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Welcome...



‘Tiny Sudoku’

X Y

Z Q
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X, Y, Z, Q must have values between 1 and 2
The values in each row and column must be unique



Tiny Sudoku in Constraint 
Programming

{X, Y, Z, Q} ∈ {1..2},

X ≠ Y,
X ≠ Z,
Y ≠ Q,
Z ≠ Q,
solve.

X Y

Z Q
⇒

X, Y, Z, Q must have values between 1 and 2
The values in each row and column must be unique
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Solving Tiny Sudoku in CP

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X =1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:

X≠Y, X≠Z, Y≠Q, Z≠Q

X =1, Y = 2, 
Z =2, Q = 1

END
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Parallel Consistency



Evaluate constraints:

Parallel Consistency for Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X =1
{Y, Z, Q} ∈ {1..2}

X =1, Y = 2, 
Z =2, Q = 1

END

CPU 1

X≠Y

CPU 2

X≠Z

CPU 3

Y≠Q

CPU 4

Z≠Q



Parallel Consistency: Summary

• The ‘task-parallelism’ of constraint programming

• Previous work has not handled global constraints

• Might have to run more iterations of consistency

• Load-balancing depends on the problem model

• Hard to share data during consistency
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Parallel Consistency: Performance
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Run on an eight core Mac Pro



Parallel Consistency: Conclusions

• Excellent performance for regular problems 

• Some problems do not scale well, they 
need constraint-specific parallel consistency 
algorithms
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Combining 
Parallel Consistency 

with 
Parallel Search



Parallel Search for Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2, 
Z =2, Q = 1

END

X = 2

X = 2
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 2, Y = 1, 
Z =1, Q = 2

END

CPU 1

CPU 2
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Combining Parallelisms: Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 2

CPU 1

CPU 5

Evaluate constraints:

X =1
{Y, Z, Q} ∈ {1..2}

X =1, Y = 2, 
Z =2, Q = 1

END

CPU 1

X≠Y

CPU 2

X≠Z

CPU 3

Y≠Q

CPU 4

Z≠Q

Evaluate constraints:

X =2
{Y, Z, Q} ∈ {1..2}

X =2, Y = 1, 
Z =1, Q = 2

END

CPU 5

X≠Y

CPU 6

X≠Z

CPU 7

Y≠Q

CPU 8

Z≠Q



Combining Parallelisms: Summary

• Never studied before in constraint programming

• Easier to achieve a speed-up than if the solver 
only offers one type of parallelism

• Does not fit all types of problems, often needs 
problem-specific optimization of, e.g., thread 
allocation
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Combining Parallelisms: Results
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Combining Parallelisms: Conclusions

• Needs better control of mutual exclusion 
than currently offered by Java

• The problem must suit both types of 
parallelism to get a large performance 
benefit

• Problem-specific optimizations are 
necessary for good performance
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Relative-Measured      
Load-Balancing



Load-Balancing for Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2, 
Z =2, Q = 1

END

CPU 1

CPU 2

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2, 
Z =2, Q = 1

END

CPU 3

X = 1

Waiting for work

Should CPU 1 
or CPU 2

 be allowed to 
send work?



Relative-Measured Load-Balancing
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Solver A Solver B

Solver DSolver C

Try to send work

Try to send work

Try to send
 work

Busy solvers always compete for sending work to idle solvers

Idle



Relative-Measured Load-
Balancing: Summary

• Infeasible to get an exact measure of the work-size 
due to the way CP solves problems 

• We let solvers compete based on their work-size 
estimates

• We can use any measure that can be partially 
ordered

• Using measures from several solvers increases 
accuracy by eliminating systematic errors
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Relative-Measured Load-
Balancing: Performance
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Relative-Measured Load-
Balancing: Conclusions

• Relative measures lets even simple 
estimates outperform random polling by 
over 20%

• Advanced measures can easily be used

• Performance benefit increases with the 
number of solvers
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Dynamic Balancing of 
Communication and 

