

Approximating the Shortest Superstring Problem

Martin Paluszewski University of Copenhagen

12/2-2008

Martin Paluszewski University of Copenhagen

Approximating the Shortest Superstring Problem

(日) (四) (분) (분) (분) (분)

Sequencing of DNA, Fragment Assembly Shotgun Method Data Compression

Sequencing of DNA

- DNA, a string of 4 letters (A, G, C, T)
- Virus DNA 5×10^4 letters (base pairs)
- Human DNA 3×10^9 letters (base pairs)

596

3

Applications Applications Shortest Superstring Problem Greedy Algorithm Set Cover Based Algorithm Factor 4 Algorithm Factor 3 Algorithm Sequencing of DNA, Fragment Assembly Shotgun Method Shotgun Method DNA Shotgun 42 Fragments ACTGAACTTACGGGCTAAAGCCATACGAATCCTACGAGA Sequence ACTGAACTTACGGG Assembly AATCCTAC ACGGGCTAAAGCCATA TGAACTTACGGGCTAAAG TAAAGCCATACGAATCCTAC ACTGAACTTACGGGCTA ATACGAATCC TACGAGA Problem: How can we automate this? ▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで Martin Paluszewski University of Copenhagen Approximating the Shortest Superstring Problem Applications Shortest Superstring Problem Greedy Algorithm Set Cover Based Algorithm Sequencing of DNA, Fragment Assembly Shotgun Method **Data Compression** Factor 4 Algorithm Factor 3 Algorithm Data Compression Input: A Output: 0010101110100101010010011 index, length 00101 0,5 0101110100 3,10 1010111 2.7 12,9 001010100 010011 20,6 100101010010 11,12 Output of compression: A shortest superstring • An ordered list of start index and fragment lengths. 590 < A > 3 < E ► < E ► Martin Paluszewski University of Copenhagen Approximating the Shortest Superstring Problem

Definition Example Solution Methods Outline

Shortest Superstring Problem (SSP)

- Given a finite alphabet Σ , and set of *n* strings, $S = \{s_1, ..., s_n\} \subseteq \Sigma^+$.
- Find a shortest string s that contains each s_i as a substring.
- Without loss of generality, we may assume that no string s_i is a substring of another string s_j , $j \neq i$.

Definition Example

Outline

Solution Methods

Martin Paluszewski University of Copenhagen

Approximating the Shortest Superstring Problem

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Applications Shortest Superstring Problem Greedy Algorithm Set Cover Based Algorithm Factor 4 Algorithm Factor 3 Algorithm

Example

◆□▶ ◆□▶ ◆□▶ ◆□▶

- E

Definition Example Solution Methods Outline

Solution Methods

- Exact Algorithms
- Metaheuristics
- Approximation Algorithms

Approximating the Shortest Superstring Problem

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Algorithm Example Approximation Guarantee

Greedy Algorithm

- 1: Greedy Shortest Superstring
- 2: input: A set of strings S.
- 3: **output:** A short superstring of S.
- 4: $T \leftarrow S$
- 5: while |T| > 1 do
- 6: Let a and b be the most overlapping strings of T
- 7: Replace a and b with the string obtained by overlapping a and b
- 8: end while
- 9: T contains a superstring of S

◆□ → ◆□ → ◆三 → ◆三 →

- E

SQA

Algorithm Example Approximation Guarantee

Approximation guarantee

- ALG \leq 4 \cdot OPT (proved by Blum et. al.)
- ALG $\leq 2 \cdot \text{OPT}$ (conjectured)

Conjectured worst case $S = \{ab^k, b^kc, b^{k+1}\}$

Martin Paluszewski University of Copenhagen

Approximating the Shortest Superstring Problem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Elements
 - The input strings

Subsets

- σ_{ijk} = string obtained by overlapping input strings s_i and s_j, k letters.
- $\beta = S \cup \sigma_{ijk}$, all i,j,k
- Let $\pi \in \beta$
- set $(\pi) = \{s \in S \mid s \text{ is a substr. of } \pi \}$
- Cost of a subset
 - $set(\pi)$ is $|\pi|$
- A solution to SSP is the concatenation of π obtained from SCP

