but pairwise distinct points bj 2 Bi, 1 � j � k+ 1. The
edge set Ei consists of the k + 1 edges (aj; bj), 1 � j � k + 1.
Case 2: jBij � k and jAij � k + 1.

Choose k+1 arbitrary, but pairwise distinct points aj 2 Ai, 1 � j � k+1.
Let Bi = fb1; b2; : : : ; bxg, where x = jBij � k. The edge set Ei consists of the
x(k + 1) edges (aj; bl), 1 � j � k + 1, 1 � l � x. Hence, Ei has size at most
k(k + 1).
Case 3: jAij � k.

In this case, the set Ei is de�ned as the edge set of the complete bipartite
Euclidean graph on the points of Ai[Bi. Note that Ei has size jAij�jBij � k2.

This concludes the de�nition of our graph G. Note that E, the edge set
of G, has size O(kn+ k2m) = O(k2m).

4.3 The graph G is a (k; t)-FTS for S

We now prove that the above construction does have the requisite properties.
By Theorem 1, it su�ces to show that G is a (k; t)-VFTS. Let S 0 be an
arbitrary subset of S of size at most k, and let p and q be two distinct points
of S n S 0. We will prove that the graph G n S 0 contains a pq-path having
length at most t times the Euclidean distance between p and q.

The proof is by induction on the rank of the distance jpqj in the sorted
sequence of

�
jSnS0j

2

�
distances in S nS 0. First assume that p; q is a closest pair

in S n S 0. If we can show that (p; q) is an edge of E0, then it follows that
(p; q) is contained in G n S 0. Hence, this graph contains a pq-path of length
jpqj, which is at most tjpqj.

Consider the edge set E0, consisting of the kn closest pairs in S. For
each point a of S 0, E0 contains at most n � 1 edges that are incident to
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a. Therefore, by removing the vertices of S 0 from G, we remove at most
k(n� 1) < kn edges from E0. Since p; q is a closest pair in S n S 0, it follows
that (p; q) is an edge of E0.

Assume from now on that p; q is not a closest pair in S n S 0. Moreover,
assume that for any pair a; b 2 S n S 0 with jabj < jpqj, the graph G n S 0

contains an ab-path of length at most tjabj.
Let i, 1 � i � m, be the index such that p 2 Ai and q 2 Bi. According

to De�nition 3, i exists and is, in fact, unique. We assume without loss of
generality that jAij � jBij.

Since the sets Ai and Bi are well-separated, there are two balls CAi
and

CBi
having the same radius, say �, that contain the bounding rectangles

R(Ai) and R(Bi), respectively, and that have distance at least s�. We dis-
tinguish three cases.

Case 1: jBij � k + 1.
Consider the k + 1 points aj 2 Ai, 1 � j � k + 1, and the k + 1 points

bj 2 Bi, 1 � j � k + 1, that were chosen in the construction of G.

Lemma 5 There is an index j, 1 � j � k + 1, such that the graph G n S 0

contains

1. the edge (aj; bj),

2. a path P between p and aj of length at most 2t�, and

3. a path Q between q and bj of length at most 2t�.

Proof. Since S 0 has size at most k, there is an index j, 1 � j � k + 1,
such that aj and bj are both contained in S nS 0. Let j be an arbitrary index
having this property. Then (aj; bj) is an edge of G n S 0.

If p = aj, then we take for P the empty path, having length zero. So
assume that p 6= aj. Since jpqj � s�, jpajj � 2�, and s > 2, we must
have jpajj < jpqj. Therefore, by the induction hypothesis, the graph G n S 0

contains a path P between p and aj having length at most tjpajj. Clearly, P
has length at most 2t�.

In exactly the same way, it can be shown that G n S 0 contains a qbj-path
Q of length at most 2t�.

We can now complete the proof for Case 1. Consider the index j, and
the paths P and Q, of Lemma 5. Let R be the pq-path in G n S 0 obtained
by concatenating path P , edge (aj; bj), and path Q. We will show that
jRj � tjpqj.
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First note that jRj � 4t� + jajbjj. The triangle inequality implies that
jajbjj � jajpj+jpqj+jqbjj. Furthermore, jajpj � 2� and jqbjj � 2�. Therefore,

jRj � (4t+ 4)�+ jpqj:

Since jpqj � s� and s = 4(t + 1)=(t � 1), it follows that jRj � tjpqj. This
completes the proof for Case 1.

Case 2: jBij � k and jAij � k + 1.
Consider the k + 1 points aj 2 Ai, 1 � j � k + 1, that were chosen in

the construction of G. Let bj, 1 � j � x = jBij, be the points of Bi. Note
that q is one of the bj's. Also, in G, point q is connected to each point aj,
1 � j � k + 1.

