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GENOME REARRANGEMENTSComputational Biology, Winter 2006Lund UniversityMia Persson
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Biologi
al Ba
kground

• Suppose that we want to 
ompare entire genome a
ross spe
ies.

• For example, we 
an 
ompare the X 
hromosome of a mouse withthe Human X 
hromosome, see Figure below.
Human X Chromosome

3
Mouse X Chromosome
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3 2 5 4 1

3 2 1 54

1 2 3 4 5
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Biologi
al Ba
kground

• Mutations where longer pie
es of a 
hromosome are moved or
opied to other lo
ation within the same 
hromosome or even toother 
hromosomes are 
alled genome rearrangements.

• In their simplest form, rearrangement events 
an be modeled bya series of reversals that transform one genome into another, (seeHuman-Mouse example above).
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Mathemati
al Model

• Consider the genome of two related spe
ies. We divide thegenome into (possibly oriented) blo
ks where a blo
k is a se
tionof the genome 
ontaining one (or possibly more) gene (genes), seeFigure below

8
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Alfafa

Garden Pea

• Two blo
ks in di�erent genomes have the same value if they arehomologous, that is, if they 
ontain the same genes.
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The Problem

• A reversal operation for a 
ontiguous segments of oriented blo
ksis an operation that inverts the order of the a�e
ted blo
ks andalso �ip their arrows.
• Consider the following 
ombinatorial optimization problem:Given two permutations of n oriented blo
ks originating from the
hromosomes of two related organisms.Problem: Find the minimum number of reversals needed totransfer one permutation into the other.
• Here the minimum number of reversals 
omes from theassumption that Nature always �nds paths that require aminimum number of 
hanges (the Parsimony assumption).5
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The Problem - the Oriented Case

• Solvable in polynomial time.
• An example:

1 35 4

1 52

2

3 4

54321

5 2 1

Permutation 2

Permutation 1

Distance is at least 3 reversals

3 4
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Breakpoints

• De�nition: A breakpoint is a point between two 
onse
utiveoriented labels that must be separated by at least one reversal.

• An example:

42

Permutation 1

3 5 6

2 3 1 46

1

5

Permutation 2 − the "Identity permutation"

a breakpoint
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Breakpoints (
ont' d)

• The target permutation has zero breakpoints by de�nition.

• A reversal 
an remove at most two breakpoints, be
ause it 
utsthe permutation in exa
tly two lo
ations.
• Hen
e, in the following example with four breakpoints, at leasttwo reversals are needed to turn permutation 1 into permutation2 (but in fa
t three reverals are needed).
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1 35 4

1 52

2

3 4

54321

5 2 1

Permutation 2

Permutation 1

3 4
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Breakpoints (
ont' d)

• De�nition: Let d(α) denote the minimum number of reversalsneeded to bring the initial permutation α into the targetpermutation β. Let b(α) denote the number of breakpoints in α.

• d(α) ≥ b(α)
2

• A reversal is sorting if it redu
es the distan
e to the targetpermutation (by one).

• Note that a reversal 
an remove two endpoints without beingsorting. (see exer
ise 5 in the 
oursebook).
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The Diagram of Reality and Desire

• The aforementioned lower bound d(α) is not very tight.

• We will now derive a better bound.
• In the following example we assume that the target permutationis the identity permutation.
• Some de�nitions...
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The Diagram of Reality and Desire

−3 +3 +2 −2 +1 −1 −4 +4 +5 −5

−3 +3 +2 −2 +1 −1 −4 +4 +5 −5

Permutation 1

3 2 1 4 5
L R

RL

RL

Reality and Desire Edges:

Reality Edges:
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The Diagram of Reality and Desire

+4

−4

−1

−3

+1

+2

+3

−2

−5

+5

L
R

reality

desire
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The Diagram of Reality and Desire

• Denote the Diagram (or graph) of Reality and Desire by RD(α).

• Denote the number of 
y
les in RD(α) by c(α).

• c(β) = n + 1, where n denotes the number of segments and β isthe target permutation.
• The number of verti
es in RD(α) is 2n + 2. This implies thatthere are n + 1 
y
les in RD(β) (note that this is thepermutation with the maximal number of 
y
les).
• Question: How does a reversal a�e
t the 
y
les in RD(α)?Consider the following example:

14



'

&

$

%

+2

−2

+1

−1

+5

−5

+4
−4

−3

+3

L 3 2 4 5 1 R

3L 2 5 4 R1

L
R

Before the reversal:
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+2

−2

−3

+3

L 3 2 4 5 1 R

3L 2 5 4 R1

+1
−1

−5

+4

−4

+5

L
R

After the reversal:
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Number of Cy
les

Let c(α) = denote the number of 
y
les. c(Π) = n − 1 if Π is theidentity permutation.1. Reversal de�ned by two reality edges from di�erent 
y
lesde
reases the number of 
y
les by one.2. Converging edges from the same 
y
le does not in
rease thenumber of 
y
les.3. Diverging edges from the same 
y
le in
rease the number of
y
les by one.
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R

+1

−1

+5

−5

+4
−4

−2

+2

−3

+3

L

(3)

(2)

(1)

(1)

(2)

(3)
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A Better Lower Bound on d(α)

• d(α) ≥ n + 1 − c(α)

• This lower is very good, but...
• It does not always work.
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Good/Bad Cy
les and Interleaving Graph

• The 
y
les in RD(α) 
an be 
lassi�ed as good or bad.

