
imilar
stal
frame
ses a
. The
ction
pace.
sted in

con-
nima-
n of
tion.
. Our
llision

use

g

cts
l colli-

. We
used
s sent

ges/
given
s algo-
ith a

tions

Preliminary version: March 1, 2002
ECoDS: An Enhanced Collision Detection System
for Crystal Space

Flavius Gruian and Magdalene Grantson
<firstname.lastname@cs.lth.se>

Abstract
The present report describes an implementation of an N-body collision detection system, s
to V-COLLIDE built on top of a 2-body collision detection algorithm. Our system uses the Cry
Space graphic engine, and its RAPID collision detection plug-in. The system makes use of
coherence and a collision cache to speed up the collision detection procedure. Moreover, it u
fast method to detect and exclude from further processing pairs of objects that can not collide
experimental results, based on a demo application, show that our Enhanced Collision Dete
System (ECoDS) can significantly speed up the collision detection procedure in Crystal S
The reduced complexity of the implementation makes it a good choice for developers intere
fast collision detection.

1. Introduction

Collision detection deals with geometric contact between distinct objects. It is an important
cept in many fields in computer graphics and computational geometry like simulation, and a
tion [3]. In this paper we present an efficient, real-time algorithm to handle collision detectio
several thousands of objects made up of collection of polygons with no topological informa
Our system makes extensive use of the Crystal Space 3D graphic engine [2] written in C++
basic aim is to speed up the collision detection procedure in Crystal Space. We handle co
detection in two phases.

In the first phase, we find potentially colliding pairs of objects in the scene graph, making
of axis-aligned bounding boxes(AABB). We sort the end points of the AABBs into three lists
Lx, Ly, Lz (one for each coordinate axis). The lists Lx, Ly, Lz are re-sorted at each frame usin
insertion sort. The choice of insertion sort, is due to the fact that Lx, Ly, Lz are partially sorted and
insertion sort gives a linear time complexity if lists are partially sorted. Only pairs of obje
whose AABBs overlap in all three dimensions are sent to the second phase to check for rea
sions.

The second phase deals with detecting whether potential colliding pairs really collide
make use of RAPID collision detection plug-in from Crystal Space. The bounding volume
here is the oriented bounding boxes(OBBs). To check for collisions between pairs of object
from phase one, RAPID traverses the OBB hierarchies to find boxes which overlap.

The report is organized as follows: We provide an overview of related work and advanta
drawbacks/usability of other systems and our system in section 2. An overview of ECoDS is
in section 3. Section 4 presents our implementation and describes specific issues such a
rithms, limitations, and how to use ECoDS in CS. We compare the performance of ECoDS w
pair wise RAPID based method in section 5. Finally, in section 6 we summarize our contribu
and results.

g vol-
, sphere
s, and
ation

EEP,

backs/
of
per-

s

2. Collision Detection Basics

Most collision detection systems deal with scene graphs made up of hierarchies of boundin
umes. Some of the hierarchical structures used here include cone trees, k-d trees, octrees
trees, etc. The bounding volumes used can be axis-aligned bounding boxes (AABB), sphere
oriented bounding boxes (OBB). The choice of bounding volumes depends on the applic
requirements.

In recent years there has been several implementations of CD algorithms, such as D
SWIFT++, PIVOT, H-COLLIDE, RAPID, PQP, V-COLLIDE, I-COLLIDE, IMMPACT [1, 4].
Each of these packages are suitable for specific tasks (See Table 1 for advantages/draw
usability). ECoDS is similar to V-COLLIDE, having only the difference that it builds on top
RAPID in Crystal Space. We implemented something similar to V-COLLIDE because of its
formance and advantages/usability stated below and our objectives.

Table 1: A Few Collision Detection Algorithms

RAPID Works with polygon soups. Requires that models are composes of triangles. Suitable
when one has a small or moderate number of complex polygonal models and wants to
make pair-processing queries explicitly.

I-COLLIDE Works only for convex polyhedra models. Collision query times are extremely fast when
models move only a relatively small amount between frames. It uses an n-body process-
ing algorithm, and returns the distance between intersecting pairs of objects.

DEEP It is an incremental algorithm, which estimates the penetrating depth between convex
polytopes along and the associated penetration direction.

SWIFT++ Provides proximity queries such as intersection detection, tolerance verification, exact
and approximate distance computation and contact determination of general 3-D polyhe-
dral objects undergoing rigid motion.

PIVOT This is a 2D proximity engine. The proximity queries in PIVOT include detecting colli-
sions, computing intersections, separate distances, penetration depths and contact point
with normals.

H-COLLIDE This is a framework for fast and accurate collision detection for haptic (touch-enabled)
interaction.

PQP Provides support for distance computation and tolerance verification queries. Its API is
similar to that of RAPID and gives the client program the flexibility of using more than
one bounding volumes for a given query.

IMPACT Provides interactive collision detection and proximity computations on massive models
composed of millions of millions of geometric primitives.

V-COLLIDE An n-body processor built on top of RAPID system. It decides which pairs of models are
potentially in contact and for each potential contact pair it uses RAPID to determine true
contact pairs. It remembers where all models are. It works with polygon soups. The client
program can add or delete models from the collection managed by V-COLLIDE.

