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Abstract 
Constraint programming is a growing field of research and is increasingly interesting to the 
software industry. It is considered the leading method of solving discrete optimization 
problems, such as scheduling. The biggest issue with optimization problems is that they often 
have an exponential time complexity. Both parallelization and distribution can be used to 
make more problems solvable in acceptable time. 

In this thesis parallel and distributed extensions to a constraint solver have been 
implemented and evaluated. We have used a solver written entirely in Java, which facilitated 
fast development. The main goal of this work was to explore whether such extensions are 
feasible with regard to the timeframe and if they are useful from a performance perspective. 

The hardware development, at time of writing, has lately taken a turn towards processors 
with several cores. In order to harness the power of the next generation hardware, 
parallelization of constraint solvers are necessary. Further, the internet and improved network 
technologies provide a means of achieving high performance at low cost. 

The issues that need addressing when parallelizing or distributing a program are the cost 
of communication between processes and load balancing. This thesis focuses on the cost of 
copying and serialization of objects in a modern language with automatic memory-
management.  



 iv

Contents 
ABSTRACT.........................................................................................................................................................III 
CONTENTS......................................................................................................................................................... IV 
CHAPTER 1 .......................................................................................................................................................... 1 

INTRODUCTION AND BACKGROUND .................................................................................................................... 1 
1.1 Constraint Programming......................................................................................................................... 1 

1.1.1 History ............................................................................................................................................................... 1 
1.1.2 Example............................................................................................................................................................. 1 
1.1.3 Constraint Solver ............................................................................................................................................... 2 
1.1.4 Consistency Methods......................................................................................................................................... 2 
1.1.5 Search Methods ................................................................................................................................................. 3 
1.1.6 Backtracking...................................................................................................................................................... 4 
1.1.7 Variable Selection ............................................................................................................................................. 4 
1.1.8 Value Selection.................................................................................................................................................. 4 

1.2 Parallel Search........................................................................................................................................ 4 
1.3 Distributed Search................................................................................................................................... 6 
1.4 Parallelization and Distribution in Java ................................................................................................. 7 
1.5 Motivation................................................................................................................................................ 7 

CHAPTER 2 .......................................................................................................................................................... 9 
MANAGED CONSTRAINT SOLVER........................................................................................................................ 9 

2.1 Basics....................................................................................................................................................... 9 
2.2 Example ................................................................................................................................................. 10 
2.3 Implementation ...................................................................................................................................... 11 

CHAPTER 3 ........................................................................................................................................................ 12 
EXTENSIONS FOR PARALLELIZATION AND DISTRIBUTION ................................................................................. 12 

3.1 Splitting the Workload ........................................................................................................................... 12 
3.2 Parallelization ....................................................................................................................................... 13 

3.2.1 Threading......................................................................................................................................................... 14 
3.2.2 Copying ........................................................................................................................................................... 15 

3.3 Distribution............................................................................................................................................ 15 
3.3.1 RMI Structure.................................................................................................................................................. 17 
3.3.2 Serialization..................................................................................................................................................... 18 

CHAPTER 4 ........................................................................................................................................................ 19 
EXPERIMENTS AND RESULTS............................................................................................................................. 19 

4.1 Experiment Setup................................................................................................................................... 19 
4.2 Golomb Ruler ........................................................................................................................................ 19 

4.2.1 Problem Description ........................................................................................................................................ 19 
4.2.2 Results with Parallelization ............................................................................................................................. 20 
4.2.3 Results with Distribution ................................................................................................................................. 22 

4.3 N-Queens ............................................................................................................................................... 23 
4.3.1 Problem Description ........................................................................................................................................ 23 
4.3.2 Results with Parallelization ............................................................................................................................. 24 
4.3.3 Results with Distribution ................................................................................................................................. 26 

CHAPTER 5 ........................................................................................................................................................ 28 
CONCLUSIONS................................................................................................................................................... 28 
FUTURE WORK.................................................................................................................................................. 29 

REFERENCES.................................................................................................................................................... 30 
APPENDIX A ...................................................................................................................................................... 32 

ACTION SEQUENCE DIAGRAMS ......................................................................................................................... 32



 1

Chapter 1 

Introduction and Background 

The goal of this master thesis is to evaluate the performance gain that can be achieved through 
parallelization and distribution of a constraint solver. Previous work in this field has mostly 
dealt with solvers written in C or C++, where memory is managed manually by the 
programmer. Disolver (Disolver, 2006) is an example of such a program. In this thesis, 
however, a solver written entirely in Java, a language with automatic memory-management, 
will be used which affects the aim of increasing the performance of the solver. 

1.1 Constraint Programming 

1.1.1 History 
Constraint programming first started to appear in the late 1960’s (Marriot & Stuckey, 1998). 
In the beginning it mostly consisted of extensions to traditional programming languages that 
allowed the programmer to use constraint relations. The extensions, however, were not 
appealing enough since they relied on fairly simple methods that could rarely be used outside 
specific contexts. Later came languages such as Prolog, which used a declarative syntax that 
allowed the programmer to let a powerful solver take care of the complex operations. 

1.1.2 Example 
A good example of constraint programming is the send more money-problem, where values 
are assigned to the letters in a way that solves the equation. 
 

  S E N D 
+  M O R E 
= M O N E Y 

 
This problem can be written in Prolog as depicted in Figure 1. 
 

1 send_more_money(S, E, N, D, M, O, R, Y) :- 
2  [S, E, N, D, M, O, R, Y] :: [0..9], 
3  set_constraints([S, E, N, D, M, O, R, Y]), 
4  labeling([S, E, N, D, M, O, R, Y]). 
5 
6 set_constraints([S, E, N, D, M, O, R, Y]) :- 
7  S =\= 0, 
8  M =\= 0, 
9  alldifferent([S, E, N, D, M, O, R, Y]), 
10  1000 *S + 100 *E + 10 *N + D    +  
11  1000 *M + 100 *O + 10 *R + E    = 
12  10000*M + 1000*O + 100*N + 10*E + Y. 
 

Figure 1: Prolog version of the send more money problem. 
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In the program in Figure 1 the capital letters are variables that can assume any numeric value. 
On line 2 the variables are constrained to only hold a value between 0 and 9. On line 7 and 8 
the first variable in the numbers that the words spell are set to not be equal to zero. On line 9 
it is declared that all the variables must have different values. On the last three lines the 
relationships between the values are defined. The actual search for a valid solution is called 
on line 4. During the labeling process all the constraints are checked for consistency, given 
the values that the solver has assigned to the variables that have already been processed.  

1.1.3 Constraint Solver 
In this thesis we will assume that only integer values are allowed for variables. This limitation 
is not as strong as it may seem – the most important usages of constraint programming are 
discrete optimization problems. In constraint programming, integer-only variables are referred 
to as finite domain variables (FDVs). All such variables have a finite domain (FD) of values 
that the variable is allowed to assume. 

The constraint solver finds solutions to the problem that has been declared. This is done 
through a depth-first search. On each level of the search a variable is chosen in some way and 
assigned one of the values from its domain. Then, all the constraints that the assignment can 
affect are evaluated to see if the assignment breaks any of the rules that the programmer has 
given, this is referred to as consistency checking. During this check pruning is performed, 
where illegal values are removed from the domains of the variables whose constraints were 
affected by the assignment. Because of pruning, the number of values that need to be tested 
per variable is reduced the deeper the search goes. If the assignment does not violate any 
constraints it is said to be consistent and the search can progress. If it is inconsistent then the 
solver has to backtrack by removing the assigned value from the domain of the variable and 
try another value. 

