Parallelism in
Constraint Programming

Carl Christian Rolf

O — -
- ¢ g; |

D © {%7 B
- @6%%%7

Welcome...

5 7 : : = > - A S : ' '
Okag, Peo]ole, let/e : Y We | CO m e ///

gel dtarted on our 5 ::_'. 7' ‘ to H e I l ;

AN

orientation. | have

666 PowerPoint

¢lideg to cover. : ;-‘ _ i ' L_J)l'esented by Satan

vompa®
Vel K o redunes ..S.\?J".},\TJ'D. S1e-N

E
=
2
_“g
oS
%
8
5
S
%,
=

2/ 666

“Tiny Sudoku’

XY, Z, Q must have values between | and 2
The values in each row and column must be unique

n

Tiny Sudoku in Constraint
Programming

XY, Z, Q must have values between | and 2
The values in each row and column must be unique

{XY,Z,Q} e {1.2},
X #Y,
X * L,
Y +# Q,

Z + Q,
solve.

Solving Tiny Sudoku in CP

SOLVE

{X)Y,Z,Q} e{l.2}
XY, X+ZY#Q, Z#Q

X=1

Evaluate constraints:
XFEY, X+ZLY+Q,Z+Q

Parallel Consistency

Parallel Consistency for Tiny Sudoku

SOLVE
{X)Y,Z,Q} e{l.2}
XY, X#ZY#Q, Z#Q

X =1
{\.Z,Q} €{l.2}

Evaluate constraints:

CPU l CPU 2 CPU 3 CPU 4
Y¢Q

Parallel Consistency: Summary

® The ‘task-parallelism’ of constraint programming
® Previous work has not handled global constraints
® Might have to run more iterations of consistency
® | oad-balancing depends on the problem model

® Hard to share data during consistency

Parallel Consistency: Performance

Run on an eight core Mac Pro

" Sudoku [LA3I B Queens

ol

N

w

Absolute Speed-up

o

I 2 4 8

Number of Consistency Threads

9

Parallel Consistency: Conclusions

® Excellent performance for regular problems

® Some problems do not scale well, they
need constraint-specific parallel consistency
algorithms

Combining
Parallel Consistency
with
Parallel Search

Parallel Search for Tiny Sudoku

CPU 1 SOLVE
X.Y.Z, Q} e {1.2)

X+EY,X+LY+Q, L+Q

X=]

X=1 X =2
{Y.Z,Q} e {l.2} IY,Z,Q} e {I.2}

Evaluate constraints: Evaluate constraints:
X+EY, X+LY+Q, Z+Q X£Y, X+ZY+Q,Z+Q

Combining Parallelisms: Tiny Sudoku

CPU I SOLVE

{X,Y,Z,Q} e {l.2}
XY, X#ZY+Q, Z#Q

X=1

X =1
{\.Z,Q} €{l.2}

Evaluate constraints: Evaluate constraints:

CPU 1 ||CPU 2|/ CPU 3 || CPU 4 CPUS |CPU6| CPUT7||CPUS
X£Y || X#+Z || Y+Q || Z#Q X£Y || X£Z || Y+Q || Z#Q

Combining Parallelisms: Summary

® Never studied before in constraint programming

® Easier to achieve a speed-up than if the solver
only offers one type of parallelism

® Does not fit all types of problems, often needs
problem-specific optimization of, e.g., thread
allocation

Combining Parallelisms: Results
Finding 200 solutions to 100x 100 Sudoku. Run on 8-core Mac Pro

Consistency threads per search thread: [|
1.6

H 2 N 4 H s

N 14
-
W)

I
0.8
0.6
0.4
0.2

0

Absolute Speed-

Number of Search Threads
|5

Combining Parallelisms: Conclusions

® Needs better control of mutual exclusion
than currently offered by Java

® The problem must suit both types of

parallelism to get a large performance
benefit

® Problem-specific optimizations are
necessary for good performance

Relative-Measured
Load-Balancing

Load-Balancing for Tiny Sudoku

CPU | CPU 3

SOLVE SOLVE

X)Y,Z,Q} e {l.2) ShOU|C| CPU I X)Y,Z, Q) e {l.2}

XEY, X+ZY+Q,Z+Q XEY, X+ZY+Q,Z+Q
| or CPU 2

' be allowed to

4

o , send work? o

Y,Z,Q} e {I..2} ' Y,Z,Q} € {l.2}

Evaluate constraints: Evaluate constraints:
X#EY, X+ZY+Q,Z+Q XEY, X+ZY+Q,Z+Q

Waiting for work

Relative-Measured Load-Balancing

Busy solvers always compete for sending work to idle solvers

Relative-Measured Load-
Balancing: Summary

Infeasible to get an exact measure of the work-size
due to the way CP solves problems