ECoDS An 2-body processor built on top of RAPID system in Crystal Space. It decides which
pairs of models are potentially in contact and for each potential contact pair it uses
RAPID to determine true contact pairs. It remembers where all models are. It works with
polygon soups. The client program can add or delete models from the collection man-
aged by ECoDS.

her
ssary.

more
(Fig-
time.
-detec-
d up

bjects.
le. In
le to
the
pace

Col-
with
x,
tions.
verlap
a col-
st be
lli-
med

lap
ched
) we
tion
ling

l)
3. Overview of ECoDS

Starting from an existing 2-body collision detection algorithm our intent was to build a hig
level manager that makes calls to the 2-body collision detection function only when nece
The reasonable assumption was that a flat collision detection system (Figure 1.a) would take
time since it has to check all object pairs for collision. A higher level management strategy
ure 1.b) would likely filter the unwanted/redundant checks, requiring thus less processor
Our system, ECoDS implements the N-Body level management strategy. It uses a fast pre
tion phase to identify objects that are unlikely to collide. It employs frame coherency to spee
this pre-detection phase. It also makes use of a collision cache for frame-wise stationary o

We wanted our N-body collision detection system to be as flexible and modular as possib
principle it can use any two body collision detection available. Moreover, the developer is ab
use different collision detection algorithms for different bodies without affecting ECoDS. In
demo described in section 5, we used the RAPID plug-in already available in the Crystal S
distribution. An schematic overview of ECoDS is depicted in Figure 2.

The main data structures in ECoDS are the lists of AABB Projections on all three axis, the
lision Cache and the Potentially Colliding Objects (PCO) List. For each collider registered
ECoDS (Register Collider) we extract the AABB of its object and use its projections on the O
Oy, and Oz. These three pairs of values are stored in the corresponding lists of AABB Projec
These lists have to be ordered to get the overlaps on all three axis. Whenever two AABBs o
on all three axis, they are marked as potentially colliding and passed on to the PCO lists. If
lider moves (or there is a general change in the mesh that may affect the AABB) ECoDS mu
informed (Report Moves). If an object is marked as moved, the information stored in the Co
sion Cache will be considered invalid, its AABB is recomputed but no reordering is perfor
yet. Whenever the applications wants to find out about new collisions, it has to callCheckColli-
sions. At this moment, the AABB Projection lists are reordered while tracking the AABB over
and updating the PCO list. After reordering, for any pair of colliders that did not move, the ca
collision information is used. Otherwise, if at least one object moved (the cache is invalid
have to call the 2-Body collision detection system for that pair. This 2-Body collision detec
algorithm can be for example the “RAPID” plug-in. It is up to the developer to decide (by cal

N(N-1)/2 calls

N(N-1)/2 calls

filtered calls

2-Body CD 2-Body CD

N-Body CD
cache

PCO

frame coherency

N Colliding Objects

Figure 1: Flat and Hierarchical Collision Detection Systems

a) No High-Level Management (Flat) b) N-Body Management (Hierarchica

the

d with
rmed

rystal
. The

e
rency
main
badly
algo-

hen-
RAPID or otherwise) whether the two bodies collide. The result of this call is then stored in
collision cache for later use.

4. Implementation and Usage

The current implementation of ECoDS consists on several classes which have to be compile
the application using the collision detection system, but we believe it can be easily transfo
into a plug-in.
As depicted in the class diagram (Figure 3) ECoDS classes are rather disconnected from C
Space making the implementation independent of the 2-body collision detection algorithm
n-body collision detection manager is implemented inxCoDS. All colliders must be registered
with this class usingsetCollider(). Besides the list of colliders,xCoDSalso harbors the lists of
AABB projections on the three axis and a collision cache.

Collisions are detected and handled via calls toupdateCollisions(). Once called, this function
re-sorts all three projection lists usingresort(). Sorting is implemented using insertion sort sinc
this seems to be the fastest method for partially ordered lists. This is where frame cohe
comes in: since the objects move rather little between two frames, the projection lists re
rather ordered with probably only a few out of order values. Although insertion sort behaves
on random sets of values, it is much faster on partially ordered lists compared to more fancy
rithms [1]. Furthermore, while resorting of the list the potential collisions are also tracked. W

AABB
Projections

(Lists)

Collision Cache

PCO list

2-Body CD?

Ask

ECoDS

CrystalSpaceRAPID plug-in

A
pp

lic
at

io
n

Report Moves

Check Collisions

O1.isCollidingWith(O2)

[(Op,Oq),
 ... (Ok, Ol)]

[(O1,O2),
 ... (Om, On)]

Object Pair

Specific

Collision Detection

Figure 2: An overview of ECoDS and its place in a CrystalSpace application.