1.1.4 Consistency Methods 
There are several different ways of performing consistency checking: node consistency, arc 
consistency, generalized arc consistency, path consistency, and bounds consistency (Dechter, 
2003). Generalized arc consistency and path consistency are rarely used since there are more 
efficient, often constraint specific, algorithms.  

Node and arc consistency are named so because of their operation in a constraint graph, 
where a FDV is a node and constraints are arcs between nodes. Node consistency is the 
method used for unary constraint, i.e., constraints with only one FDV where the arc ends in 
the same node it originated from. In Figure 1 the constraints on line 7 and 8 are typical 
examples of unary constraints. Node consistency determines if a value is consistent or not, if 
it is inconsistent, then that value is removed from the domain of the variable.  

Arc consistency is used for binary constraints – constraints with two FDVs. Given the 
FDVs X and Y the constraint graph is consistent if for every possible value of X there is a 
value of Y that satisfies the constraint between X and Y. 
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Figure 2: Arc-consistency. 

 
As can be seen in Figure 2, if X and Y belong to the domain {1, 2}, only X = 1 and Y = 2 is a 
legal assignment given the constraint Y = X + 1. This will be discovered by the arc 
consistency algorithm, and the domains will be pruned to match. 

Bounds consistency looks at the interval of values in the domains rather than the actual 
values in those domains. This is done for an arbitrary number of variables in a constraint. 
Bounds consistency is mostly performed on arithmetic constraints. By grouping several 
variables into the same constraint, bounds consistency becomes more efficient than using the 
equivalent set of binary constraints and solve those using arc consistency. In bounds 
consistency, the domains are approximated by the minimum and the maximum value. By 
finding two solutions, one minimal and one maximal, the remaining values in the domain will 
also be possible solutions. Since there can be holes in domains, a domain may not be 
describable simply by the lowest and highest value of the domain. Bounds consistency can be 
extended to use domain consistency that looks at the subintervals instead. 

1.1.5 Search Methods 
There are three different kinds of search: search for one solution, search for all solutions, and 
search for the optimal solution. Many problems in constraint programming are NP-complete, 
and thereby proving the optimality is NP-hard (Garey & Johnson, 1979). Finding a solution, 
however, usually takes exponential time. Since there is no way to know whether a particular 
branch of the search tree will be a solution or not, the progress through a branch has to be 
stored in order to allow backtracking. This means that a constraint solver will use a large 
amount of memory during the search process. 

Search for one solution is just like an ordinary depth-first search. After a solution has been 
found all the variables that were to be labeled have been assigned a value, and the search 
terminates. 

Search for all solutions will try all consistent combinations of values. In essence it will 
perform a large amount of searches for one solution. 

Search for the optimal solution is done by using a cost function that describes the cost of 
the solution. The optimal solution is that which minimizes (or maximizes) the cost function. 
The most common method for searching for the optimal solution is branch and bound (BB) 
(Land & Doig, 1960; Lawler & Wood, 1966). The principle of BB is that after a solution has 
been found, there is no need to explore branches that can only render more expensive 
solutions, i.e., the search is bounded. Therefore the search for the optimal solution will usually 
be much faster than the search for all solutions. 

Sometimes it is enough to find any solution at all, and if the problem is difficult to solve, 
one can use methods of heuristic search methods. Such methods are incomplete in the sense 
that there may be solutions even if a local search does not find it. One form of heuristic search 
is credit search, which spends a certain amount of its allotted credits in one part of the tree, 

Y X 

1 1 

2 2 

Y = X + 1 
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before backtracking to the start in order to proceed down into other branches using the 
remainder of the credits. These methods are especially good if one either wants a solution fast 
or not at all.  

1.1.6 Backtracking 
When the current solution is discovered to be inconsistent, the search has to backtrack. This 
can be a very costly procedure if the search gets stuck in one part of the tree. One reason for 
the search to get stuck is that it does not backtrack to the level that is the real cause of the 
inconsistency. Instead it backtracks only to the point where the inconsistency is essentially 
doomed to happen again. Getting stuck at processing the same part of the tree over and over 
again is referred to as thrashing. 

In order to avoid thrashing one can use look-ahead or look-back techniques. Look-ahead 
refers to the process of trying to avoid situations where the solver can get stuck. Such methods 
require some meta-knowledge of the problem, however. Therefore, in practice, look-ahead is 
mostly done by using good methods for variable selection. Look-back on the other hand is 
less problem specific since it takes place later in the search-tree, making learning a possibility. 

The first step in look-back is to find the cause of the inconsistency, after which one can 
either backtrack to the assignment that caused the problem, or backtrack and record the 
reason. Backtracking several steps is referred to as backjumping, since it jumps to the cause of 
the inconsistency. Finding the conflicting variable and performing the jump is an expensive 
task, therefore recording the reason in the form of a constraint is a good idea. Otherwise the 
performance gained, may be lost in other parts of the tree. Unfortunately learning is also 
expensive, especially in space. Despite the costs involved, however, look-back can 
significantly improve the performance of the search (Dechter, 2003). 

1.1.7 Variable Selection 
The depth first search can be made a lot faster by labeling variables in an intelligent order. 
The most common method is called first fail, it chooses the FDV with the smallest domain. 
This will quickly reduce the width of the search tree. Another method is most constrained, 
which picks the variable used in the most constraints. This will maximize the propagation and 
therefore improve pruning. 

1.1.8 Value Selection 
After a variable has been chosen a value has to be assigned to it. This value is taken from the 
domain of the FDV. If one is searching for the minimal solution then selecting the smallest 
value in the FD is the logical approach. Otherwise, one can select the medium value or any 
other value in the domain that is suitable for the solution one is looking for. 

1.2 Parallel Search 

Parallel search is the multithreaded version of search. By using several threads one can run 
search processes on several processors concurrently. In this thesis, parallel refers to the 
running of several processes concurrently where the processes share memory, and distributed 
refers to the situation where the processes do not share memory, i.e., they run on separate 
machines. The situation where one runs several processes on several machines, i.e., 
distributed-parallel processing, will be mentioned but not studied. 
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Parallel search has been an important research area for quite some time, Grama & Kumar 
(1995) sums up a lot of that research. The simple reason is that one can achieve a great speed-
up through the usage of several processors. The basic principle is to create different processes 
for different parts of the search tree. The problem with such an approach is that some subtrees 
may be a lot smaller than others. In constraint programming, where the sizes of the domains 
change as constraints are enforced, there is no way to tell how big a subtree will be. 
Therefore, one has to implement load balancing, i.e., when a process that has finished can 
receive more work from those processes that are overburdened. There are several different 
approaches to achieve load balancing (Mitra et al., 1997). The reason there are so many 
methods is that the goal is to minimize communication while maximizing the processor usage. 
Obviously there is no solution that is optimal in all cases, rather the performance is dependent 
on the hardware. If the cost of communication is too high compared to the execution time, it 
may even be better not to parallelize the search at all. 

In both parallel and distributed search there are three stages: initiation, execution, and end. 
In the initiation stage, the environment and search processes are started. During the execution, 
the load balancing tries to maximize the amount of useful work performed by the processors 
or machines. Finally, at the end stage, the search is almost finished and therefore the cost of 
communication is too high, and the processes begin to terminate. 
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Figure 3: Load balancing 

 
Figure 3 illustrates the actual load versus the optimal load. Ideally, all the available processes 
should execute simultaneously for the entire duration of the search. But instead, the 
initialization and end stages limit how long the processes are available to the search. Also, the 
load balancing is unable to keep the load at its maximum for the duration of the execution 
stage. 

