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GENOME REARRANGEMENTSComputational Biology, Winter 2006Lund UniversityMia Persson
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Biologial Bakground

• Suppose that we want to ompare entire genome aross speies.

• For example, we an ompare the X hromosome of a mouse withthe Human X hromosome, see Figure below.
Human X Chromosome

3
Mouse X Chromosome

5 2 4 1

3 2 5 4 1

3 2 1 54

1 2 3 4 5
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Biologial Bakground

• Mutations where longer piees of a hromosome are moved oropied to other loation within the same hromosome or even toother hromosomes are alled genome rearrangements.

• In their simplest form, rearrangement events an be modeled bya series of reversals that transform one genome into another, (seeHuman-Mouse example above).
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Mathematial Model

• Consider the genome of two related speies. We divide thegenome into (possibly oriented) bloks where a blok is a setionof the genome ontaining one (or possibly more) gene (genes), seeFigure below

8

8

7 6 5 4 3 2 1 11

114 3 2 7 1 5 6

Alfafa

Garden Pea

• Two bloks in di�erent genomes have the same value if they arehomologous, that is, if they ontain the same genes.
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The Problem

• A reversal operation for a ontiguous segments of oriented bloksis an operation that inverts the order of the a�eted bloks andalso �ip their arrows.
• Consider the following ombinatorial optimization problem:Given two permutations of n oriented bloks originating from thehromosomes of two related organisms.Problem: Find the minimum number of reversals needed totransfer one permutation into the other.
• Here the minimum number of reversals omes from theassumption that Nature always �nds paths that require aminimum number of hanges (the Parsimony assumption).5
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The Problem - the Oriented Case

• Solvable in polynomial time.
• An example:

1 35 4

1 52

2

3 4

54321

5 2 1

Permutation 2

Permutation 1

Distance is at least 3 reversals

3 4
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Breakpoints

• De�nition: A breakpoint is a point between two onseutiveoriented labels that must be separated by at least one reversal.

• An example:

42

Permutation 1

3 5 6

2 3 1 46

1

5

Permutation 2 − the "Identity permutation"

a breakpoint
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Breakpoints (ont' d)

• The target permutation has zero breakpoints by de�nition.

• A reversal an remove at most two breakpoints, beause it utsthe permutation in exatly two loations.
• Hene, in the following example with four breakpoints, at leasttwo reversals are needed to turn permutation 1 into permutation2 (but in fat three reverals are needed).
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1 35 4

1 52

2

3 4

54321

5 2 1

Permutation 2

Permutation 1

3 4
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Breakpoints (ont' d)

• De�nition: Let d(α) denote the minimum number of reversalsneeded to bring the initial permutation α into the targetpermutation β. Let b(α) denote the number of breakpoints in α.

• d(α) ≥ b(α)
2

• A reversal is sorting if it redues the distane to the targetpermutation (by one).

• Note that a reversal an remove two endpoints without beingsorting. (see exerise 5 in the oursebook).
10
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The Diagram of Reality and Desire

• The aforementioned lower bound d(α) is not very tight.

• We will now derive a better bound.
• In the following example we assume that the target permutationis the identity permutation.
• Some de�nitions...
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The Diagram of Reality and Desire

−3 +3 +2 −2 +1 −1 −4 +4 +5 −5

−3 +3 +2 −2 +1 −1 −4 +4 +5 −5

Permutation 1

3 2 1 4 5
L R

RL

RL

Reality and Desire Edges:

Reality Edges:
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The Diagram of Reality and Desire

+4

−4

−1

−3

+1

+2

+3

−2

−5

+5

L
R

reality

desire
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The Diagram of Reality and Desire

• Denote the Diagram (or graph) of Reality and Desire by RD(α).

• Denote the number of yles in RD(α) by c(α).

• c(β) = n + 1, where n denotes the number of segments and β isthe target permutation.
• The number of verties in RD(α) is 2n + 2. This implies thatthere are n + 1 yles in RD(β) (note that this is thepermutation with the maximal number of yles).
• Question: How does a reversal a�et the yles in RD(α)?Consider the following example:
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+2

−2

+1

−1

+5

−5

+4
−4

−3

+3

L 3 2 4 5 1 R

3L 2 5 4 R1

L
R

Before the reversal:
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+2

−2

−3

+3

L 3 2 4 5 1 R

3L 2 5 4 R1

+1
−1

−5

+4

−4

+5

L
R

After the reversal:
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Number of Cyles

Let c(α) = denote the number of yles. c(Π) = n − 1 if Π is theidentity permutation.1. Reversal de�ned by two reality edges from di�erent ylesdereases the number of yles by one.2. Converging edges from the same yle does not inrease thenumber of yles.3. Diverging edges from the same yle inrease the number ofyles by one.
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(2)
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(1)

(2)
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A Better Lower Bound on d(α)

• d(α) ≥ n + 1 − c(α)

• This lower is very good, but...
• It does not always work.
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Good/Bad Cyles and Interleaving Graph

• The yles in RD(α) an be lassi�ed as good or bad.

