
Distributed Constraint Programming with Agents

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University, Sweden
Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

Abstract. Many combinatorial optimization problems lend themselves to be mod-
eled as distributed constraint optimization problems (DisCOP). Problems such as
job shop scheduling have an intuitive matching between agents and machines. In
distributed constraint problems, agents control variables and are connected via
constraints. We have equipped these agents with a full constraint solver. This
makes it possible to use global constraint and advanced search schemes.
By empowering the agents with their own solver, we overcome the low perfor-
mance that often haunts distributed constraint satisfaction problems (DisCSP). By
using global constraints, we achieve far greater pruning than traditional DisCSP
models. Hence, we dramatically reduce communication between agents.
Our experiments show that both global constraints and advanced search schemes
are necessary to optimize job shop schedules using DisCSP.

1 Introduction

In this paper, we discuss distributed constraint programming with agents (DCP). We
introduce advanced agents with global constraints, and advanced search to solve dis-
tributed constraint satisfaction problems (DisCSP), in particular distributed constraint
optimization problems (DisCOP). DCP is a special form of constraint programming
(CP), where variables belong to specific agents and can only be modified by their re-
spective agents.

We differentiate DCP from DisCSP since DisCSP has traditionally assumed one
variable per agent [18]. In contrast, we study the case where agents can control several
variables, making it possible to use global constraints. Such constraints are often needed
when solving complex CP problems, such as job shop scheduling problems (JSSP).

Using global constraints in DCP requires that each agents has its own constraint
solver. Having a full solver in each agent also makes modeling and communication
more efficient. As far as we know, no published work on DisCSP has studied global
constraints. In earlier work, these constraints were transformed into equivalent primitive
or table constraints. This led to inefficient solving and model representation.

There are two main contributions in this paper:

– We empower the individual agents with a full constraint solver; and
– We introduce an advanced search scheme.

A major advantage of each agent having a full solver is that we can create advanced
search methods by adding constraints during search. In this paper, we study JSSP and



2

search that adds ordering-constraints before the actual assignments, significantly in-
creasing the performance. We are not aware of any previous research on DisCSP that
studies this type of search.

Formally, a constraint satisfaction problem (CSP) can be defined as a 3-tuple P =
(X,D,C), where X is a set of variables, D is a set of finite domains where Di is the
domain of xi, and C is a set of primitive or global constraints containing several of the
variables in X . Solving a CSP means finding assignments to X such that the value of
xi ∈ Di, while all the constraints are satisfied. P is referred to as a constraint store.

Finding a valid assignment to a constraint satisfaction problem is usually accom-
plished by combining backtracking search with consistency checking that prunes in-
consistent values. In every node of the search tree, a variable is assigned one of the
values from its domain. Due to time-complexity issues, the consistency methods are
rarely complete. Hence, the domains will contain values that are locally consistent, i.e.,
they will not be part of a solution, but we cannot prove this yet.

DisCSP, as used in [17], can be defined similarly to CSP with the 4-tuple P =
(A,X,D,C), where A is a set of agents and X is a set of variables so that xi ∈ ai. D
is a set of finite domains, and C is a set of sets of binary constraints. Each variable xi

has a finite domain di, and each set of constraints cij connects two agents ai and aj ,
where i 6= j. Furthermore, each variable is controlled by exactly one agent. Lastly, the
constraint network builds a connected graph. In other words, each agent is connected to
another agent. Hence, there is at least one path from agent ai to agent aj .

Our model of DCP extends the DisCSP definition to a higher level. We retain the
properties that a variable is controlled by exactly one agent, and that there is a path from
any agent ai to agent aj . Now, however, X is a set of sets of variables, C is a set of sets
of n-ary constraints, and D is a set of sets of finite domains. Every agent ai has a set of
variables xi and a set of constraints ci. In [13], a similar definition is introduced, but not
expanded upon. In fact, we are not aware of anyone actually using the main advantage
of having many variables per agent. The fact that our agents can have global constraints
enables us to use the full power of modeling and pruning in CP.