• A 
y
le is good if it has diverging edges, otherwise it is bad.

• Two 
y
les interleave if any pair of edges 
ross.

20
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Good/Bad Cy
les and Interleaving Graph

• The interleaving graph has 
y
les as nodes. Two nodes are
onne
ted if 
orresponding 
y
les interleave, but 
y
les of length

2 are ex
luded.
• A 
onne
ted 
omponent of the interleaving graph is good if it
ontains at least one good 
y
le, otherwise it is bad.

• An example:

R

+1

−1

+4
−4

L

−3

+3

−5

+5

−2

+2

G B

G
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Good Components

• A reversal de�ned by two diverging edges of a good 
y
le is asorting reversal if and only if its appli
ation does not lead to the
reation of any bad 
omponents.
• As long as we have a good 
y
le, there will always be a sortingreversal of the kind that in
reases the number of 
y
les.

+1

+4
−4 +3

−5

+5 −1

−3

−2

+2

L
R

bad cycle twisted good

R

+5

−3
+3

+1

+2

L

−5

+4

−4

−2

−1
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Bad Components and Hurdles

• A 
omponent B separates 
omponents A and C if every edgebetween A and C has to 
ross an edge of B.

• A hurdle is a bad 
omponent that does not separate any othertwo bad 
omponents, the other bad 
omponents are non-hurdles.

• A hurdle is a super-hurdle if its removal would 
ause a non-hurdleto be
ome a hurdle.

• All other hurdles are 
alled simple hurdles.
23
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non−hurdle

simple hurdles

super hurdle
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Fortress

• A fortress is a permutation whi
h 
ontains an odd number ofhurdles and all of them are super hurdles.
25
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Lower bound on d(α)

• d(α) = n + 1 − c(α) + h(α) + f(α)

• c(α) is the number of 
y
les.
• h(α) is the number of hurdles.
• f(α) is 1 if α is a fortress and 0 otherwise.

26



'

&

$

%

Algorithm - Sorting Oriented Permutation

Pi
k a sorting reversal and perform it until target permutation isrea
hed.
• If a good 
y
le exist pi
k a pair of diverging edges making surethat the 
orresponding reversal does not 
reate any bad
omponents

• If h(α) is odd and there is a simple hurdle, 
ut this hurdle(de
reases number of hurdles by one without 
reating a fortressas h(α) is odd).

• If h(α) is odd and no simple hurdle exists, then α is a fortress,merge any two hurdles (either two less hurdles and one less 
y
leor fortress gone and one less hurdle.27
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Algorithm - Sorting Oriented Permutation (
ont' d)

• If h(α) is even then merge two opposite hurdles. Choosingopposite hurdles will not 
reate a new hurdle (two less hurdless)

28
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The Problem - The Unoriented Case

• Given two permutations n blo
ks originating from the
hromosomes of two related organisms.Problem: Find the minimum number of reversals needed totransfer one permutation into the other.
29
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The Problem - The Unoriented Case

• NP-hard
• An example:

5432

Permutation 1

2 5 4 3

2 5 3 4

2 1

1

1

1

Permutation 2

5 3 4
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The Unoriented Case - Strips

• A breakpoint exists between every pair of non-
onse
utive label.

• A sequen
e of 
onse
utive labels surrounded by breakpoints is astrip.

• Strips are either in
reasing, de
reasing or both.
• L and R is always part of a single in
reasing strip.
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An Example
L 1 2 8 7 3 5 4 R6

In
reasing strips: RL12, 56De
reasing strip: 87Both: 3, 4
32
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De
reasing Strips

• If a permutation 
ontains a de
reasing strip, then it is alwayspossible to de
rease the number of breakpoints.

• A permutation always 
ontains at least one in
reasing strip (RL).

• Pi
k the lowest label k in a de
reasing strip.
k − 2 k − 1. . . . . . k + 1 k . . .

k k + 1 . . .k − 1k − 2. . .

. . . k − 1k k + 1. . .
or

. . . k + 1 k . . .k − 2k − 1

. . .

. . .

. . .

k − 2
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Algorithm

• If a label k belongs to a de
reasing strip and k − 1 belongs to anin
reasing strip, then there is a reversal that removes at least onebreakpoint.
• If label k belongs to a de
reasing strip and k + 1 belongs to anin
reasing strip, then there is a reversal that removes at least onebreakpoint.

• Let α be a permutation with a de
reasing strip. If all revesalsthat remove breakpoints from α leave no de
reasing strip, thenthere is a revesal that removes two breakpoints from α.
• If there are no de
reasing strips, do any reversal that 
uts twobreakpoints. 34
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Algorithm

Until done:
• Apply reversals to de
reasing strips with the smallest possiblelabel provided that the resulting permutation has a de
reasingstrip.

• If the resulting permutation does not have a de
reasing strips, doany reversal that 
uts two breakpoints.Note that as long as we have de
reasing strips, we 
an always redu
ethe number of breakpoints with at least one.
35
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Algorithm Analysis

• For every reversal (but the �rst) that does not de
rease thenumber of breakpoints, the previous one de
reased it by two.

• The last reversal de
reases the number of breakpoints by two.

• Thus the number rate of breakpoints redu
tions is not less thanhalf the optimum and we have a 2-approximation.
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