
-time
ion
ends

ment-
colli-
ation
bject. A
(kine-
e two
 just

ction
num-
erar-

airs
be
sted
, such

ason
 from
d C.
LLIDE

lid-
Enhanced Collision Detection in Crystal Space
(Reviewed project proposal)

Flavius Gruian & Magdalene Grantson
December 13, 2001

Reviewed January 8, 2002 (track changes via the red sidebars)

1. Introduction

1.1 Motivation
Detecting colliding objects is a must in any graphic engine or simulation environment. Real
3D simulations, consisting of complex scenes with many moving objects, require fast collis
detection algorithms in order to keep a high frame rate. More complexity is added if one int
to handle variable size bodies, i.e. deforming bodies.

Moreover, there has to be a tight connection between collision detection and the part imple
ing the kinematics/physical behavior of the simulated universe. From this point of view, the 
sion detection part has to be able to provide enough information about each collision, inform
used to recompute the accelerations, speed, or/and forces that change the behavior of the o
good separation between the collision detection part and the timely behavior of the universe
matics, physics) is also required if one expects to employ various approaches for any of thes
parts. Having an efficient interface (API) between these plug-ins is, thus, a must. These are
some of the problems to be overcome in writing a good collision detection plug-in.

1.2 Idea
The focus of this project is on enhancing the already existent Crystal Space [3] collision dete
plug-in. The current plug-in is based on RAPID [1] and can only handle a small to moderate
ber of rigid objects. In an initial phase, it constructs a object oriented bounding box (OBB) hi

chy for each collider1. At runtime, the user is expected to perform collision queries between p
of colliders. In a bad implementation, every pair of dynamic objects in the universe have to 
checked for collisions. In practice, only “close” objects can collide, so only these should be te
for an accelerated query. There are several approaches that for detecting “close” object pairs
as:
• use a grid decomposition of the universe and only test objects located in adjacent cells
• use a cache of previously “close” objects and start testing these. Use these results to re

about the closeness of other objects. For example, if A is close to B but rather far away
C, it is very likely that B is far away from C so there would be no collision between B an

Combinations of these and other approaches can also be imagined. One example is V-CO
[2].

1. A collider is a polyhedra that can collide with other colliders. It does not necessarily have to have the
same geometry as the object it represents. Note also that not all visible objects must be reported as col
ers.



 col-
 cur-

oint).

ith
ime
com-
oft

g
parent
he

ng

 no
 verti-
a way
ew

hy
nce
lity,
ning
n
ing
ting

 or
ter-
efore
ts and
Another drawback with the current collision detection plug-in, is the lack of any information
about the surface (or point) of impact between the two colliders. We just know if the objects
lide or not. This is not enough to derive a reasonable physical model. We plan to extend the
rent collision detection mechanism with some feedback about the impact surface (volume, p
This improvement should be usable with the currentcsPhyziks library, but general enough to be
used with any other physics plug-in.

Finally, the existentiCollideSystemplug-in can not handle dynamic meshes. That is, objects w
growing size or deforming features. This would imply recomputing the OBB hierarchy each t
the object deforms, which can be quite time consuming. We aim at including a fast way of re
puting an OBB hierarchy after a deformation. This should be the first step towards adding s
bodies in the csPhyziks library.

2. Prototype

2.1 Crystal Space Extensions
We will modify the iCollideSystemplug-in to include accelerated queries, support for deformin
bodies and return the point/surface/volume of contact. If the first enhancement may be trans
to the user of the collision system, the next two require a well defined API. More precisely t
interface would be something as follows:

Accelerated Query.(also referred to as “frame coherence”) Functions for setting and updati
the location of the objects and possibly their orientation too:

void iCollisionSystem::SetPostion(Collider object, csVector3 position)
void iCollisionSystem::UpdatePosition(Collider object, csVector3 position)

These are required for accurate tracking of “closeness” between objects.

Deforming Bodies.We will assume that only the position of certain vertices can change (i.e.
vertices or edges are inserted or deleted). Every time a deformation occurs, meaning some
ces changed their position, relative to the other vertices of the same object, there should be
to report this back to the collider for that object. A list of pairs containing old position and the n
position of a vertex have to be reported in this case:

void Collider::Difform(list_of_vertex_pairs)
Our implementation will have to identify the OBBs that were affected and adjust the hierarc
correspondingly. Initially we will simply recompute the whole bounding volume hierarchy, si
we build on the RAPID algorithm that uses OBBs. A better choice, which can use spatial loca
would be to use AABBs. In that case only a certain branch of the hierarchy will change, mea
we can rebuild the hierarchy faster, as in SOLID [4]. Unfortunately that would mean using a
AABB based algorithm, (not RAPID) that we would have to build from scratch instead of us
RAPID. Depending on the available time left to finish the project we may consider implemen
such an algorithm, thus accelerating the hierarchy recomputation.

