GENOME REARRANGEMENTS

Computational Biology, Winter 2006
Lund University

Mia Persson

Biological Background I

e Suppose that we want to compare entire genome across species.

e For example, we can compare the X chromosome of a mouse with

the Human X chromosome, see Figure below.

Mouse X Chromosome

3 5 2 4 1
] []]]

3 2 5 4 1
]] []

3 2 1 4 5

Human X Chromosome

Biological Background I

e Mutations where longer pieces of a chromosome are moved or
copied to other location within the same chromosome or even to

other chromosomes are called genome rearrangements.

e In their simplest form, rearrangement events can be modeled by
a series of reversals that transform one genome into another, (see

Human-Mouse example above).

o /

4 N

Mathematical Model '

e Consider the genome of two related species. We divide the
genome into (possibly oriented) blocks where a block is a section
of the genome containing one (or possibly more) gene (genes), see

Figure below

Alfafa
7 5 3 2 1 11
%
4 3 2 8 7 1 5 6 11
Garden Pea

e Two blocks in different genomes have the same value if they are

\ homologous, that is, if they contain the same genes. /

4

/ The Problem ' \

e A reversal operation for a contiguous segments of oriented blocks
is an operation that inverts the order of the affected blocks and

also flip their arrows.

e Consider the following combinatorial optimization problem:
Given two permutations of n oriented blocks originating from the
chromosomes of two related organisms.

Problem: Find the minimum number of reversals needed to

transfer one permutation into the other.

e Here the minimum number of reversals comes from the

assumption that Nature always finds paths that require a

K minimum number of changes (the Parsimony assumption). /

5

The Problem - the Oriented Case'

e Solvable in polynomial time.

e An example:

Permutation 1

e
1 2 3 4 5

e
1 2 5 4 3

e
1 2 5 3 4

e
5 2 1 3 4

Permutation 2

Distance is at least 3 reversals

-

Breakpoints I

e Definition: A breakpoint is a point between two consecutive

oriented labels that must be separated by at least one reversal.

e An example:
Permutation 1

.2.3.1.6.5 4.

a breakpoint

1 2 3 4 5 6

Permutation 2 — the "Identity permutation"

N

Breakpoints (cont’ d)'

e The target permutation has zero breakpoints by definition.

e A reversal can remove at most two breakpoints, because it cuts

the permutation in exactly two locations.

e Hence, in the following example with four breakpoints, at least
two reversals are needed to turn permutation 1 into permutation

2 (but in fact three reverals are needed).

/

Permutation 1

5 2 1 3 4

Permutation 2

~

Breakpoints (cont’ d)I

Definition: Let d(«) denote the minimum number of reversals
needed to bring the initial permutation « into the target
permutation 3. Let b(a) denote the number of breakpoints in «.

b(a
d() > Yo

A reversal is sorting if it reduces the distance to the target

permutation (by one).

Note that a reversal can remove two endpoints without being

sorting. (see exercise 5 in the coursebook).

/

10

The Diagram of Reality and Desire'

The aforementioned lower bound d(«) is not very tight.

We will now derive a better bound.

In the following example we assume that the target permutation

is the identity permutation.

Some definitions...

/

11

The Diagram of Reality and Desire

Permutation 1
L R

Reality Edges:

——00— 00— 00 —006 0060
L -3 +3+42 -2+1 -1-4 +4+5 -5 R

Reality and Desire Edges:

O NN

L -3 4342 -2+1 -1-4 +4+5 -5 R

12

-

The Diagram of Reality and Desire'

reality L

-3 R

-5
+3

< desire

+5
+2

+4

~

13

-

The Diagram of Reality and Desire'

Denote the Diagram (or graph) of Reality and Desire by RD(«).

Denote the number of cycles in RD(«) by c(a).

¢(f) = n+ 1, where n denotes the number of segments and 3 is

the target permutation.

The number of vertices in RD(«) is 2n + 2. This implies that
there are n + 1 cycles in RD(3) (note that this is the

permutation with the maximal number of cycles).

Question: How does a reversal affect the cycles in RD(«)?
Consider the following example:

~

/

14

Before the reversal:

L

15

After the reversal:

L
+3< R
*

-3 —4
D +4
+2 q

-5

-2

+1 1/+5
i R
L 3 2 4 5 1 R
S
L 3 2 1 5 4 R

16

-

Number of Cycles'

Let ¢(a) = denote the number of cycles. ¢(II) =n — 1 if IT is the
identity permutation.

1. Reversal defined by two reality edges from different cycles
decreases the number of cycles by one.

2. Converging edges from the same cycle does not increase the

number of cycles.

3. Diverging edges from the same cycle increase the number of

cycles by one.