The efficiency measurement of a parallel program is called speed-up. There are four 
categories of speed-up: super-linear, linear, sub-linear, and slow-down (Mitra et al., 1997). 
The speed-up is calculated as the time it takes for a single process to finish, divided by the 
time it took for several parallel processes to finish: S = Tserial / Tparallel. If the measure is higher 
than the number of processes, the speed-up is super-linear. If it is lower, it is sub-linear, and if 
it is equal to the number of processes, the speed-up is linear. In the case of slow-down, the 
speed-up starts out as at least sub-linear and then shrinks as more processes are added.  
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Figure 4: The different speed-ups 

 
Amdahl’s law (Amdahl, 1967) states that since the parallel program will contain non-parallel 
parts, the speed-up cannot be higher than sub-linear. In the case of branch and bound, 
however, this does not hold since strong bounds, discovered early can lead to a super-linear 
speed-up, see for instance Ashford et al. (1992). One effect that is almost always observed, 
though, is that the improvement in speed-up is reduced the more processes are added. The 
reason is that the more processors or machines there are, the more communication will take 
place in order to maximize the utilization. Since the communication is inherently serial, the 
non-parallel portion of the execution as a whole will increase.  

1.3 Distributed Search 

Distributed search works in the same way as parallel search with the difference that the 
processes run on separate machines. By separate machines one usually means machines that 
do not share memory. Hence, the communication between the processes has to take place over 
some dedicated communications channel, such as a network. Thanks to the development of 
the Internet, network technology has made great advances in the past decades, and is today 
superior both in cost and bandwidth to competing technologies. In this thesis it will be assume 
that the communication is done over some form of network. 

In distribution, the minimizing of communication is more important than in 
parallelization. There are several reasons, one is that the bandwidth in a network is much 
lower than for a system-bus. Therefore, the messages sent, should be of minimal size. Another 
concern is that the information needs to be serialized in some way. This means that the 
contents of the messages have to be translated into a sendable form, and then translated back 
by the receiver. Hence, an effective translation is necessary, and a further requirement for 
small messages is added. The third issue is related to the structure of the network, the most 
common form of network today is a local area network (LAN) that has a tree structure. Just as 
for hypercubes, which have a direct connection in cubic form (Dehne et al., 1990), some 
computers are faster to reach than others. The biggest downside of using a LAN is that the 
bandwidth is dependent on both the throughput and the number of messages sent. Only one 
computer at a time can send a message to a specific receiver, all other computers have to wait 
before they can send their messages (Forouzan, 2001). There have been several attempts at 
minimizing communication, one successful method is to use a hierarchy, where a master 
controls the load balancing (Aida & Natsume, 2003). 
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Since networks have previously been quite slow, there has not been that much research 
into using distribution over a LAN as a means of improving the speed of search. The focus 
has instead been at creating algorithms for distributed variables, a situation called distributed 
constraint satisfaction problem (DisCSP). The most effective way to speed up the search 
process is to let all the computers access all the data, and to make the communication as 
efficient as possible. In the DisCSP situation, the goal is not to maximize speed, but rather to 
solve the problem without sharing data between the computers. In this thesis we will only 
briefly deal with distributed variables, see Yokoo et al. (1998), Yokoo & Hirayama (2000), 
and Hirayama & Yokoo (2004) for more on DisCSP. The advantage of not sharing 
information between processes is information security. By mostly sending ok and not-ok 
messages, little information would leak if someone listened in on the communications. 
Another method to improve security is to encrypt the information (Yokoo, 2005). Lately there 
has been some research into the combined situation where constraints are distributed, and 
several search processes are used in order to maximize the utilization of the available 
computers. This has been done to great success with regard to speed-up in the DisCSP case 
(Zivan & Meisels, 2006). 

The latest development in distributed computing is grid technologies (Baker et al., 2002). 
Grid computing is a term describing the techniques involved in facilitating distribution over 
any given network. The technology involved is, e.g., standardized communication protocols. 
The idea is to utilize computer power that has been made available by its owners. To date, the 
most famous example of a grid-like effort is the SETI@home project (SETI, 2006). 

1.4 Parallelization and Distribution in Java 

Java has built-in support for both parallelization and distribution. These facilities can be 
somewhat cumbersome to use, however, therefore there are also several helper libraries. One 
such example is cajo (cajo, 2006), which provides a simpler means of calling functions on a 
different machine. Both synchronous and asynchronous calls can be made, both with the 
drawback that one has to use the Object class for return values and parameters. Although cajo 
was not used in this work, the means of using multicast messages to make the presence of an 
RMI-server known was inspired by it. The reason cajo was not used is that the design of the 
distribution made it very simple to use the standard RMI library in Java. In Java there is also 
support for CORBA (CORBA, 2006), which allows one to distribute programs between 
different programming languages. Since all the code was written in Java, using CORBA 
would only have created a further obstacle in the development 

Parallelization in Java is quite simple to achieve, there are built-in thread objects and 
using the start method, those threads will be run separately from the main thread. Locks and 
synchronization are also features in the standard libraries and in the language itself. Therefore 
there is rarely any need to use third party libraries to achieve parallelization. 

1.5 Motivation 

There are two main reasons why this thesis is relevant, the first in that the solver that has been 
used was written in a managed language, i.e., the allocation and deallocation of memory is 
handled automatically, and the second reason is the current development in hardware towards 
multi-core processors. 



 8

The fact that the solver is written in Java instead of C or C++ has an impact for both 
parallelization and distribution. The Java runtime requires quite a lot of memory, and all 
objects have a much larger overhead than in C++. Given that some problems in constraint 
programming use several hundred constraints and variables, the overhead will have a 
significant impact on the time it takes to initialize processes. Another factor that needs to be 
studied in parallel search is the impact of the runtime. The garbage collector in Java 1.5 is 
capable of running as a separate process. Therefore a system with more than one processor 
core will automatically receive a performance boost. The level of performance increase from 
the parallel garbage collecting is dependent on how much memory the search uses.  

In contrast to C and C++, Java has a built-in support for concurrency. This facilitates the 
rapid development of a parallel solver, allowing both parallelization and distribution to be 
studied in the timeframe of a master thesis. Java also has libraries supporting remote method 
invocation (RMI). The RMI classes provide a simple means of creating distribution, where 
one can handle a call to a function on another machine just like a local function call. The 
downside is that the communication is handled through automatic serialization, during which 
some of the overhead of the parameter objects will also be serialized. Hence, the serialization 
and communication needed to make a remote invocation takes at least an order of a magnitude 
longer than the copying of objects needed for a parallel call. 

The second of the two main motives for this thesis, the current hardware development, is 
relevant since both parallelization and distribution is being studied. In 2005 the first dual-core 
processors were made available to the average desktop consumer. Multi-core technology is 
the term for putting several processor cores on the same central processing unit (CPU). One 
of the main reasons for this development is that the heat generated from energy loss became 
unmanageable. In a move to improve performance without increasing heat loss, Intel and 
AMD – the two biggest CPU manufacturers in the world at the time of writing – decided to 
put several cores on the same processor. In order to harness the power of several cores, 
however, programs must use several threads, running in parallel. Therefore the research and 
development of good techniques and tools for parallelization will become central to the 
development of end-user software. 