Strategy Set Cover Example Approximation Guarantee

Example

$S = \{CATGC, CTAAGT$, GCTA, TT	CA, ATGCATC
-----------------------	------------	-------------

π	Set	Cost
CATGC		
CTAAGT		
CATGCTAAGT	CATGC, CTAAGT, GCTA	10
CATGC		
GCTA		
CATGCTA	CATGC, GCTA	7
CATGC		
ATGCATC		
ATGCATCATGC	CATGC, ATGCATC	11
CTAAGT		
TTCA		
CTAAGTTCA	CTAAGT, TTCA	9
ATGCATC		
CTAAGT		
ATGCATCTAAGT	CTAAGT, ATGCATC	12

Martin Paluszewski University of Copenhagen

Approximating the Shortest Superstring Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Applications Shortest Superstring Problem Greedy Algorithm Set Cover Based Algorithm Factor 4 Algorithm Factor 3 Algorithm

Strategy Set Cover Example Approximation Guarantee

Example

GCTA		
ATGCATC		
GCTATGCATC	GCTA, ATGCATC	10
TTCA		
ATGCATC		
TTCATGCATC	TTCA, ATGCATC, CATGC	10
GCTA		
.CTAAGT		
GCTAAGT	GCTA, CTAAGT	7
TTCA		
CATGC		
TTCATGC	CATGC, TTCA	7
CATGC		
. ATGCATC		
CATGCATC	CATGC, ATGCATC	8
CATGC	CATGC	5
CTAAGT	CTAAGT	6
GCTA	GCTA	4
TTCA	ТТСА	4
ATGCATC	ATGCATC	7

Strategy Set Cover Example Approximation Guarantee

Approximation

Proof

First inequality: $OPT_{SSP} \le OPT_{SCP}$ Let s be the string obtained from an optimal solution to the set cover problem. Then,

$$OPT_{SCP} = |s|$$

Since s covers all strings, s is a valid solution to the SSP and:

$$|s| \ge OPT_{SSP}$$

3

◆□>

Strategy Set Cover Example Approximation Guarantee

Approximation

Proof, continued

Second inequality: $OPT_{SCP} \le 2 \cdot OPT_{SSP}$

Show that <u>some</u> set cover always can be constructed such that the inequality holds.

Strategy Set Cover Example Approximation Guarantee

Approximation

Proof, continued

- set(π₁), set(π₂), ..., set(π_t) is a solution to SCP (not necessarily optimal).
- Each input string is covered by at most two π strings. (π_i cannot overlap with π_{i+2}).
- $\sum_{i} |\pi_i| \leq 2 \cdot \text{OPT}_{SSP}$
- $OPT_{SCP} \leq 2 \cdot OPT_{SSP}$

◆□> <畳> <置> < => < => ·

590

- B-

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

Important property of a shortest superstring *s*

 $s = prefix(s_1, s_2) \circ prefix(s_2, s_3) \circ \cdots \circ prefix(s_n, s_1) \circ overlap(s_n, s_1)$

Example

- s: TCTAAGTTCATGCATC
- 1 TCTA.....
- 2 .CTAAGT.....
- 3 TTCA.....
- 4CATGC...
- 5ATGCATC
- 1TCTA

Martin Paluszewski University of Copenhagen

Approximating the Shortest Superstring Problem

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● ● ●

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

Prefix Graph

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

Prefix Graph

Applications Shortest Superstring Problem Greedy Algorithm Set Cover Based Algorithm Factor 4 Algorithm Factor 3 Algorithm

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

TSP in Prefix Graph

 $OPT_{TSP} = |prefix(s_a, s_b)| + |prefix(s_b, s_c)| + \dots + |prefix(s_n, s_a)|$

 $OPT_{SSP} = |prefix(s_1, s_2)| + |prefix(s_2, s_3)| + \cdots + |prefix(s_n, s_1)| + |overlap(s_n, s_1)|$ Lower bound:

