Parallelism in Constraint Programming

Carl Christian Rolf

Welcome...

'Tiny Sudoku'

X,Y,Z,Q must have values between 1 and 2 The values in each row and column must be unique

Tiny Sudoku in Constraint Programming

X,Y,Z,Q must have values between I and 2 The values in each row and column must be unique

 $\{X, Y, Z, Q\} \in \{1..2\},\$ $X \neq Y$ $X \neq Z$, $Y \neq Q$, $Z \neq Q$, solve.

Solving Tiny Sudoku in CP

Parallel Consistency

Parallel Consistency for Tiny Sudoku

Parallel Consistency: Summary

- The 'task-parallelism' of constraint programming
- Previous work has not handled global constraints
- Might have to run more iterations of consistency
- Load-balancing depends on the problem model
- Hard to share data during consistency

Parallel Consistency: Performance

Run on an eight core Mac Pro

Parallel Consistency: Conclusions

• Excellent performance for regular problems

 Some problems do not scale well, they need constraint-specific parallel consistency algorithms Combining Parallel Consistency with Parallel Search

Parallel Search for Tiny Sudoku

Combining Parallelisms: Tiny Sudoku

Combining Parallelisms: Summary

- Never studied before in constraint programming
- Easier to achieve a speed-up than if the solver only offers one type of parallelism
- Does not fit all types of problems, often needs problem-specific optimization of, e.g., thread allocation

Combining Parallelisms: Results

Finding 200 solutions to 100x100 Sudoku. Run on 8-core Mac Pro

Combining Parallelisms: Conclusions

- Needs better control of mutual exclusion than currently offered by Java
- The problem must suit both types of parallelism to get a large performance benefit
- Problem-specific optimizations are necessary for good performance

Relative-Measured Load-Balancing

Load-Balancing for Tiny Sudoku

Relative-Measured Load-Balancing

Busy solvers always compete for sending work to idle solvers

Relative-Measured Load-Balancing: Summary

- Infeasible to get an exact measure of the work-size due to the way CP solves problems
- We let solvers compete based on their work-size estimates
- We can use <u>any</u> measure that can be partially ordered
- Using measures from several solvers increases accuracy by eliminating systematic errors

Relative-Measured Load-Balancing: Performance

Golomb-12, proving optimality. Slowest and fastest measures

Relative-Measured Load-Balancing: Conclusions

- Relative measures lets even simple estimates outperform random polling by over 20%
- Advanced measures can easily be used
- Performance benefit increases with the number of solvers

Dynamic Balancing of Communication and Computation

Dynamic Balancing for Tiny Sudoku

Tiny Sudoku: Zoomed in

Balancing Communication and Computation: Summary

- Copying sends a lot of data, but needs very little processing
- Recomputation often needs a lot of processing, but sends little information
- We estimate the network load to avoid getting stuck in performance bottlenecks

Balancing Communication and Computation: Results

Proving optimal Golomb ruler of size 12

Balancing Communication and Computation: Conclusions

- Switching dynamically between copying and recomputation often increases performance
- Simple measure to estimate where the performance bottlenecks are

Distributed Constraint Programming with Agents (DCP)

Tiny Sudoku in DCP

Solving starts in one agent, constraints communicate prunings

Our use of DCP

VITAS

To be used in UAVs in catastrophe areas

We want independent agents to cooperate, to for instance share a heat camera

We want to find good, preferably optimal, schedules

Example of Job Shop Scheduling

Two jobs, consisting of three tasks. Tasks have to execute on specific machines in a certain order

DCP: In Contrast to the Traditional Approach

- A <u>full</u> constraint solver in each agent
- A set of variables in each agent
- A set of <u>*n*-ary</u> (global) constraints in each agent
- <u>No</u> use of memory-demanding table constraints
- <u>Advanced</u> search methods

DCP: Experimental Results

Traditional Model

Our Model

Problem	Time	Solution	Problem	Time	Solution
LA01	>30min	936	LA01	3.8s	666
LA04	>30min	976	LA04	10.8s	590
LA05	>30min	720	LA05	0.7s	593
MT06	87.7s	55	MT06	3.0s	55

We proved the optimum of all problems, the traditional model of none

DCP: Conclusions

 Our model outperforms traditional models by orders of magnitude

• The best traditional approaches will remain slower, as speed-up is limited

Overall Conclusions

- We've developed and evaluated several new ways to parallelize constraint solving with global constraints
- Our model of distributed constraint programming vastly outperforms traditional approaches
- Parallelism in constraint programming can, with no understanding of parallel programming, give well-scaling performance for many kinds of problems

Lastly, a nice Quote

"We finish this review with a single paper, probably one that best represents the state of the art [31]."

[31] C.C. Rolf and K. Kuchcinski. *Combining parallel search and parallel consistency in constraint programming*. In TRICS workshop at CP2010, pages 38–52, 2010.

From:

I. P. Gent, C. Jefferson, I. Miguel, N. C.A. Moore, P. Nightingale, P. Prosser, C. Unsworth. A Preliminary Review of Literature on Parallel Constraint Solving. In Parallel Methods for Constraint Solving workshop at CP2011, pages 7–19, 2011.

Thank You!