Since a multi-core processors system will only need one communications channel to the 
memory and only one processor socket, it is likely to be cheaper to manufacture than an 
equivalent multi-processor system. Combined with the advent of grid computing, the future of 
large-scale servers and supercomputers probably lies in grids of multi-core systems. The 
amount of communication needed between computers in such machine constellations would 
be inversely dependent on the number of cores per processors, improving the case for existent 
network technologies such as LANs in supercomputing.  

One of the main arguments against parallel and distributed search is that the problems are 
usually NP-hard, and finding a solution often takes exponential time (Roucairol, 1996; Grama 
& Kumar, 1995). Thus, one would need an exponential amount of processors in order to 
reduce the problem to polynomial time. However, processor development has followed 
Moore’s law (Moore, 1965) quite well since its inception. Hence, the potential performance of 
a processor, as a function of time, is exponential. Given the development towards multi-core 
processors, it is therefore necessary to move to parallel search methods, or compile for 
parallelism (Hermenegildo, 2000), in order to continue to take advantage of the technological 
development.  

 



 9

Chapter 2 

Managed Constraint Solver  

2.1 Basics 

The solver that this thesis uses is JaCoP (Java Constraint Programming Library), it is written 
entirely in Java 1.5 (JaCoP, 2006). In order to use the solver, one writes a regular Java 
program that uses the constraints that the JaCoP library provides. The most common 
constraints, such as X ≠ Y, alldifferent, and cumulative are all available.  

The search procedure in the solver will first check that the all the constraints are 
consistent, i.e., a solution is possible, then perform the search, and last it will assign specific 
values to the variables that were to be named. The algorithm for the search looks as follows: 

 
 boolean label(v) 
  if empty(v) 
   if consistent(store) 
    return true 
   else 
    return false 
  else 
   if not consistent(store) 
    return false 
 
   choose(v1 from v) 
   choose(n1 from domain(v1)) 
   assign(n1 to v1) 
   
   if consistent(store) 
    remove(v1 from v) 
   else 
    remove(n1 from domain(v1)) 
   return label(v) 
 

Figure 5: Basic JaCoP search algorithm for one solution. 
 

Figure 5 shows the algorithm for finding one solution, the only change needed to find all 
solutions is to make the algorithm always return false, thereby all branches of the search tree 
will be explored. The algorithm also presumes that the assignments leading to a solution are 
stored somewhere, in JaCoP the solution is built as the recursion returns its way back through 
the tree. 

How the variables and values are chosen, is defined by the programmer, first fail and 
choosing the middle value is a good default. The methods used in consistency checking and 
pruning are automatic, and depend on the constraint in question. Some constraints, like 
alldifferent, can be implemented using bounds consistency, which allows for better pruning. 
This can greatly benefit the speed of the search (Marriot & Stuckey, 1998). 
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2.2 Example 

The send more money-problem could be implemented using JaCoP as below. 
 

1 import java.util.ArrayList;     
2 import JaCoP.*;     
3      
4 class SendMoreMoney     
5 {     
6  public static void main(String[] args) {    
7   FDstore store = new FDstore();   
8      
9   FDV S = new FDV(store, "S", 0, 10);   
10   FDV E = new FDV(store, "E", 0, 10);   
11   FDV N = new FDV(store, "N", 0, 10);   
12   FDV D = new FDV(store, "D", 0, 10);   
13   FDV M = new FDV(store, "M", 0, 10);   
14   FDV O = new FDV(store, "O", 0, 10);   
15   FDV R = new FDV(store, "R", 0, 10);   
16   FDV Y = new FDV(store, "Y", 0, 10);   
17   FDV[] vec = {S, E, N, D, M, O, R, Y};   
18      
19   store.impose(new XneqC(S, 0));   
20   store.impose(new XneqC(M, 0));   
21   store.impose(new Alldiff(vec));   
22   FDV sum = new FDV(store, "Sum", 0, 300000);   
23   store.impose(new SumWeight(new FDV[]{S, E, N, D, M, O, R, E},    
24     new int[]{1000, 100, 10, 1, 1000, 100, 10, 1}, sum)); 
25   store.impose(new SumWeight(new FDV[]{M, O, N, E, Y},    
26     new int[]{10000, 1000, 100, 10, 1}, sum));  
27      
28   Search label = new SearchOne();   
29   ArrayList<FDV> fdvs = new ArrayList<FDV>();   
30   for (FDV v : vec)    
31    fdvs.add(v);  
32   boolean result = JaCoP.Solver.searchOne(store, fdvs, label,   
33     new IndomainMiddle(), new Delete(new FirstFail())); 
34      
35   if (result)   
36    System.out.println("Solution found. Result: " + fdvs);  
37   else   
38    System.out.println("No solution found.");  
39  }    
40 }     

 

Figure 6: JaCoP version of the send more money problem. 
 

On line 7, the store is declared, it is used to hold all the variables in the program. The finite 
domain variables that are declared on line 9 through 16 are put in the store, with a name and 
two values defining the domain of the variable. The constraints are imposed using the store as 
a facilitator. Then, on line 28, the search-object is declared, which defines how the search is to 
be performed in the call to the solver on line 32. On line 33 the method for choosing values in 
the domain is declared. So is the method used in variable selection, in this case it is first fail. 
If the result from the call to searchOne is true then there is a solution, in the example this is 
always the case. The output of the program will be:  
 

*** Number of decisions: 10 
*** Search depth: 10 
*** Backtracks: 1 
Solution found. Result: [S=9, E=5, N=6, D=7, M=1, O=0, R=8, Y=2] 

 
The first three lines describe the search progress. The number of decisions are the number of 
assignments made on the way to the solution, the search depth is the depth reached in the 
search for the solution, and the number of backtracks is the number of times the search had to 
try another value for a variable. 
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2.3 Implementation 

The downside of using a managed programming language is that the memory usage tends to 
be higher. This has to do with overhead used for, e.g., synchronization and other built in 
features in the language. In the case of Java, the overhead has been somewhat reduced by the 
introduction of generics in Java 1.5. Still, the solver uses a lot of memory, and some 
optimizations such as array-copying have been made in order to reduce the memory 
requirements. Even so, the traditional N-Queens problem, where one is to place n queens on 
an n*n chess-board requires more than 128 megabytes of memory for n ≥ 300. 

During the search the value selected for the variable is taken from the domain of the 
variable. If the assignment is inconsistent that value is removed from the domain by finding 
the complement of the domain and then intersecting it with the original domain. If the domain 
consists of many intervals, creating the complement can take quite a bit of memory, and 
finding the intersection can take significant time. 

The most memory-demanding part of the solver is maintaining the history of the search, 
without such information, backtracking would not be possible. The information is handled 
through a depth-level in the store, and a level-stamp on the finite domains. If the stamp is 
lower than the level of the store, the new domain will backtrack to the current domain. That 
way only the domains that change need to be stored. 

When running consistency checking, the constraints where the variables have changed are 
evaluated. For most constraints the consistency checking is done by making sure that the 
domain of the variable is in the right range. Any domain-values outside the valid range are 
pruned by calculating the intersection between the range and the domain. 

The last step of the search – the actual assignment of values – consists of making sure that 
all variables are in a singleton-range, i.e., the domain of the variable only has one value. If 
there is such a situation, and it is consistent, a unique solution has been found. 

