
Parallelism in
Constraint Programming

Carl Christian Rolf

2 / 666

Welcome...

‘Tiny Sudoku’

X Y

Z Q

3

X, Y, Z, Q must have values between 1 and 2
The values in each row and column must be unique

Tiny Sudoku in Constraint
Programming

{X, Y, Z, Q} ∈ {1..2},

X ≠ Y,
X ≠ Z,
Y ≠ Q,
Z ≠ Q,
solve.

X Y

Z Q
⇒

X, Y, Z, Q must have values between 1 and 2
The values in each row and column must be unique

4

Solving Tiny Sudoku in CP

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X =1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:

X≠Y, X≠Z, Y≠Q, Z≠Q

X =1, Y = 2,
Z =2, Q = 1

END

5

Parallel Consistency

Evaluate constraints:

Parallel Consistency for Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X =1
{Y, Z, Q} ∈ {1..2}

X =1, Y = 2,
Z =2, Q = 1

END

CPU 1

X≠Y

CPU 2

X≠Z

CPU 3

Y≠Q

CPU 4

Z≠Q

Parallel Consistency: Summary

• The ‘task-parallelism’ of constraint programming

• Previous work has not handled global constraints

• Might have to run more iterations of consistency

• Load-balancing depends on the problem model

• Hard to share data during consistency

8

Parallel Consistency: Performance

0

1

2

3

4

5

6

1 2 4 8

A
bs

ol
ut

e
Sp

ee
d-

up

Number of Consistency Threads

Sudoku LA31 Queens

9

Run on an eight core Mac Pro

Parallel Consistency: Conclusions

• Excellent performance for regular problems

• Some problems do not scale well, they
need constraint-specific parallel consistency
algorithms

10

Combining
Parallel Consistency

with
Parallel Search

Parallel Search for Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2,
Z =2, Q = 1

END

X = 2

X = 2
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 2, Y = 1,
Z =1, Q = 2

END

CPU 1

CPU 2

12

Combining Parallelisms: Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 2

CPU 1

CPU 5

Evaluate constraints:

X =1
{Y, Z, Q} ∈ {1..2}

X =1, Y = 2,
Z =2, Q = 1

END

CPU 1

X≠Y

CPU 2

X≠Z

CPU 3

Y≠Q

CPU 4

Z≠Q

Evaluate constraints:

X =2
{Y, Z, Q} ∈ {1..2}

X =2, Y = 1,
Z =1, Q = 2

END

CPU 5

X≠Y

CPU 6

X≠Z

CPU 7

Y≠Q

CPU 8

Z≠Q

Combining Parallelisms: Summary

• Never studied before in constraint programming

• Easier to achieve a speed-up than if the solver
only offers one type of parallelism

• Does not fit all types of problems, often needs
problem-specific optimization of, e.g., thread
allocation

14

Combining Parallelisms: Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8

A
bs

ol
ut

e
Sp

ee
d-

up

Number of Search Threads

1 2 4 8Consistency threads per search thread:

Finding 200 solutions to 100x100 Sudoku. Run on 8-core Mac Pro

15

Combining Parallelisms: Conclusions

• Needs better control of mutual exclusion
than currently offered by Java

• The problem must suit both types of
parallelism to get a large performance
benefit

• Problem-specific optimizations are
necessary for good performance

16

Relative-Measured
Load-Balancing

Load-Balancing for Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2,
Z =2, Q = 1

END

CPU 1

CPU 2

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2,
Z =2, Q = 1

END

CPU 3

X = 1

Waiting for work

Should CPU 1
or CPU 2

 be allowed to
send work?