Let j, 1 � j � k+1, be an index such that aj is a vertex of G nS 0. Then
(aj; q) is an edge of G nS 0. It follows in exactly the same way as in the proof
of Lemma 5, that G n S 0 contains a paj-path P of length at most 2t�. Then,
just as in Case 1, it can be shown that the path consisting of P , followed by
edge (aj; q), is a pq-path in G n S 0 of length at most tjpqj.

Case 3: jAij � k.
In this case, G contains the complete bipartite Euclidean graph on Ai[Bi

as a subgraph. Since p and q are both contained in S n S 0, (p; q) is an edge
of G n S 0. That is, G n S 0 contains a pq-path of length jpqj, which is at most
tjpqj.

We have proved the following result.

Theorem 5 Let S be a set of n points in Rd , k a positive integer, and t > 1
a real constant. Let

fA1; B1g; fA2; B2g; : : : ; fAm; Bmg

be an arbitrary WSPD for S, with separation constant s = 4(t + 1)=(t �
1). The graph G = (S;E) de�ned above is a (k; t)-FTS for S. This graph
contains O(k2m) edges.

4.4 Constructing the graph G

The algorithm for constructing the graph G follows immediately from the
results of the previous sections. Given the set S, the positive integer k, and
the real constant t > 1, we use the algorithm of [12] or [9] (see Theorem 3)
to enumerate the kn closest pairs of S, in O(n logn+ kn) time. Then, using
the algorithm of [4] (see Theorem 4), we compute a WSPD for S of size
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m = O(n), in O(n logn) time. For each pair fAi; Big in this WSPD, we
construct the corresponding edge set Ei. If Case 1 applies, then we construct
Ei in O(k) time. If Case 2 or 3 applies, then we need O(k2) time to construct
Ei.

Theorem 6 Let S be a set of n points in Rd , k a positive integer, and t > 1
a real constant.

1. There exists a (k; t)-FTS for S containing at most 
dtk
2n edges. The

value of 
dt only depends on d and t, and if t # 1, then 
dt � (c=(t�1))d

for some constant c.

2. This (k; t)-FTS can be computed in O(n logn+ 
dtk
2n) time.

Proof. Let s = 4(t + 1)=(t � 1). By Theorems 3 and 4, constructing the
graph G takes time O(n logn + �dsk

2n), where �ds � ((c0 + 1)s)d for some
constant c0. For t # 1, we have s � 8=(t� 1), and �ds � (8(c0 + 1)=(t� 1))d.
This graph has O(�dsk

2n) edges. By Theorem 1, G is a (k; t)-FTS for S.

5 Concluding remarks

We have presented e�cient algorithms for constructing spanners that are
resilient to k vertex and/or edge faults. In particular, Theorem 6 gives a
construction that uses a polynomial (i.e, O(k2n)) number of edges. On the
other hand, the construction of Theorem 2 uses a number of edges that is
exponential in k. In the latter construction, however, upper bounds on the
degree and weight can be guaranteed.

If k is a constant, then the best result is that of Theorem 2. It gives
a Euclidean k-fault-tolerant t-spanner, in which the degree of each vertex
is bounded by a constant, and whose weight is proportional to the weight
of a minimum spanning tree. Moreover, this spanner can be constructed in
O(n logn) time. Chen et al. [6] showed that constructing any t-spanner|that
is not necessarily resilient to faults|takes 
(n logn) time in the algebraic
computation tree model. Therefore, the result of Theorem 2 is optimal for
constant values of k.

Some interesting problems remain to be solved. Any graph on n vertices
that remains connected after removing at most k edges, must have 
(kn)
edges. The reason is that each vertex in such a graph must have degree at
least k + 1. Is it possible to construct a Euclidean (k; t)-FTS with O(kn)
edges, in O(n logn+ kn) time?

Let k be an even integer, and consider a set A of 1 + k=2 points that are
all very close to the origin. Let B be a set of n� 1� k=2 points that are all
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very close together, but at distance roughly one from the origin. Let G be
any Euclidean (k; t)-FTS for the set S := A [ B, where t is a constant close
to one. Then, since G is a (k; t)-EFTS, every point of A has to be connected
to at least 1+k=2 points of B. Hence, G contains 
(k2) edges having length
roughly equal to one. On the other hand, a minimum spanning tree of S has
weight roughly equal to one.

Is it possible to construct, for any set S of n points in R
d , a Euclidean

(k; t)-FTS, such that each vertex has degree O(k), and the weight of this
graph is O(k2) times the weight of a minimum spanning tree of S? Can such
a graph be constructed in O(n logn + kn) time?
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