Surface of Contact.Any collision check between two objects should return the point/surface
volume of contact in some way. In principle, only impact forces and their origin points are in
esting. This is the least clear part of the project, and we have to do more literature survey b
we can define the right approach. This part may prove to be less complex for convex objec



it par-

ement
ize,
f con-
e. As

ber of
cts.

down
se, the

t of
x, y,

dline.

uery,

m-
 vol-

m if
mo

B in

om-
nt
depending on the time remaining after the demo milestone, we might decide to implement 
tially or not at all.

2.2 Demo Application
The demo application(s) should show the power of our enhancements. For the first enhanc
we need a large number of colliders - i.e. a room full of bouncing balls, possibly different in s
that can collide with the walls and among them. We chose balls (spheres) since the point o
tact in this case is very easy to compute, in case we can not finish the last enhancement in tim
an extension to the Pong3D application that we already have, we could include a large num
bouncing ping-pong balls or other objects (i.e. cubes) in the room besides the existing obje

For the last two enhancements, the best demo would be a deforming L shaped object falling
some stairs. With each collision, the shape would change and finally at the end of the stairca
L shape will be all crumbled together.

If we implement only the first two enhancements, deforming we could make a demo with a lo
bouncing objects (spheres) changing sizes, say a Pong3D with ping-pong balls with variable
z dimensions.
Finally, the demo will depend on how much we manage to implement before the demo dea

3. Time Schedule

3.1 Work Steps

1. Define a data structure that will keep track of where objects are, such that at a particular q
objects which are outside the vicinity of the query will be ignored for collision detection.

2. Define a (fast) way of recomputing an OBB hierarchy after a deformation. If an object’s
geometry changes (deforms) one will have to recompute its bounding volume. If it deco
poses several time it is natural that we think of a fast way of recomputing their bounding
umes.

The following steps depend on the progress on the previous two. We will only implement the
we consider that we have enough time. Alternatively we could implement them after the de
deadline, meaning the demo will not be using them.
3. Extend theRAPID  collision detection plug-in to output the surface or point of impact.
4. Instead of RAPID, implement and use another collision detection plug-in based on AAB

order to be able to recompute the bounding volume hierarchy faster.

Our aim will be to extend theRAPID or a novel collision detection plug-in which will also be
useful in thecsPhyziks library.

3.2 Milestone Demo
UsingcsPhyziks, define Pong3D room full of bouncing balls of different sizes, possibly size
changing too. The balls collide with the floor, walls, rackets, table, net, and among them. C
pare the speed between using onlyRAPID  (check each pair of balls) and our own enhanceme
for different number of balls ranging from 10 to 1000.



nce,
4. Report Outline

The report will take the following format:

• Introduction and abstract giving one a basic idea of the problem being addressed.
• Elaborate on existing work  in collision detection
• Problem at hand and motivation for our work
• Present the data structure and algorithms we plan to use
• Results. We will compare the time complexity of our proposed algorithms with that of

RAPID  and do some time complexity analysis on each algorithm
• Attach code, class diagrams and specific comments for our implementation

5. References

[1] OBB-Tree: A Hierarchical Structure for Rapid Interference Detection, S. Gottschalk,
M.C. Lin and D. Manocha Technical report TR96-013, Department of Computer Scie
University of N. Carolina, Chapel Hill. Proc. of ACM, Siggraph’96.

[2] V-COLLIDE Website: http://www.cs.unc.edu/~geom/V_COLLIDE/index.html

[3] Crystal Space Documentation at http://crystal.linuxgames.com/

[4] SOLID http://www.win.tue.nl/~gino/solid/


	Enhanced Collision Detection in Crystal Space (Reviewed project proposal)
	1. Introduction
	1.1 Motivation
	1.2 Idea

	2. Prototype
	2.1 Crystal Space Extensions
	Accelerated Query
	Deforming Bodies
	Surface of Contact

	2.2 Demo Application

	3. Time Schedule
	3.1 Work Steps
	1. Define a data structure that will keep track of where objects are, such that at a particular q...
	2. Define a (fast) way of recomputing an OBB hierarchy after a deformation. If an object’s geomet...
	3. Extend the RAPID collision detection plug-in to output the surface or point of impact.
	4. Instead of RAPID, implement and use another collision detection plug-in based on AABB in order...

	3.2 Milestone Demo

	4. Report Outline
	5. References
	[1] OBB-Tree: A Hierarchical Structure for Rapid Interference Detection, S. Gottschalk, M.C. Lin ...
	[2] V-COLLIDE Website: http://www.cs.unc.edu/~geom/V_COLLIDE/index.html
	[3] Crystal Space Documentation at http://crystal.linuxgames.com/
	[4] SOLID http://www.win.tue.nl/~gino/solid/