Ya > Za
Yb < Zb

Xa > Ya
Xb < Yb

Xa > Za
Xb < Zb

cumulative([Ya, Yb]) cumulative([Za, Zb])

cumulative([Xa, Xb])

Agent Y Agent Z

Agent X

Fig. 1: Model of a distributed JSSP, where each agent holds several variables.

In DCP, we can perform the consistency and search phase asynchronously [20].
First, we let each agent establish consistency internally, then send its prunings to the
agents that are connected via constraints. Figure 1 depicts the structure of the constraint



3

network for a small JSSP. Each agent holds two variables and ensures no overlap be-
tween tasks via a cumulative constraint [2]. The constraints between agents are the
precedence constraints, stated at the edges. Whenever a variable that is part of a con-
nected constraint changes, the prunings will be propagated to the connected agents.
Using our formal model, we, e.g., have A = {X,Y, Z}, xx = {Xa,Xb}, cx =
{cumulative([Xa,Xb]), Xa > Y a,Xb < Y b} and cxy = {Xa > Y a,Xb < Y b}.

The rest of this paper is organized as follows. Section 2 introduces the background
and the related work. In Section 3, our model of DCP with global constraints and ad-
vanced search is described. Section 4 describes our experiments and results. Finally,
Section 5 gathers our conclusions.

2 Background and Related Work

Most work on DisCSP deals with the scenario where each agent holds a single variable
and only binary constraints exist between the agents [18]. These problems are typically
solved with an asynchronous search, where consistency is enforced between the con-
nected agents [20]. One notable exception is [13]. However, that paper mentions neither
global constraints nor advanced search methods.

The model of each agent only controlling one variable and only having binary
constraints can technically be used to model any problem. However, even the latest
search algorithms need to send a huge amount of messages to other agents [6] to solve
such problems. This makes such a limited model less feasible when dealing with large
or complex problems. This is especially problematic for optimization problems, since
there is a greater need for search than for simple satisfiability problems.

One main difference between our model and previous work, such as [20, 6, 4, 17,
13], is that we can communicate entire domains. When a domain has been received, the
prunings it carries are evaluated. This is much more efficient than sending one value
from a domain at a time and getting a Good or NoGood message back.

Privacy is often used to motivate distribution of variables. Previous work, such
as [21] shows that perfect privacy is possible for DisCSP. However, in the real world,
complex encryption and minimal communication are impractical if they decrease per-
formance too much. Our ultimate goal is to use our work for scheduling in autonomous
unmanned aerial vehicles [9]. Hence, we focus more on performance than privacy.

A great limitation of previous work is that the problem model is usually translated
into a table form [11]. These tables represent all possible assignments by the cartesian
product of the domains in the constraint. For many problems, this representation is
unfeasibly large [17]. In scheduling, a single cumulative constraint, ensuring no overlap
of tasks [2], would have to be translated to binary constraints for every single time point.
Even small scheduling problems would need thousands of constraints.

Many complex optimization problems need global constraints to solve in reasonable
time. Some papers on DisCSP build advanced structures of agents. Others add a master-
like agent that controls the global limits of the problem [12]. However, as far as we
know, no one provides global constraints in each agent.

In order for DCP to solve large problems which are relevant to the real world, like
JSSP, we need more advanced agents. Theoretically, one variable per agent is sufficient



4

to model any DisCSP. However, just as global constraints can be reduced to binary
constraints, the decreased pruning makes such an approach unrealistic for large opti-
mization problems. This paper introduces agents with full constraint solvers, in order
to make DCP feasible for industry use.

3 Distributed Solvers

Agent 1

JaCoP Solver

Agent 2

JaCoP Solver

Connected
Constraints

Connected
Constraints

Communication
of prunings

Fig. 2: Our model of DCP, each agent holds a full constraint solver.