Computation



Dynamic Balancing for Tiny Sudoku

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2, 
Z =2, Q = 1

END

X = 2

X = 2
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 2, Y = 1, 
Z =1, Q = 2

END

CPU 1

CPU 2



Tiny Sudoku: Zoomed in

X = 1

SOLVE
{X, Y, Z, Q} ∈ {1..2}

X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 1, Y = 2, 
Z =2, Q = 1

END

X = 2

X = 2
{Y, Z, Q} ∈ {1..2}

Evaluate constraints:
X≠Y, X≠Z, Y≠Q, Z≠Q

X = 2, Y = 1, 
Z =1, Q = 2

END

CPU 1

CPU 2

Send either a copy of the variables, the 
domains, and the constraints;

or just the assignments made by CPU 1



Balancing Communication and 
Computation: Summary

26

• Copying sends a lot of data, but needs very 
little processing

• Recomputation often needs a lot of 
processing, but sends little information

• We estimate the network load to avoid 
getting stuck in performance bottlenecks



Balancing Communication and 
Computation: Results

27

0

4

8

12

16

4 8 16 32

Copying Recomputation Dual Com

Number of Processors

A
bs

ol
ut

e 
Sp

ee
d-

up

Proving optimal Golomb ruler of size 12



Balancing Communication and 
Computation: Conclusions

• Switching dynamically between copying and 
recomputation often increases performance

• Simple measure to estimate where the 
performance bottlenecks are
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Distributed Constraint 
Programming with Agents 

(DCP)



Tiny Sudoku in DCP

X ∈ {1..2}

Q ∈ {1..2}

Y ∈ {1..2}

Z ∈ {1..2}

X≠Y

Z≠Q

X≠Z Y≠Q

Agent 1 Agent 2

Agent 4Agent 3

Solving starts in one agent, constraints 
communicate prunings
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Our use of DCP

• To be used in UAVs in catastrophe areas

• We want independent agents to cooperate, 
to for instance share a heat camera

• We want to find good, preferably optimal, 
schedules
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Machine 1

Machine 2

Machine 3

Example of Job Shop Scheduling

Time Units

Two jobs, consisting of three tasks. Tasks have to 
execute on specific machines in a certain order

32

Schedule
length



DCP: In Contrast to the 
Traditional Approach

• A full constraint solver in each agent

• A set of variables in each agent

• A set of n-ary (global) constraints in each agent

• No use of memory-demanding table constraints

• Advanced search methods
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DCP: Experimental Results

Problem Time Solution

LA01 >30min 936

LA04 >30min 976

LA05 >30min 720

MT06 87.7s 55

Traditional Model Our Model

Problem Time Solution

LA01 3.8s 666

LA04 10.8s 590

LA05 0.7s 593

MT06 3.0s 55

We proved the optimum of all problems, the traditional model of none
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DCP: Conclusions

• Our model outperforms traditional models 
by orders of magnitude

• The best traditional approaches will remain 
slower, as speed-up is limited
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Overall Conclusions

• We’ve developed and evaluated several new ways 
to parallelize constraint solving with global 
constraints

• Our model of distributed constraint programming 
vastly outperforms traditional approaches

• Parallelism in constraint programming can, with no 
understanding of parallel programming, give well-
scaling performance for many kinds of problems



“We finish this review with a single paper, 
probably one that best represents the state 
of the art [31].”

	

 [31] C.C. Rolf and K. Kuchcinski. Combining parallel search and parallel consistency 
	

 in constraint programming. In TRICS workshop at CP2010, pages 38–52, 2010.

From:
	

 I. P. Gent, C. Jefferson, I. Miguel, N. C. A. Moore, P. Nightingale, P. Prosser, C. 
	

 Unsworth. A Preliminary Review of Literature on Parallel Constraint Solving. In 
	

 Parallel Methods for Constraint Solving workshop at CP2011, pages 7–19, 2011.

Lastly, a nice Quote



Thank You!
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