In Appendix A, the first action sequence diagram describes the program for a small 
problem using the non-extended solver. 
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Chapter 3 

Extensions for Parallelization and Distribution 

In order to test the parallel and distributed performance of the solver, it had to be somewhat 
modified. Given that the search algorithm is recursive, however, the modifications were quite 
small. An important part consisted of deciding which level of the recursion to place a remote 
call, and how to divide the workload. In order to perform tests of different forms of search, we 
extended three versions of the search processes: search for one solution, search for all 
solutions, and branch and bound search for the optimal solution. These will henceforth be 
known respectively as searchOne, searchAll, and searchBB. 

3.1 Splitting the Workload 

As mentioned in the introductory part, one of the most important aspects of parallelization and 
distribution is load balancing. Although there are several advanced methods for load 
balancing, using a more advanced method makes little sense when one uses a LAN with fairly 
few computers, or a multiprocessor computer (Xu et al., 1995). Instead we made the choice to 
rely on limiting not which machines or processes to call, but rather when to allow such calls.  

Since the solver is limited to finite domains of integer values, the most obvious method to 
parallelize a program is to simply split the domain of the chosen variable. One part of the split 
is kept for the current process to continue with, the other part is sent to another process. By 
deciding when to split the domain and how much to split off one can achieve an acceptable 
load balancing.  

 
Figure 7: Domain splitting. 

 
In Figure 7 the split has been made in the middle of the original domain. Therefore, if the 
search is a searchBB for the minimum solution, it is likely that Process 2 will finish executing 
before Process 1. One way to counter this effect would be to use an advanced method for 
assessing the work that needs to be done. However, during the course of this thesis we tested 
this with little success. The method that generated the overall fastest program was to simply 
look at the level of the store and allow splits to occur at about 85% of the maximum possible 
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0..9 
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depth. Although this may seem crude, using heavier mathematical computations often 
requires too much time. 

Determining where to split was the other important factor in the load balancing. Tests 
showed that splitting off almost the entire domain was a good idea. This has to do with the 
limitation in the program that each search process can only split the domain of each variable 
once. By performing the split early in the domain, most of the work will go to the new search 
process, which can then split the domain further when calling other processes. 

It is apparent that the optimal time and place of a split is dependent on the problem. If one 
is searching for a minimum value for instance, it makes little sense to let one process search a 
large portion of the lowest values in a domain. Other important factors include the size of the 
domain, the level of pruning that can be expected, and the total number of variables that need 
to be labeled. In this thesis, however, we used problem-independent values to decide when 
and where to split, since finding significantly better, problem-specific, values would require 
too much time. 

3.2 Parallelization 

Parallelization in Java is achieved by using threads, synchronization, and locks. A thread is a 
separate process that runs in the same runtime. Threads are just like any other objects, except 
that they have a start-function that initializes and starts a new process in the Java Virtual 
Machine (JVM). The thread can then operate independently from the other processes in the 
runtime. 

The most difficult part of a parallel program is synchronization and ensuring mutually 
exclusive access to objects. Both can be achieved by using the Java-keyword synchronized, 
which locks the entire object that the synchronization is being applied to. For example, if a 
function is declared synchronized the object that the function is in will be locked so that no 
other thread can access the object until the synchronization is released, i.e., the function call is 
finished. Synchronization is a rather crude method to ensure mutual access, a better and more 
precise method is to use locks, which is why mostly locks were used in this project. Java 
provides a reentrant lock class which is very easy to use. Mutual access to specific objects or 
variables can be achieved by declaring a lock, locking it every time the variable is used, and 
then unlock when one no longer uses the variable. Since the lock is reentrant, functions that 
lock a variable can still run other functions that also want to lock the variable. This makes it a 
lot easier to write asynchronous programs where separate threads may call functions in each 
other simultaneously.  

The drawback of locks and synchronization is deadlock, i.e., when a thread has a lock and 
is waiting for another thread that in turn is waiting for the lock that belongs to the first thread. 
Since both threads have locks, and are waiting for each other, neither of them can proceed. 
Although there are algorithms for “backing-up” in order to resolve the deadlock, the simplest 
method is to design the program so that no deadlocks can occur. Although such design can be 
difficult, trying to debug a program that gets stuck in deadlocks is even harder. 

Just like threads in other programming languages, threads in Java can run in parallel, 
depending on the operating system. In the case of Linux, Mac OS, and Windows this is done 
automatically. Further, the JVM provides means of detecting the number of processors that 
are available to it. In the case of multi-core processors, the JVM will see them as separate 
processors. Figure 8, below, describes the process of parallelization, with two available 
processes. 
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Figure 8: The parallelization procedure. 

 
In the first box in Process 1 in Figure 8 the search process is initialized. In the following box 
FDV1 has been assigned a value of 0, this is the first level of the recursion. In the next box 
Process 1 has found that Process 2 is not currently executing, and proceeds to copy all the 
information needed to run Process 2 in parallel. Then, in the fourth stage, both search 
processes are running in parallel, in this case the domain of FDV2 was split in half.  

For a more detailed description of the parallel search progression, see the second action 
sequence diagram in Appendix A. That diagram shows a problem similar to the one in Figure 
8. 

3.2.1 Threading 
We have extended the search methods to include an array of threads, with a size of up to the 
number of processors available to the JVM. Each thread is linked to a corresponding search-
object. Whenever a search process detects that one of the threads are free for execution it 
initializes that thread using the information that is needed to continue the search. This will be 
covered in detail in the section on copying. One limitation is that the main thread cannot be 
called by the threads it creates at the initialization. All other threads can call each other, 
however. 

When a thread has been initialized it is started and the search continues, both in the 
original and the new thread. Since there will always be a main thread that initializes the other 
searches, it is enough to make sure that this parent thread keeps the solutions found during 
the search. This means that all threads share the same list of solutions, which then has to be 
locked whenever it is accessed. Further, in the case of searchOne all the threads are to 
terminate whenever a solution is found. 

In searchAll and searchBB the parent thread needs to be kept running even after it 
terminates. The reason is that not all the possibilities that need to be tested may have finished. 
Therefore, there is a need to synchronize the last part of the execution, in order to make sure 
that all solutions are stored in the parent thread, without the JVM terminating. We achieved 
this by making the parent thread wait until all other threads have terminated. Before the wait 
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begins, a new thread is created, that the other threads can call. Otherwise one processor would 
be unused when the parent thread has completed its search. 

Since Java 1.5 does not allow threads to be restarted, a new thread must be created 
whenever a search process has finished. Although threads require quite a lot of memory, 
needing to create new threads is not really a problem, since the memory of the previous thread 
will be reused.  

3.2.2 Copying 
The drawback of the parallel extension to the solver is that the entire store has to be copied, 
i.e., all variables and therefore all constraints have to be deep-cloned. Hence, three processes 
will require about three times as much memory as a single threaded search. Given that 
managed programming languages like Java already have a significant overhead, the speed-up 
is more limited than for solvers written in, e.g., C. 

In order not to use unnecessarily much memory, only the information needed to continue 
the search is sent to the newly created process. This means that the search can only progress 
from the starting point and go downwards in the tree. Therefore, the search process will return 
instead of trying to backtrack, when all the values have been tested. The drawback is that the 
assignments made up to the point of splitting must also be stored and copied.   