Figure 2 depicts our model of DCP. Each agent holds a separate copy of the JaCoP
solver [8], and only controls the variables that are needed for that part of the problem
model. For instance, in JSSP, each agent holds the variables representing the tasks on
the machine that the agent models. The precedence constraints between tasks assigned
to different machines are stored in the connected constraints, since they constrain tasks
controlled by different agents. This is how prunings are sent between agents.

Figure 3 depicts a simplified view of the distributed constraint evaluation process
and the search. All time consuming steps in our solving are parallel. As depicted in
Fig. 3, the algorithm evaluates consistency and the agents vote on the next master in par-
allel. However, in order to guarantee synchronicity, the agents must wait for all prunings
to be finished before they can move on to select the next master. Hence, the algorithm
moves from synchronous to asynchronous execution of the agents, and back again, with
every assignment.

When consistency is evaluated, all prunings are sent directly between the agents
that are part of the connected constraint. Hence, the master agent is not controlling
communication. It serves only to make an assignment decision and ensure that all agents
are synchronized for the next step in the execution. The next step after an assignment
may be to backtrack, or locate the next master, or to communicate a solution.

An example of the operations of our model is depicted in Fig. 4, which shows all
execution steps. The execution progresses as follows.

1. When the solving is initialized, all agents start to run consistency of their con-
straints, see Fig. 4(a).

2. If there are changes to a variable that is in a connected constraint, those prunings
are sent to the agent holding the other variable of the connected constraint, see



5

X

Z

Y

X

X Z

Z

Y

X

Make
assignment

Run
consistency

Find new
master

Vote on new
master

Make
assignment

Active agents: 1 3 1 3 1

Master Master Master

Fig. 3: The progress from assignment to next assignment. X, Y, and Z are agents.

Fig. 4(b). In this paper, we only study the case of binary constraints between agents.
Each agent holds a queue of pruning messages, when changes have been received,
consistency is again evaluated in the agent. This process continues iteratively until
there are no more prunings sent between agents.

3. As soon as the consistency is finished, a negotiation determines which agent will
start the search, see Fig. 4(c). This follows the principles of distributed election [5].

4. The agent holding the variable with the highest priority, defined by a user config-
urable heuristic, gets the master token, see Fig. 4(d)-(e). In this paper, we look at
synchronized search. This means that only one agent holds the master token and
only this master gets to make the next assignment decision.

5. The master makes an assignment and enforces consistency, see Fig. 4(f).
6. The master sends the prunings to the agents that have connected constraints con-

taining changed variables, see Fig. 4(g).
7. When the agents receive prunings, they automatically run consistency, see Fig. 4(h).
8. When consistency has finished again, we are at the same position as in Fig. 4(c).

We renegotiate which agent is to be the new master.

The procedure above continues until all variables have been assigned a value. When
a master finds a solution, the cost of the solution can be shared amongst all agents
by propagating it to all agents connected to the master. These agents then propagate it
further, and so on, until all agents are aware of the solution cost. This is similar to the
communication in [3]. Sharing solution costs is necessary in order to use branch and
bound search.

If backtracking is necessary, we will undo the assignment leading to the inconsis-
tency. If the current master has run out of possible assignments, it will send a message
to the previous master telling it to backtrack. Hence, all agents that have been masters
keep track of which agent was master before itself. Furthermore, since agents have sev-
eral variables, an agent can become master several times in the same search tree branch.
Agents therefore also need to keep track of backtracking to themselves.



6

enforceConsistency

Agent Y Agent Z

Agent X

enforceConsistency enforceConsistency

(a) Start: Enforce consistency

sendPrunings

Agent Y Agent Z

Agent X

sendPrunings sendPrunings

(b) Communicate prunings

findMaster

Agent Y Agent Z

Agent X

(c) Elect new master

Agent Y Agent Z

Agent X

sendMostCritical sendMostCritical

(d) Reply with measurement

makeMaster

Agent Y Agent Z

Agent X

(e) Make Agent Y new master

Agent Y Agent Z

Agent X

makeAssignment
enforceConsistency

(f) Master assigns and runs consistency

Agent Y Agent Z

Agent X

sendPrunings

(g) Master communicates prunings

enforceConsistency

Agent Y Agent Z

Agent X

enforceConsistency

(h) Affected agents enforce consistency

Fig. 4: The operating sequence for consistency and search in our model. The waves
along the edges indicate communication

The pseudo-code for our model is shown in Fig. 5. The receive method will be
called automatically by the agent whenever a message has been received. Communica-
tion between agents are performed by similar syntax to that of [7]. All communication
of costs is handled by connected constraints and is therefore controlled by the problem
model. This gives great versatility to our model.