• A yle is good if it has diverging edges, otherwise it is bad.

• Two yles interleave if any pair of edges ross.
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Good/Bad Cyles and Interleaving Graph

• The interleaving graph has yles as nodes. Two nodes areonneted if orresponding yles interleave, but yles of length

2 are exluded.
• A onneted omponent of the interleaving graph is good if itontains at least one good yle, otherwise it is bad.

• An example:

R
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+4
−4

L

−3

+3
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+2

G B
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Good Components

• A reversal de�ned by two diverging edges of a good yle is asorting reversal if and only if its appliation does not lead to thereation of any bad omponents.
• As long as we have a good yle, there will always be a sortingreversal of the kind that inreases the number of yles.

+1

+4
−4 +3

−5

+5 −1

−3

−2

+2

L
R

bad cycle twisted good

R
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−3
+3

+1

+2

L

−5

+4

−4

−2

−1
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Bad Components and Hurdles

• A omponent B separates omponents A and C if every edgebetween A and C has to ross an edge of B.

• A hurdle is a bad omponent that does not separate any othertwo bad omponents, the other bad omponents are non-hurdles.

• A hurdle is a super-hurdle if its removal would ause a non-hurdleto beome a hurdle.

• All other hurdles are alled simple hurdles.
23
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non−hurdle

simple hurdles

super hurdle
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Fortress

• A fortress is a permutation whih ontains an odd number ofhurdles and all of them are super hurdles.
25
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Lower bound on d(α)

• d(α) = n + 1 − c(α) + h(α) + f(α)

• c(α) is the number of yles.
• h(α) is the number of hurdles.
• f(α) is 1 if α is a fortress and 0 otherwise.

26



'

&

$

%

Algorithm - Sorting Oriented Permutation

Pik a sorting reversal and perform it until target permutation isreahed.
• If a good yle exist pik a pair of diverging edges making surethat the orresponding reversal does not reate any badomponents

• If h(α) is odd and there is a simple hurdle, ut this hurdle(dereases number of hurdles by one without reating a fortressas h(α) is odd).

• If h(α) is odd and no simple hurdle exists, then α is a fortress,merge any two hurdles (either two less hurdles and one less yleor fortress gone and one less hurdle.27
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Algorithm - Sorting Oriented Permutation (ont' d)

• If h(α) is even then merge two opposite hurdles. Choosingopposite hurdles will not reate a new hurdle (two less hurdless)
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The Problem - The Unoriented Case

• Given two permutations n bloks originating from thehromosomes of two related organisms.Problem: Find the minimum number of reversals needed totransfer one permutation into the other.
29
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The Problem - The Unoriented Case

• NP-hard
• An example:

5432

Permutation 1

2 5 4 3

2 5 3 4

2 1

1

1

1

Permutation 2

5 3 4
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The Unoriented Case - Strips

• A breakpoint exists between every pair of non-onseutive label.

• A sequene of onseutive labels surrounded by breakpoints is astrip.

• Strips are either inreasing, dereasing or both.
• L and R is always part of a single inreasing strip.
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An Example
L 1 2 8 7 3 5 4 R6

Inreasing strips: RL12, 56Dereasing strip: 87Both: 3, 4
32
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Dereasing Strips

• If a permutation ontains a dereasing strip, then it is alwayspossible to derease the number of breakpoints.

• A permutation always ontains at least one inreasing strip (RL).

• Pik the lowest label k in a dereasing strip.
k − 2 k − 1. . . . . . k + 1 k . . .

k k + 1 . . .k − 1k − 2. . .

. . . k − 1k k + 1. . .
or

. . . k + 1 k . . .k − 2k − 1

. . .

. . .

. . .

k − 2
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Algorithm

• If a label k belongs to a dereasing strip and k − 1 belongs to aninreasing strip, then there is a reversal that removes at least onebreakpoint.
• If label k belongs to a dereasing strip and k + 1 belongs to aninreasing strip, then there is a reversal that removes at least onebreakpoint.

• Let α be a permutation with a dereasing strip. If all revesalsthat remove breakpoints from α leave no dereasing strip, thenthere is a revesal that removes two breakpoints from α.
• If there are no dereasing strips, do any reversal that uts twobreakpoints. 34
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Algorithm

Until done:
• Apply reversals to dereasing strips with the smallest possiblelabel provided that the resulting permutation has a dereasingstrip.

• If the resulting permutation does not have a dereasing strips, doany reversal that uts two breakpoints.Note that as long as we have dereasing strips, we an always reduethe number of breakpoints with at least one.
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Algorithm Analysis

• For every reversal (but the �rst) that does not derease thenumber of breakpoints, the previous one dereased it by two.

• The last reversal dereases the number of breakpoints by two.

• Thus the number rate of breakpoints redutions is not less thanhalf the optimum and we have a 2-approximation.
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