Although one could avoid creating new objects and instead use a more advanced 
representation of variables, domains, and constraints, this may not necessarily be beneficial. 
The price of minimizing copying is that one instead has to use locks or synchronization in 
order to ensure mutually exclusive access. And while the new-operation in Java is usually 
deemed as rather costly, the cost thread synchronization and locking can be just as high. 

3.3 Distribution 

Java provides a library for distributing programs, which allows almost seamless operations 
between computers. The only real difference is that the distributed object needs to be of a 
special type that makes it exportable. When an object is exported a stub, i.e., a short 
description of the object, is sent to the JVM that the function call is being made to. The 
function call itself is made through an automatic remote invocation procedure in the RMI 
(Remote Method Invocation) library. The parameters and return value of a function needs to 
be serializable, i.e., there has to be a way to translate the object to and from a network-
sendable form. In this thesis, the default serialization methods in Java were used, this means 
that there will be some additional overhead in the communication. 

The negative aspect of having lots of automated functions, which can be used with 
minimal effort, is that one cannot control the internal aspects of the system. The serialization 
for instance is called automatically when the RMI-call is made. This in itself is not a problem, 
but we designed the extensions to the solver to be asynchronous, which means that the 
automatic parts of the RMI system will run in a separate thread. Using synchronized remote 
operations is not an option, since the caller would then have to wait for the return of the 
remote function call before it could proceed. By placing the remote call in a separate thread, 
one can continue running the original process independently of the remote function. Then, 
however, one has to take the automatic parts of the RMI system into account when the remote 
call is placed, and when it returns. 

One further complication when using RMI in Java is exception handling, the exceptions 
that occur on the remote machine will be sent to and reported on the machine that made the 
call. This makes it very hard to debug programs when several calls have been made in 
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sequence. For instance, if machine A has placed a remote call to machine B, and machine B 
subsequently calls a function on machine C. Then, if machine C gets an exception that 
terminates the function, the exception will be sent to machine B. If B cannot handle the 
exception and has to terminate, then the exception will be reported on and only on machine A. 
This chain of exception propagation can be quite hard to trace when inspecting the call stack 
of the exception. Especially since the network host names are not reported. 

We have not used the full power of distribution in Java in this thesis. For example, Java 
can automatically transfer object between JVMs if the object is unknown to the JVM being 
called. Also, by distribution one often refers to the distribution of an object that is accessible 
to all the machines involved in the distribution. In the case of distributed search one could 
achieve this by making the search object itself distributed and allow the different machines to 
take over a part of the search process. This, however, would be unnecessarily complex, since 
the search process is recursive every level of the recursion is an obvious point for placing a 
remote call. Figure 9 describes the distribution process graphically. 

 

 
Figure 9: The distribution procedure. 

 
In Figure 9 the same problem as in Figure 8 is described, only this time the search is not 
parallelized, but distributed. In the third stage Machine 1 finds that Machine 2 is not currently 
executing, and therefore places a RMI-call. In the fourth box in Machine 1, the serialization 
takes place, this is done automatically by the RMI-system in Java. After Machine 2 has 
deserialized the information, which is also done automatically, the search process starts. At 
this point the search is performed on Machine 1 and 2 concurrently. Just as in Figure 8, the 
domain of FDV2 was split in the middle. 
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The third action sequence diagram in Appendix A shows the distributed search in more 
detail, especially with regard to when to split the workload. The problem in that diagram, and 
the one for parallel search is similar to the problem in Figure 8 and Figure 9. 
 

3.3.1 RMI Structure 
Instead of using a distributed search object, the distribution is done in a client-server form.  

 
Figure 10: Client-server structure on a LAN. 

 
Figure 10 shows how a client-server structure appears on a local area network. The switch in 
this case is not a computer but merely a communications hub that forwards the network 
messages between the computers. 

The client is the computer where the constraint program is run, in Figure 6 this would be 
the SendMoreMoney class. The servers, on the other hand, are simply waiting for a remote call, 
which specifies the kind of search, and all the information needed to continue the search from 
the position where the client placed the RMI call. In order to achieve load balancing, the 
client can call all servers and the servers can call each other. The servers may not call the 
client, however. This poses a bit of problem if there are only a few machines and the client 
shares too little of its workload, but it makes the end synchronization a lot easier when 
performing searchAll or searchBB.  

The servers have two threads for multicast communication, one thread for announcing its 
presence to the other machines and one for listening to such communications. The multicast 
broadcasts in Java sends a UDP (Universal Datagram Protocol) package to all the machines in 
a specific group which is defined by the time to live (TTL) of the package. Each server builds 
a list of which servers are running and which are shutting down. The server object is the only 
object that is distributable in the program. Whenever a new server is started and sends its 
announcement message the other servers retrieve a remote-reference to the new server. Since 
it is a reference, it has to be removed after the server shuts down, the same reference would be 
invalid if a new server on the same network address was started. 

Each server has a list of threads for the remote calls that it has placed. After the RMI-call 
in the thread has returned, the thread is removed. The solutions found by a server are stored 
locally and are retrieved by the client at an appropriate time. When searching for all possible 
solutions the client has to wait for all the machines to terminate. This can be quite time 
consuming if the calls have been made in several steps between servers. In searchAll and 
searchBB the client waits until all RMI-calls have returned before retrieving the relevant 
solutions. In the case of searchOne the client terminates as soon as a solution has been found 
and communicated to the client. During searchBB the cost of the solutions that are found are 
reported to all the other computers. 

Client Server Server Server 

Network switch 
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3.3.2 Serialization 
When placing a call to a remote function, the data sent as parameters needs to be sent along. 
In order to be able to send the data over a network the objects needs to be serialized. The 
default serialization in Java serializes all objects and variables that are not declared as static or 
transient. Static means that the object exists only in one form in the class in the entire JVM, 
and is therefore not valid in another JVM. Transient means only that the object should not be 
part of the default serialization. Although this gives a certain level of control over the default 
serialization procedures, there will still be a significant unnecessary overhead. Static and 
transient fields in a class will be initialized to their default value when the class is 
deserialized.  

In order to be able to start the search, the same information as in the case of parallelization 
is necessary. The called machines needs to know what kind of search it is, all the variables, all 
constraints, the solution so far, and the variables left to be named. The serialization takes at 
least an order of a magnitude more time than copying. The number of variables is the most 
important factor for how much time the serialization takes. In this version of the extensions, 
all the needed information will be sent when placing the RMI-call, this creates a lot of 
unnecessary communication since a lot of the information will not change between calls. 

Since the RMI calls are made in separate threads, the automatic serialization calls will be 
made independently of the original process. Therefore one has to synchronize on the last 
object to be serialized. In this case the last parameter in the remote call is the solution, until 
that object has been serialized the original process has to wait, otherwise some of the 
information might be out of phase, as the search will have time to proceed further down the 
tree. 
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Chapter 4 

Experiments and Results 

The experiments used to test the performance are two well known problems: finding the 
optimal Golomb ruler and finding one and all solutions to the N-Queens problem, both of 
which will be defined later. All tests were run on computers with fairly uniform performance 
and with some, but minimal, load outside the test program.  

4.1 Experiment Setup  

The computer used in testing parallelization is a Sun V40z with 4 AMD Opteron 850 
processors. The processors have a speed of 2.4 GHz and they have 1 MB of L2 cache 
memory. Each processor has 4 DIMM (Dual In-line Memory Module) slots, each equipped 
with 1 GB of DDR400 memory, 16 GB in total, with an effective buss speed of 800 MHz. 
Each processor has a separate bi-directional link to the memory. The operating system is Red 
Hat Linux with the Linux kernel 2.4.21. 