The biggest challenge in our distributed model is to detect that all agents are syn-
chronous. For instance, detecting that consistency has reached a fixpoint and it is time
to make the next assignment. That detection takes place in the handling of the message
Wait_For_Consistency. Verifying whether agents are running and consistent can be
done as for DisCSP, by using the process of [3].



7

1 // variables controlled by the agent V
2 // actors that participate in the problem A
3
4 receive(message) {
5 switch (message.type) {
6

7 case Make_Master(oldMaster):
8 master = true
9 previousMaster = oldMaster

10 this ! Start_Search
11
12 case Start_Search:
13 v = selectionHeuristic.selectVariable
14 if (v == null)
15 storeSolution
16 this ! Backtrack
17 else
18 k = valueHeuristic.selectValue
19 store.makeAssignment(v, k)
20 this ! Enforce_Consistency
21
22 case Enforce_Consistency:
23 running = true
24 if (store.enforceConsistency)
25 forall (c in connectedConstraints)
26 forall (v in c.remoteVariables)
27 if (v.hasChanged)
28 v.remoteAgent !
29 Pruning(v.name, v.domain)
30 else
31 consistent = false
32 if (master)
33 this ! Wait_For_Consistency
34 running = false
35

36 case Pruning(varName, domain):
37 v = store.findVariable(varName)
38 v.domain = domain
39 this ! Enforce_Consistency

(a)

1 case Wait_For_Consistency:
2 forall (a in A)
3 if (a.isRunning)
4 this ! Wait_For_Consistency
5 return
6 forall (a in A)
7 if (a.inconsistent)
8 this ! Backtrack
9 return

10 this ! Select_Next_Master
11
12 case Backtrack:
13 store.forbidLastAssignment
14 store.undoLastAssignment
15 if (store.stillInconsistent)
16 previousMaster ! Backtrack
17 else
18 this ! Start_Search
19
20 case Select_Next_Master:
21 forall (a in A)
22 a ! Find_Best_Variable(this)
23

24 case Find_Best_Variable(theMaster):
25 v = selectionHeuristic.selectVariable
26 k = v.fitness
27 theMaster ! Fitness(k, this)
28

29 case Fitness(fitness, actor):
30 if (fitness > bestF itness)
31 bestF itness = fitness
32 bestActor = actor
33 fitnessReplies += 1
34 if (fitnessReplies == A.size)
35 master = false
36 bestActor ! Make_Master(this)
37 }
38 }

(b)

Fig. 5: The pseudo-code for the agents. The receive method is called whenever a mes-
sage arrives. An exclamation mark indicates communication to an agent.

3.1 Advanced Search in Distributed Constraint Programming

In order to solve complex JSSP, we need the more advanced search that is made possible
by our model. The algorithm presented in Fig. 5 is somewhat simplified. For JSSPs, we
use a sequence of two search methods. The first orders the tasks on each machine by
adding precedence constraints. The second assigns actual start times for each task. This
is based on the principles described in [1]. While some problems may solve without the
ordering, many require an ordering to solve in reasonable time.

Figure 6 depicts the algorithm for the ordering search. During the ordering, the
machine with the least slack in the tasks scheduled on it is selected. Then we pick the
task, running on that machine, with the smallest start time. Finally, we impose that the
selected task has to execute before the other tasks on that machine, and we remove it
from the list used to calculate slack. This procedure is repeated recursively.