$OPT_{TSP} \le OPT_{SSP}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ト

- E

Definitions Prefix Graph **Cycle Cover** Example Approximation Guarantee

TSP is NP-hard \rightarrow cycle cover problem

◆□> <畳> <置> < => < => ·

590

$$ALG_{CC} \le 4 \cdot OPT_{SSP}$$

Proof (sketch):

$$s = \sigma(c_1) \circ \dots \circ \sigma(c_k) \tag{1}$$

$$s = \alpha(c_1) \circ s_{1_1} \circ \ldots \circ \alpha(c_k) \circ s_{k_1}$$
(2)

$$|s| = |\alpha(c_1) \circ \ldots \circ \alpha(c_k)| + |s_{1_1} \circ \ldots \circ s_{k_1}| \quad (3)$$

- Since $OPT_{CCP} = |\alpha(c)|$ the α strings are bounded by OPT_{SSP} .
- $OPT_{CCP} \le OPT_{TSP} \le OPT_{SSP}$
- We need to show that concatenation of representative strings is bounded by 3 · OPT_{SSP}

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

Lemma 1

If each string in $S' \subseteq S$ is a substring of t^{∞} for a string t, then there is a cycle of weight at most |t| in the prefix graph covering all vertices corresponding to strings in S'

	+∞	٩.
	$\begin{array}{c} t \\ \hline t \\ \hline a \\ \hline b \\ \hline c \\ \hline \end{array}$	
- Sort strings		
	t^{∞}	L

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

Definitions Prefix Graph Approximation Guarantee

Definitions Prefix Graph Cycle Cover **Approximation Guarantee**

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

- There is a cycle covering all strings in c and c' with weight at most |α| (lemma 1)
- Contradiction.

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

Proof of factor 4 algorithm

Definitions Prefix Graph Cycle Cover Example Approximation Guarantee

Proof of factor 4 algorithm, continued.

$$OPT_{SSP} \geq \sum_{i=1}^{k} |r_i| - \sum_{i=1}^{k-1} |overlap(r_i, r_{i+1})|$$

Lemma 2:

$$|\operatorname{overlap}(r, r')| < w(c) + w(c')$$

$$OPT_{SSP} \ge \sum_{i=1}^{k} |r_i| - 2\sum_{i=1}^{k} w(c_i)$$

$$\sum_{i=1}^{k} |r_i| \le \text{OPT}_{SSP} + 2\sum_{i=1}^{k} w(c_i) \le 3\text{OPT}_{SSP}$$

$$ALG = \sum_{i=1}^{\kappa} |\sigma(c_i)| = w(C) + \sum_{i=1}^{\kappa} |r_i| \le 4 \cdot OPT_{SSP}$$

Applications
Shortest Superstring Problem
Greedy Algorithm
Set Cover Based Algorithm
Factor 4 Algorithm
Factor 3 Algorithm

Algorithm Approximation Guarantee

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Factor 3 Algorithm

- Construct the prefix graph corresponding to strings in S
- Find a minimum weight cycle cover of the prefix graph, $C = \{c_1, ..., c_k\}$
- Run the greedy superstring algorithm on {σ(c₁), · · · , σ(c_k)} and output the resulting string τ

Algorithm Approximation Guarantee

Lemma 1

$$|\tau| \leq \operatorname{OPT}_{\sigma} + w(C)$$

Proof

- Assume σ(c₁), · · · , σ(c_k) appear in this order in the superstring of S_σ
- Maximum compression is:

$$||S_{\sigma}|| - OPT_{\sigma} = \sum_{i=1}^{k-1} |overlap(\sigma(c_i), \sigma(c_{i+1}))|$$

Martin Paluszewski University of Copenhagen

Approximating the Shortest Superstring Problem

◆□> <畳> <置> < => < => ·

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Algorithm Approximation Guarantee

Proof, continued

$$||S_{\sigma}|| - OPT_{\sigma} = \sum_{i=1}^{k-1} |overlap(\sigma(c_i), \sigma(c_{i+1}))|$$

- $|\operatorname{overlap}(r, r')| < w(c) + w(c')$ (lemma 2)
- So maximum compression is: $||S_{\sigma}|| - OPT_{\sigma} \le 2w(C)$
- Greedy algorithm gives: $||S_{\sigma}|| - |\tau| \ge \frac{1}{2}(||S_{\sigma}|| - OPT_{\sigma})$
- $2(|\tau| OPT_{\sigma}) \le ||S_{\sigma}|| OPT_{\sigma} \le 2w(C)$