The hardware for distribution are 32 computers with AMD Athlon 64 3000+ (2.0 GHz) 
with 512 KB of L2 cache and 512 MB of RAM. All these machines ran Debian Linux 2.4.27. 
The machines are connected via a fully switched 100 megabit LAN. The Athlon machines are 
grouped in units of twelve, which are separated by at most three levels of switching. 

4.2 Golomb Ruler 

4.2.1 Problem Description 
The Golomb ruler problem is defined as finding solutions to the list of n non-negative 
numbers where the absolute values of all the possible difference-pairs are unique. Formally: 
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Since finding one possible ruler is simple, the experiment was done the traditional way by 
finding the optimal ruler, i.e., the one with the lowest cost. The cost is defined as the value of 
the highest number. In order to prove the optimality, one has to try all possible values that can 
lead to a cheaper solution. This is done by running a branch and bound search, using the last 
variable in the ruler as the cost function. The optimal Golomb ruler for n = 4 is [0, 1, 4, 6], 
and obviously has length (cost) 6. Sometimes there are several rulers with optimal cost, 
Golomb-5 for instance has optimal rulers [0, 1, 4, 9, 11] and [0, 2, 7, 8, 11], both with cost 11. 
The time complexity for finding the optimal Golomb ruler is exponential in n. There are 
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several research papers and websites on the matter (Atkinson et al., 1986; Lam & Sarwate, 
1988; Distributed.net, 2006). At the time of writing the optimality has been proven up to n = 
24, this was part of the Distributed.net project. Other research on Golomb rulers are focused 
on finding one solution, with no guarantee of optimality. This is done through mathematical 
techniques such as projective plane construction and affine plane construction. Through these 
method Golomb rulers of length 157 and 158 has been found (Shearer, 2006).< 

4.2.2 Results with Parallelization 
All tests were run at least three times, the tests were done for a value of n between 9 and 12. 
The execution times were as follows, all times are in seconds: 
 

 Number of processes 
n 1 2 3 4 
9 1.4 1.3 1.2 1.4 
10 8.8 5.7 3.9 4.2 
11 202 120 87.0 68.3 
12 2397 2030 861.5 786.5 

 Table 1: Execution times in seconds for Golomb ruler. 
 
As seen in Table 1, there is little time to be gained when the problem is small, therefore the 
resulting graphs presented below, will be of the larger problems where the time fluctuates 
less. 
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Figure 11: Execution time and speed-up of Golomb-11. 
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Figure 12: Execution time and speed-up of Golomb-12. 

 
The results for Golomb-11, in Figure 11, show, as can be expected, that the gain in runtime is 
reduced for each processor, and that the speed-up is sub-linear. The case of Golomb-12, in 
Figure 12, is harder to explain. There is no obvious explanation for the strong difference 
between two and three processors. But given the lower gain for four the reason could be down 
to a lack of load balancing, where using two or four processors lead to a less uniform tree 
where processors are idle a lot longer. 

The load distribution looks approximately the same for the different versions of Golomb, 
and the different amount of allowed processes. Again, the case of more processors is the most 
interesting due to more events. 
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Figure 13: Processor load with four allowed processes for Golomb-11. 

 
Figure 13 shows roughly what could be expected, the load reaches its maximum at 0.03% of 
the search since the parent thread uses all available threads as soon as possible. The second 
process is started on the first level of the search and the third and fourth are either started by 
the parent thread or by one of the child threads. Noteworthy is also that at 87.3% only two 
threads are left to perform the last part of the search. 
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4.2.3 Results with Distribution 
The test of distribution were more restricted than for parallelization, the reason is the 
difficulty in ensuring that the machines had minimal load for the entire duration of the test. 
All the times are in seconds. 
 

 Number of computers 
n 1 2 3 4 8 16 32 
9 1.7 1.5 2.8 2.2 2.3 2.6 3.2 
10 14 8.7 5.8 5.2 4.0 4.1 4.3 
11 344 195 142 98.0 77.0 59.5 58.5 
12 3928 3305 1417 1442 902.0 753.0 620.0 

Table 2: Execution times for Golomb ruler with distribution. 
 
Again the most interesting situations are n = 11 and n = 12, where the variation is smaller. 
The time and speed-up graphs for those situations look as follows: 
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Figure 14: Execution time and speed-up for Golomb-11. 
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Figure 15: Execution time and speed-up for Golomb-12. 
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The distribution of Golomb-11, as shown in Figure 14, leads to an almost linear speed-up 
until the communications become too cumbersome. Just as in the parallel case the distribution 
of Golomb-12, in Figure 15, shows some strange results for certain numbers of search 
processes. This is possibly due to one large part of the tree that is split of possibly contains a 
lot of solutions, that another computer will invalidate when there are more than 4 machines 
available. 

The load distribution for Golomb-11 is seen in Figure 16. 
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Figure 16: Load balancing for Golomb-11 when using 32 machines. 

 
The load balancing only keeps the load full for a brief amount of time and the time-weighed 
average load is 55% of the maximum. This means that there is obviously room for 
improvement when using 32 processors. 

4.3 N-Queens 

4.3.1 Problem Description 
The N-Queens problem is a chess-related problem that consists of finding a way to position n 
queens on an n*n chess board in a way that no queen can strike another. Just as with the 
Golomb ruler, it is fairly easy to find one solution, therefore the tests were done on both 
searchAll and searchOne. The main difference between the Golomb and the N-Queens 
problem is the number of variables, constraints, and the structure of the domains. For N-
Queens, copying in the case of n = 200, takes about twice as long as for n = 12, which in turn 
takes about twice as long as the copying in Golomb-10. For Queens-200 there are 598 FDVs 
and 401 constraints, for n = 12 there are 34 variables and 25 constraints. For Golomb-10 there 
are 55 FDVs and 102 constraints. The reason the copying takes longer for Queens-12 than for 
Golomb-10 is that the domains are pruned differently, in N-Queens the domains are split into 
many small intervals, whereas Golomb have fewer, but larger, intervals. 

One complication with the N-Queens problem is the size of the domains of the FDVs, the 
size for all queens is initially n. Since the domains will remain quite large, but split into 
several smaller intervals, it can be difficult to achieve a good load balancing when relying on 
splitting of the domains. If the intervals in the domains are too small it may not be possible to 
split them in a useful way.  
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4.3.2 Results with Parallelization 
Just as for Golomb the tests were run several times. Both the case of search for one solution 
and search for all solutions were tested, and gave the following results, times in seconds: 
 

 Number of processes 
n 1 2 3 4 

100 0.80 0.83 0.87 0.97 
200 4.9 5.3 5.6 4.1 
320 13 14 15 18 
500 56 57 60 68 

 Table 3: Execution times in seconds when searching for one solution. 
 

 Number of processes 
n 1 2 3 4 
10 1.8 1.4 1.4 1.4 
11 5.9 3.9 3.6 3.4 
12 25 14 12 12 
13 128 76.3 64.3 63.6 

 Table 4: Execution times in seconds in search for all solutions. 
 