This type of advanced search is not possible in all DisCSP solvers. Many DisCSP
solvers cannot impose constraints during the search. Even solvers that can impose new
constraints, are often limited by mostly supporting table constraints [11]. If only table



8

constraints are supported, the memory use of the solver will increase greatly whenever
new constraints are imposed for every time unit of the schedule.

1 // M is a vector of vectors representing tasks assigned
2 // to a machine. Each task is specified by its starting
3 // task start time t, task duration d
4

5 boolean Jobshop_Search(M)
6 if store.enforceConsistency
7 if M 6= ∅
8 m← selectCriticalMachine(M)
9 sort tasks in m in ascending values of t.min()

10 for each i = 1, . . . , n
11 for each j = 1, . . . , n
12 if (i 6= j)
13 impose mi.t + mi.d ≤ mj .t

14 M ′ ← M \mi

15 if Jobshop_Search(M ′)
16 return true
17 else
18 return false
19 return false
20 else
21 store solution
22 return true
23 else
24 return false
25

26 vector selectCriticalMachine(M)
27 for each mi ∈M
28 min ← min(min(mi.t0), min(mi.t1), . . ., min(mi.tn))
29 max ← max(max(mi.t0 + mi.d0), max(mi.t1 + mi.d1), . . . ,
30 max(mi.tn + mi.dn))
31 supply ← max−min
32 demand ←

∑
mi.di

33 critical ← supply − demand
34 return machine mi with the lowest value of critical

Fig. 6: The code for the ordering search.

4 Experimental Evaluation

For our experiments, we used the JaCoP solver [8]. The agent system is written using
actors in Scala [14]. The experiments were run on a Mac Pro with two 3.2 GHz quad-
core Intel Xeon processors running Mac OS X 10.6.2 with Java 6 and Scala 2.8.1. These
two processors have a common cache and memory bus for each of their four cores. The
parallel version of our solver is described in detail in [16]. We used a timeout of 30
minutes for all the experiments. All experiments were run 20 times, giving a standard
deviation of less than 5 %.

We ran several standard benchmark scheduling problems described in [19, 10]. The
characteristics of the problems are listed in Table 1. These are all JSSP, where n jobs
with m tasks are to be scheduled on m different machines. We study the case of non-
preemptive scheduling.



9

Table 1: Characteristics of the problems for the global constraint model.
Problem Jobs Tasks Variables Constraints Optimum

LA01 10 5 61 56 666
LA04 10 5 61 56 590
LA05 10 5 61 56 593
MT06 6 6 43 43 55

We created two DisCOP models of each problem: one for our version of DCP with
global constraints, and the other representing the traditional case with only primitive
constraints. When using our model, each agent represents one machine. It contains one
global cumulative constraint with n tasks [2], to ensure no overlap of tasks.

In the primitive model, each agent represents one variable. For the problems we
studied, the primitive constraints are binary in the sense that they only contain two
variables. Our primitive constraint models did not use table constraints. Instead, they
used the constraint starti + durationi ≤ startj ∨ startj + durationj ≤ starti
for every pair of tasks, to ensure no overlap. This constraint is technically a binary
constraints, since the duration is a constant. These primitive constraints can replace
cumulative for JSSP since we only have one instance of each resource.

Each problem was started with no prior knowledge of the optimal solution. Hence,
the domains of the variables representing the start time tasks were {0..1000}. When
using many resources, translating a single cumulative constraint into a table constraint
requires primitive constraints in every time point. For many problems, this could result
in an excessive number of rows in the table constraint. This is often infeasible due to
memory size.

4.1 Experimental Results

The results for finding and proving the the optimal solution are shown in Table 2 and
Table 3. Clearly, the primitive representation of the problems rarely found the optimal
within the 30 minute timeout. The only exception was MT06, the simplest problem we
tested. Still, finding the solution for MT06 took almost 30 times as long as the global
model.

Table 2: Execution time in seconds that the global constraint model took to find the
optimal solution and the best solution found within the 30 minute timeout.