We let solvers compete based on their work-size
estimates

We can use any measure that can be partially
ordered

Using measures from several solvers increases
accuracy by eliminating systematic errors

20

Relative-Measured Load-
Balancing: Performance

Golomb- 12, proving optimality. Slowest and fastest measures

B Random Polling B Least Labeled First [Most Labeled First
|6

N

(00

S

Absolute Speed-up

4 8 16 32

Number of Computers
21

Relative-Measured Load-
Balancing: Conclusions

® Relative measures lets even simple
estimates outperform random polling by

over 20%

® Advanced measures can easily be used

® Performance benefit increases with the
number of solvers

22

Dynamic Balancing of
Communication and
Computation

Dynamic Balancing for Tiny Sudoku

CPU I SOLVE
IX.Y.Z,Q} € {I.2)

X+EY,X+LY+Q, L+Q

X=]

X=1 X =2
{Y.Z,Q} e {l.2} IY,Z,Q} e {I.2}

Evaluate constraints: Evaluate constraints:
X+EY, X+LY+Q, Z+Q X£Y, X+ZY+Q,Z+Q

Tiny Sudoku: Zoomed in

Send either a copy of the variables, the
domains, and the constraints;
or just the assighments made by CPU I

CPU I

SOLVE
{X,)Y,Z,Q} e {l..2}

XEY, X+LY+Q, L+Q

X=1 X =2 CPU 2

X = X =2
Y, Z,Q} e {1.2} Y, Z,Q} e {I.2}

Evaluate constraints: Evaluate constraints:
X+£Y, X#+ZY+Q,Z+Q X#EY, X+LY+Q, L#Q

Balancing Communication and
Computation: Summary

® Copying sends a lot of data, but needs very
little processing

® Recomputation often needs a lot of
processing, but sends little information

® We estimate the network load to avoid
getting stuck in performance bottlenecks

26

Balancing Communication and
Computation: Results

Proving optimal Golomb ruler of size 12

B Copying B Recomputation B Dual Com

o

No

Absolute Speed-up
(00

N

o

4 8 |6 32
Number of Processors

27

Balancing Communication and
Computation: Conclusions

® Switching dynamically between copying and
recomputation often increases performance

® Simple measure to estimate where the
performance bottlenecks are

28

Distributed Constraint
Programming with Agents

(DCP)

Tiny Sudoku in DCP

Agent | Agent 2

XE{INZ} i
L

X# Y+Q
Ze{l.2} \

yA O,

Qe {l.2}

Agent 4

Solving starts in one agent, constraints
communicate prunings

30

useq‘ in UAWS in catastrcphe areas

.,;"’";_;\‘j'an‘t__mdependent agents to cooperate,

SN e want to ﬁnd gocd preferably optimal,
schedules

31

Example of Job Shop Scheduling

Two jobs, consisting of three tasks. Tasks have to
execute on specific machines in a certain order

MET I

Machine 2

Machine 3

Time Units :Schedule
length

32

DCP: In Contrast to the
Traditional Approach

® A full constraint solver in each agent
® A set of variables in each agent

® A set of n-ary (global) constraints in each agent

® No use of memory-demanding table constraints

® Advanced search methods

33

DCP: Experimental Results

Our Model
Problem Time | Solution Problem| Time |Solution
LAOI | >30min | 936 LAO| 3.8s 666
LAO4 >30min| 976 LAO4 10.8s 590
LAOS | >30min | 720 LAOS 0.7s 593
MTO06 87.7s 55 MTO06 3.0s 55

We proved the optimum of all problems, the traditional model of none

34

DCP: Conclusions

® Our model outperforms traditional models
by orders of magnitude

® The best traditional approaches will remain
slower, as speed-up is limited

35

Overall Conclusions

® We've developed and evaluated several new ways

to parallelize constraint solving with global
constraints

® Our model of distributed constraint programming
vastly outperforms traditional approaches

® Parallelism in constraint programming can, with no
understanding of parallel programming, give well-
scaling performance for many kinds of problems

Lastly, a nice Quote

“WVe finish this review with a single paper,
probably one that best represents the state
of the art [31].”

[31] C.C. Rolf and K. Kuchcinski. Combining parallel search and parallel consistency
in constraint programming. In TRICS workshop at CP2010, pages 38-52,2010.

From:

l. P. Gent, C. Jefferson, |. Miguel, N. C.A. Moore, P. Nightingale, P. Prosser, C.
Unsworth. A Preliminary Review of Literature on Parallel Constraint Solving. In
Parallel Methods for Constraint Solving workshop at CP201 |, pages 7—19,201 1.

Thank You!

666 / 666