Table 3 and 4 shows the results when searching for one solution to the N-Queens problem, 
and when searching for all solutions respectively. As can be seen in Table 3 the parallel 
search actually takes longer in almost all versions of the problem. This happens because there 
are only a handful of backtracks in the entire search. Therefore there is no room for 
improvement, all that happens is that the processes may find solutions simultaneously. Hence 
the execution time is the same as with no parallelization plus the time it takes to start the other 
processes. The reason why n = 320 was chosen, is that for n = 300, and some other values, the 
search can get stuck in one inconsistent part of the tree where the actual cause of the 
inconsistency requires several levels of backtracking to correct.  
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Figure 17: Execution time and speed-up when searching for one solution to Queens-500. 

 
Given that finding one solution to the N-Queens problem leads to a slowdown the results are 
mostly of interest as a comparison to the search for all solution. 
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Figure 18: Execution time and speed-up of search for all solutions to Queens-13. 

 
The gain of parallelization is much better when searching for all solutions compared to when 
searching for one solution. Just as has been predicted previously, however, the gain in 
searchAll of N-Queens is lower than for Golomb, the reason is the size of the information that 
needs to be copied.  
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Figure 19: Load balancing when searching for one solution to Queens-500 using four processes. 
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Figure 20: Load for search for all solutions to Queens-13 with four allowed processes. 
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Although the load balancing looks good in the situation in Figure 19 – all processors are used 
more than 99% of the time – the actual gain is, as Figure 17 showed, not good. The load in 
Figure 20, on the other hand is actually quite bad despite the fact that Figure 18 showed a 
speed-up factor of 2. More than 45% of the work is done by a single processor. The reason is 
most likely that there are many solutions in one small part of the tree, where the working 
processor is not allowed to send on the work to the other threads.  

4.3.3 Results with Distribution 
The test were run several times, all times are in seconds. 
 

 Number of computers 
n 1 2 3 4 8 16 32 

100 0.70 0.73 0.80 1.0 1.0 1.1 1.2 
200 7.3 7.2 5.2 5.2 5.6 6.9 7.8 
320 18 37 30 29 31 32 33 

Table 5: Execution times when searching for one solution. 
 

 Number of computers 
n 1 2 3 4 8 16 32 
10 1.7 1.3 1.0 1.0 1.1 1.1 1.2 
11 8.3 4.8 3.8 3.4 3.6 3.3 3.3 
12 39 22 15 12 12 12 11 
13 226 138 109 86.2 50.3 50.7 44.2 

Table 6: Execution times when searching for all solutions. 
 
As seen in Table 5, Queens-500 was not run. The reason is that for more than one machine, 
the test took too long to complete. The graphs for execution time in the case of n = 320 and n 
= 13, respectively, look as follows: 
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Figure 21: Execution time and speed-up in the case of searchOne with n = 320. 
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Figure 22: Execution time and speed-up for searchAll, n = 13. 

 
Just as for the parallel search for one solution to N-Queens actually leads to a slow-down 
compared to the serial case, as seen in Figure 21. However, when searching for all solutions 
using distribution, the speed-up, as Figure 22 shows, is higher than when using parallelization. 
The speed-up is almost equal to parallelization up to 3 computers and threads, and then the 
distribution becomes significantly better for 4 processes/computers. 

The load balancing in the case of searchOne is almost identical to the situation in Figure 
19. When searching for all solution, however, it is quite different, the results are shown in 
Figure 23. 
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Figure 23: Load balancing during searchAll for Queens-13 with 32 computers. 

 
The load balancing during parallel searchAll was, as Figure 20 showed, not very good. In the 
case of distribution it is even worse. As can bee seen in Figure 23, the load never reaches 50% 
of maximum, and the time-averaged load is only about 14%. This kind of result was almost to 
be expected, however, given the low gain in speed-up when using 32 machines compared to 
using eight machines. The load balancing performs significantly better when using fewer than 
16 computers. 
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Chapter 5 

Conclusions  

In this thesis we have explored and tested how parallelization and distribution of a constraint 
solver can be performed. The solver was written in Java, and uses a recursive algorithm, this 
facilitated the development of the parallel and distributed extensions. The support in Java for 
multithreading and remote method invocation proved helpful and the test results were 
satisfactory. 

There are two main conclusions to be made: parallelization and distribution is fairly easy 
to achieve in Java, and parallel and distributed programs often runs faster.  

The first conclusion is obvious, all the work needed to modify the solver was performed 
by a single student within the timeframe of a master thesis, i.e., 20 weeks. The biggest 
difficulty was debugging the distribution, where exceptions in the RMI-system and the 
network communications slowed down the development. 

The second conclusion is true in the case of search for all solutions and search for the 
optimal solution, but not when searching for just one solution. The reason why finding one 
solution to the N-Queens problem does not achieve a speed-up is that the search process only 
backtracks a few times, even when n = 500. Therefore the solution is found in a straight line 
down the search tree, leaving very little room for improvement. 

Just as mentioned in the introduction, branch and bound search can achieve a super-linear 
speed-up, thereby outperforming the search for all solutions. The effect is more pronounced in 
the case of parallelization, which is most likely caused by the overhead of communicating the 
cost to the other machines. Although the load balancing in the distributed searchBB is a lot 
better than for searchAll, as Figure 16 and Figure 23 shows, this is not true when using fewer 
machines. Up to about eight machines, the average load is roughly the same in Golomb and 
N-Queens. 

One further conclusion is that parallelization becomes limited sooner than distribution. As 
mentioned previously the effect is caused by the garbage collector running in parallel. It is 
conceivable that in some cases it is better to only use three processors instead of all four, 
leaving one free processor for the garbage collection. This would be especially true when 
searching for all solutions, since the speed-up is not as reduced in Figure 11 as in Figure 18. 

The cost of communication being greater for a language with automatic memory-
management starts to show when using 16 machines and more. The somewhat poor load 
balancing is of course related to the result, but the greater overhead in communication 
emphasizes the need further. 

Despite the low speed-up when using many machines, parallelizing and distributing 
programs in Java is worthwhile. In the case of an already existent program the modifications 
can be quite small if it is easy to find when and where to split the workload. When distributing 
for a lot of machines, more efficient methods for serialization and load balancing may be 
necessary, however. And although the speed-up is quite good in parallelization, multi-core 
processors may benefit more from letting the garbage collector run on a free core. This holds 
especially if the cache memories are shared between cores, and the threads use separate copies 
of the data. 
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Future Work 

There are several performance enhancing modifications that can be made to the program. The 
most important for distribution is to reduce the communication overhead and improve the 
serialization process. By sending a copy of the store as a multicast in the beginning, and then 
sending only the modifications made to that copy, one could severely reduce the overall 
communication. Also, by sending only values, instead of full objects, one could reduce the 
communication even further. 

In the case of parallelization, the biggest room for improvement probably lies in finding a 
load balancing that takes memory usage into account, and just as in distribution try to copy 
only the necessary information. The benefit of copying as little information as possible is not 
nearly as high as for distribution, however. The overall memory needed to run all the threads 
is probably more important since it immediately reflects the need for garbage collection. 
Quite possibly, one could increase the performance significantly by writing a custom library 
for memory allocation and deallocation. 
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Appendix A 

Action Sequence Diagrams 

The action sequence diagrams in this appendix describe three versions of search. The first 
diagram shows the setup of a problem and how the search progresses in finding a solution. 
The search is the standard non-parallel search.  

The second diagram describes the same problem as in the first image, but this time solved 
using parallel search.  

The last diagram shows the same problem as in the two previous images, but solved using 
distributed search.  

For the sake of readability some parts have been left out and the parallel searches only 
progress a single level, since the modeling tool did not support program parts running in 
parallel independently of each other. 
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