Problem Time to find optimum Time to prove optimum Solution

LA01, Global 3.8 4.0 666
LA04, Global 10.8 12.1 590
LA05, Global 0.7 0.97 593
MT06, Global 3.0 3.0 55



10

Table 3: Execution time in seconds that the primitive constraint model took to find the
optimal solution and the best solution found within the 30 minute timeout.

Problem Time to find optimum Time to prove optimum Solution

LA01, Primitive Timeout Timeout 936
LA04, Primitive Timeout Timeout 976
LA05, Primitive Timeout Timeout 720
MT06, Primitive 87.7 Timeout 55

Our model of DCP with global constraints in each agent gives superior performance
in our experiments. The traditional model with only one variable per agent never man-
aged to prove the optimality within the timeout. This performance increase comes partly
from the fact that we can order variables before we start search. When agents control
only one variable, this type of ordering is not possible. In this case, adding the ordering
constraints will mostly serve to increase the number of pruning messages that need to
be sent.

When we turn off the ordering of tasks, the performance drops significantly for the
global model. However, even though we could not prove optimality without ordering,
we found better solutions within the timeout than the primitive model for almost all
problems. Hence, the benefit of our model is not simply in the use of advanced search,
but also in the use of global constraints.

Although our search is synchronous, using asynchronous search would probably not
benefit the traditional primitive model much. Our model would probably still be better,
because in our experiments we use a simulated distribution, thus minimizing the penalty
of sending many messages. The primitive model communicates many more messages to
reach the consistency fixpoint. When using a network, the communication would be an
order of magnitude more time consuming than on a shared-memory multicore machine.

Using asynchronous search would bring benefits to both the global constraint model
and the primitive one. However, the search space of CP is exponential with regard to
domain size. Parallel search only gives a polynomial speed-up [15]. Hence the perfor-
mance advantage of the global constraint model is likely to remain, even though the
model with one variable per agent allows for more parallelism.

We also created a third model, where each agent control several variables, but have
no global constraints. Just as for the global representation, each agent models one ma-
chine. However, the cumulative constraint has been replaced by the same kind of con-
straints as in the primitive model for every pair of tasks.

The performance of this third model, shown in Table 4, was better than that of the
single variable per agent model. However, the performance was usually much lower
than of the global constraint representation. For the simplest problem it was slightly
faster. But for the most difficult problem, it did not find the optimum within the timeout.

The performance benefit of our model of DCP is not simply because of our advanced
search. The ordering of tasks on each machine is possible in the model with several
variables per agent but without global constraints. However, the pruning is much weaker
when there are no global constraints.



11

Our results for the model in Table 4, compared to the results in Table 3, illustrate
the cost of communication. We get much better performance than the scenario of one
variable per agent, despite using the same constraints. Hence, the difference between the
performance of these two models comes mostly from the communication of prunings.

The cost of communication depends on the agent framework. However, we ran our
experiments on a shared-memory machine. Running on a cluster, with network commu-
nication, would increase the performance penalty of communication severely. If any-
thing, our experiments over estimate the competitiveness of traditional DisCSP models.

Table 4: Results for multi-variable agents, without global constraints, but with ordering.
Problem Time to find optimum Time to prove optimum Best Solution

LA01 3.8 6.9 666
LA04 Timeout Timeout 667
LA05 0.47 9.7 593
MT06 2.5 2.6 55

5 Conclusions

In this paper, we have introduced a completely new model of distributed constraint
programming. Unlike any work we are aware of, we equip each agent with a full con-
straint solver. Our model is the the only one we have seen published that can use global
constraints. It also allows advanced search, during which we can order tasks before
assigning actual start times of scheduling problems.

By equipping each agent with a full constraint solver, we allow much more efficient
modeling of problems. Unlike most work on DisCSP, we do not translate our models
into table constraints. This allows us to communicate domains and constraints between
agents during the search. Such communication is much more efficient than that of tra-
ditional DisCSP. Reducing communication is a major concern in DisCSP solving.