Relative-Measured Load-Balancing

19

Solver A Solver B

Solver DSolver C

Try to send work

Try to send work

Try to send
 work

Busy solvers always compete for sending work to idle solvers

Idle

Relative-Measured Load-
Balancing: Summary

• Infeasible to get an exact measure of the work-size
due to the way CP solves problems

• We let solvers compete based on their work-size
estimates

• We can use any measure that can be partially
ordered

• Using measures from several solvers increases
accuracy by eliminating systematic errors

20

Relative-Measured Load-
Balancing: Performance

21

0

4

8

12

16

4 8 16 32

A
bs

ol
ut

e
Sp

ee
d-

up

Number of Computers

Random Polling Least Labeled First Most Labeled First

Golomb-12, proving optimality. Slowest and fastest measures

Relative-Measured Load-
Balancing: Conclusions

• Relative measures lets even simple
estimates outperform random polling by
over 20%

• Advanced measures can easily be used

• Performance benefit increases with the
number of solvers

22

Dynamic Balancing of
Communication and

Computation

Dynamic Balancing for Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2,
Z =2, Q = 1

END

X = 2

X = 2
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 2, Y = 1,
Z =1, Q = 2

END

CPU 1

CPU 2

Tiny Sudoku: Zoomed in

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2,
Z =2, Q = 1

END

X = 2

X = 2
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 2, Y = 1,
Z =1, Q = 2

END

CPU 1

CPU 2

Send either a copy of the variables, the
domains, and the constraints;

or just the assignments made by CPU 1

Balancing Communication and
Computation: Summary

26

• Copying sends a lot of data, but needs very
little processing

• Recomputation often needs a lot of
processing, but sends little information

• We estimate the network load to avoid
getting stuck in performance bottlenecks

Balancing Communication and
Computation: Results

27

0

4

8

12

16

4 8 16 32

Copying Recomputation Dual Com

Number of Processors

A
bs

ol
ut

e
Sp

ee
d-

up

Proving optimal Golomb ruler of size 12

Balancing Communication and
Computation: Conclusions

• Switching dynamically between copying and
recomputation often increases performance

• Simple measure to estimate where the
performance bottlenecks are

28

Distributed Constraint
Programming with Agents

(DCP)

Tiny Sudoku in DCP

X ∈ {1..2}

Q ∈ {1..2}

Y ∈ {1..2}

Z ∈ {1..2}

X≠Y

Z≠Q

X≠Z Y≠Q

Agent 1 Agent 2

Agent 4Agent 3

Solving starts in one agent, constraints
communicate prunings

30

Our use of DCP

• To be used in UAVs in catastrophe areas

• We want independent agents to cooperate,
to for instance share a heat camera

• We want to find good, preferably optimal,
schedules

31

Machine 1

Machine 2

Machine 3

Example of Job Shop Scheduling

Time Units

Two jobs, consisting of three tasks. Tasks have to
execute on specific machines in a certain order

32

Schedule
length

DCP: In Contrast to the
Traditional Approach

• A full constraint solver in each agent

• A set of variables in each agent

• A set of n-ary (global) constraints in each agent

• No use of memory-demanding table constraints

• Advanced search methods

33

DCP: Experimental Results

Problem Time Solution

LA01 >30min 936

LA04 >30min 976

LA05 >30min 720

MT06 87.7s 55

Traditional Model Our Model

Problem Time Solution

LA01 3.8s 666

LA04 10.8s 590

LA05 0.7s 593

MT06 3.0s 55

We proved the optimum of all problems, the traditional model of none

34

DCP: Conclusions

• Our model outperforms traditional models
by orders of magnitude

• The best traditional approaches will remain
slower, as speed-up is limited

35

Overall Conclusions

• We’ve developed and evaluated several new ways
to parallelize constraint solving with global
constraints

• Our model of distributed constraint programming
vastly outperforms traditional approaches

• Parallelism in constraint programming can, with no
understanding of parallel programming, give well-
scaling performance for many kinds of problems

“We finish this review with a single paper,
probably one that best represents the state
of the art [31].”

	

 [31] C.C. Rolf and K. Kuchcinski. Combining parallel search and parallel consistency
	

 in constraint programming. In TRICS workshop at CP2010, pages 38–52, 2010.

From:
	

 I. P. Gent, C. Jefferson, I. Miguel, N. C. A. Moore, P. Nightingale, P. Prosser, C.
	

 Unsworth. A Preliminary Review of Literature on Parallel Constraint Solving. In
	

 Parallel Methods for Constraint Solving workshop at CP2011, pages 7–19, 2011.

Lastly, a nice Quote

Thank You!

666 / 666