17

18

A Better Lower Bound on d(«)

e dla)>n+1-—c(a)
e This lower is very good, but...

e It does not always work.

o

19

Good/Bad Cycles and Interleaving Graph'

e The cycles in RD(«) can be classified as good or bad.
e A cycle is good if it has diverging edges, otherwise it is bad.

e Two cycles interleave if any pair of edges cross.

N

20

/ Good/Bad Cycles and Interleaving Graph' \

e The interleaving graph has cycles as nodes. Two nodes are
connected if corresponding cycles interleave, but cycles of length
2 are excluded.

e A connected component of the interleaving graph is good if it
contains at least one good cycle, otherwise it is bad.

L
+2 R
-2 +1
e
+5 -1 @
-3
-5
¥7+3
+4

21

e An example:

/ Good Components I \

e A reversal defined by two diverging edges of a good cycle is a
sorting reversal if and only if its application does not lead to the
creation of any bad components.

e As long as we have a good cycle, there will always be a sorting
reversal of the kind that increases the number of cycles.

L L

+4 » . +3
K bad cycle twisted good /

22

Bad Components and Hurdles'

A component B separates components A and C' if every edge

between A and C has to cross an edge of B.

A hurdle is a bad component that does not separate any other

two bad components, the other bad components are non-hurdles.

A hurdle is a super-hurdle if its removal would cause a non-hurdle

to become a hurdle.

All other hurdles are called simple hurdles.

/

simple hurdles

non—hurdle
super hurdle

-

Fortress

A fortress is a permutation which contains an odd number of

hurdles and all of them are super hurdles.

~

Lower bound on d(«)

d() =n+1—c(a) +h(a) + f(a)

c(a) is the number of cycles.

h(a) is the number of hurdles.
(@)

f(a) is 1 if a is a fortress and 0 otherwise.

26

/ Algorithm - Sorting Oriented Permutation' \

Pick a sorting reversal and perform it until target permutation is

reached.

e If a good cycle exist pick a pair of diverging edges making sure
that the corresponding reversal does not create any bad

components

o If h(«a) is odd and there is a simple hurdle, cut this hurdle
(decreases number of hurdles by one without creating a fortress
as h(a) is odd).

e If h(«) is odd and no simple hurdle exists, then « is a fortress,

merge any two hurdles (either two less hurdles and one less cycle

K or fortress gone and one less hurdle. /

27

4 N

Algorithm - Sorting Oriented Permutation (cont’ d)

e If h(«) is even then merge two opposite hurdles. Choosing

opposite hurdles will not create a new hurdle (two less hurdless)

o /

28

The Problem - The Unoriented Case.

e Given two permutations n blocks originating from the
chromosomes of two related organisms.

Problem: Find the minimum number of reversals needed to

transfer one permutation into the other.

29

-

The Problem - The Unoriented Case'

e NP-hard

e An example:

Permutation 1

Permutation 2

30

The Unoriented Case - Strips'

A breakpoint exists between every pair of non-consecutive label.

A sequence of consecutive labels surrounded by breakpoints is a

strip.
Strips are either increasing, decreasing or both.

L and R is always part of a single increasing strip.

31

An Example I

L 1 2|8 7|35 6|4 R

Increasing strips: RL12, 56
Decreasing strip: 87
Both: 3, 4

32

4 N
Decreasing Strips I

e If a permutation contains a decreasing strip, then it is always

possible to decrease the number of breakpoints.
e A permutation always contains at least one increasing strip (RL).
e Pick the lowest label k£ in a decreasing strip.
k-2 k—1| ... k+1 k| ...

k=2 k-1 k k+1 ... [...

or
K+l k| k-2k-1]...

k+l k k—=1k-2...]...

33

/ Algorithm I \

e If a label £ belongs to a decreasing strip and k£ — 1 belongs to an
increasing strip, then there is a reversal that removes at least one

breakpoint.

e If label k belongs to a decreasing strip and k£ + 1 belongs to an
increasing strip, then there is a reversal that removes at least one

breakpoint.

e Let a be a permutation with a decreasing strip. If all revesals
that remove breakpoints from « leave no decreasing strip, then

there is a revesal that removes two breakpoints from «.

e If there are no decreasing strips, do any reversal that cuts two

K breakpoints. /

34

4 N
Algorithm I

Until done:

e Apply reversals to decreasing strips with the smallest possible
label provided that the resulting permutation has a decreasing

strip.

e If the resulting permutation does not have a decreasing strips, do

any reversal that cuts two breakpoints.

Note that as long as we have decreasing strips, we can always reduce

the number of breakpoints with at least one.

o /

35

Algorithm Analysis I

e For every reversal (but the first) that does not decrease the

number of breakpoints, the previous one decreased it by two.
e The last reversal decreases the number of breakpoints by two.

e Thus the number rate of breakpoints reductions is not less than
half the optimum and we have a 2-approximation.

o /

36