Our main conclusion of this paper is that both global constraints and advanced
search are needed in order to solve complex scheduling problems using distributed
constraint programming. Traditional work on DisCSP has focused on agents that only
control one variable and only have primitive constraints. We conclude that these older
models are unlikely to offer good performance for real world use, even when using
asynchronous search.

Another conclusion is that using the traditional approach to DisCSP of one variable
per agent should be very well motivated. Using one variable per agent may provide
better robustness and privacy. However, we show that letting agents control several
variables, using global constraints, and using advanced search methods are all important
for good performance.



12

References
1. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling. Kluwer Academic Pub-

lishers, Norwell, MA, USA (2001)
2. Caseau, Y., Laburthe, F.: Improving branch and bound for jobshop scheduling with constraint

propagation. In: Combinatorics and Computer Science. pp. 129–149 (1995)
3. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed

systems. ACM Trans. Comput. Syst. 3, 63–75 (1985)
4. Ezzahir, R., Bessiere, C., Belaissaoui, M., Bouyakhf, E.: DisChoco: A platform for dis-

tributed constraint programming. In: Proceedings of the IJCAI’07 Distributed Constraint
Reasoning Workshop (DCR’07). pp. 16–27 (2007)

5. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight
spanning trees. ACM Trans. Program. Lang. Syst. 5, 66–77 (1983)

6. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward bounding for distributed COPs.
Journal of Artificial Intelligence Research 34, 61–88 (2010)

7. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21, 666–677 (1978)
8. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM Transactions

on Design Automation of Electronic Systems (TODAES) 8(3), 355–383 (2003)
9. Kvarnstrom, J., Doherty, P.: Automated planning for collaborative UAV systems. In: The 11th

International Conference on Control Automation Robotics Vision. pp. 1078 –1085 (2010)
10. Lawrence, S.R.: Resource-constrained project scheduling: An experimental investigation of

heuristic scheduling techniques. Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh PA (1984)

11. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework for distributed
constraint optimization. In: Proceedings of the IJCAI’09 Distributed Constraint Reasoning
Workshop (DCR’09). pp. 160–164 (2009)

12. Meisels, A., Kaplansky, E.: Scheduling agents - distributed timetabling problems (DisTTP).
In: Practice and Theory of AutomatedTimetabling IV, Lecture Notes in Computer Science,
vol. 2740, pp. 166–177. Springer Berlin / Heidelberg (2003)

13. Meisels, A., Zivan, R.: Asynchronous forward-checking for DisCSPs. Constraints 12, 131–
150 (2007)

14. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive Step-by-step
Guide. Artima Incorporation, USA, 1st edn. (2008)

15. Rao, V.N., Kumar, V.: Superlinear speedup in parallel state-space search. In: Proceedings of
the Eighth Conference on Foundations of Software Technology and Theoretical Computer
Science. pp. 161–174. Springer-Verlag, London, UK (1988)

16. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed constraint
solving. The 10th IEEE International Conference on Cluster Computing pp. 304–309 (2008)

17. Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming (Foundations of Arti-
ficial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)

18. Salido, M.: Distributed CSPs: Why it is assumed a variable per agent? In: Miguel, I., Ruml,
W. (eds.) Abstraction, Reformulation, and Approximation, Lecture Notes in Computer Sci-
ence, vol. 4612, pp. 407–408. Springer Berlin / Heidelberg (2007)

19. Thompson, G.L.: Industrial scheduling / edited by J.F. Muth and G.L. Thompson with the
collaboration of P.R. Winters. Prentice-Hall, Englewood Cliffs, N.J. : (1963)

20. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A review. Au-
tonomous Agents and Multi-Agent Systems 3(2), 185–207 (2000)

21. Yokoo, M., Suzuki, K., Hirayama, K.: Secure distributed constraint satisfaction: Reaching
agreement without revealing private information. In: Van Hentenryck, P. (ed.) Principles and
Practice of Constraint Programming - CP 2002, Lecture Notes in Computer Science, vol.
2470, pp. 43–66. Springer Berlin / Heidelberg (2006)