Register Collider

Bs)
ing

we
we
.
iffer-
. This
ject-

r

n
ver-

cts
ever, during swapping values in the projection lists, two intervals (projections of two AAB
change their overlap, thePCO array in eachxCollider reflects these changes. Once the reorder
is complete, we have to handle all the potential collisions. For pairs of immobile colliders
reuse the values from theCollisionCache. For pairs containing at least one object that moved,
let the implementation ofxObject.isCollidingWith() to check and handle the possible collision
Its result is then stored in the CollisionCache. Note that the developer is able to implement d
ent algorithms for the 2-body CD, depending on object shape, distance, properties, etc
makes our approach very flexible. One limitation of the current implementation is that for pro
ing AABBs the objects needs to implement aniMeshWrapper interface, but this can be easily
modified to require directly the AABB.

The colliders in ECoDS are implemented by thexCollider class. Whenever an object moves o
otherwise changes its AABB, its corresponding xCollider must be informed viasetMovedFlag()
which updates the AABB projections. ThePCO array contains information about the relatio
between the owner collider and all other colliders. It only states on which axis the AABBs o
lap. This array is updated whenever a call toxCoDS.updateCollisions()occurs. All the informa-
tion about the object (AABB, 2-body collision handling) is obtained via a pointer to anxObject.
In principle the abstract classxObject is an interface that has to be implemented by all the obje
involved in the ECoDS collision detection. All objects have to be able to return aniMeshWrap-

xCoDS
nColliders: int
ColliderArray: [] xCollider*
CollisionCache: [][] bool
OxProj: [] xCoord*
OyProj: [] xCoord*
OzProj: [] xCoord*

setCollider(int, xCollider*)

updateCollisions(
 iCollideSystem*, int&): int

...

xCoord
i_Collider: int
Value: double
bLeft: bool

resort(short int)

isLeft(): bool
isRight(): bool

xObject
{abstract}

isCollidingWith(iCollideSystem*,
 xObject*): bool

getMesh(): iMeshWrapper*

xCollider
pxObj: xObject*
bMeshMoved: bool
xAABB: [6] xCoord*
PCO: [] short int

...

...

setMovedFlag(bool)
getObject(): xObject*
isPotentiallyColliding(int)
 : bool

buildPCO(int)

6

N

3*2N

iMeshWrapper {CS}iCollideSystem {CS}

Figure 3: ECoDS implementation class diagram

r for
ith
algo-

date

ated

r room
lready
ects/
gles.
, and
speed,
on a

colli-
oked
per (from which ECoDS just uses the AABB). The objects also have to implement a handle
2-body collision checking,isCollidingWith() . Note that this handler both detects and deals w
the collision it necessary. So the handler should contain a call to a 2-body collision detection
rithm (“RAPID” for example, as we do in our demo described later). It should also modify/up
whatever necessary attributes (speed, position,...) in case a collision occurred.

In brief, the developer has to take the following steps in order to use ECoDS:
• usexObject as a base class for all objects involved
• create anxCollider for each object and register it withxCoDS
• if the object changed its AABB (movement, scaling, shape change,...) inform the associ

xCollider
• use theupdateCollisions() from xCoDS whenever the collisions have to be handled
Note that ECoDS has no problem with objects that change shape (mesh).

5. Experiments

The experiments described here are based on a simple demo, consisting of a rectangula
containing a set of bouncing objects (Figure 4). As objects we used a spaceship sprite a
available in the Crystal Space 0.92 distribution (from “data/demodata.zip” the mesh “obj
th_ship” and texture “textures/shiptex.jpg”). This sprite contains 300 vertices and 430 trian
The objects in the room are randomly set initially to have certain position, speed, roll, yaw
pitch. Whenever a collision occurs between objects, they reverse and randomly scale their
roll, yaw and pitch. This helps the viewer to notice the collisions. All experiments were run

SunBlade1001, 502.0 MHz UltraSPARC4, 256MB using SunOS 5.8 (Solaris 8).
To evaluate the performance of our ECoDS implementation, we compared it to a pure flat

sion detection system using RAPID (see Figure 1.a), referred to as pair wise RAPID. We lo

1. http://www.sun.com/desktop/sunblade100/

Figure 4: Demo Snapshots. Bouncing ships in a small room.

Original textures.

Modified textures

sions
First,
reases

ec-
refore
wise
at the actual time spent on collision detection, frame rate and the number of potential colli
and detected collisions. We wanted to compare the two methods in two different situations.
we examined the case in which the volume remains constant and the number of objects inc
(Figure 5 A, B, C).

First, our system (N-Body ECoDS) is always faster than pair wise RAPID (Figure 5.A). S
ondly, as expected the number of potential collisions detected by ECoDS increase and the
the number of calls to RAPID increases abruptly towards the number of calls used in pair

10

100

1000

10000

100000

1e+06

1 2 4 8 16 32 64 128

m
ic

ro
se

co
nd

s
us

ed
 o

n
C

D

Bodies/Fixed Volume

Pair wise RAPID

N-Body ECoDS

Figure 5: Case1: Fixed volume / variable body density

A

0.0001

0.001

0.01

0.1

1

10

100

1000

1 2 4 8 16 32 64 128

C
ol

lis
io

ns
/F

ra
m

e

Bodies/Fixed Volume

Pair wise RAPID

N-Body ECoDS

ECoDS potential

B

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128

F
ra

m
es

/s
ec

on
d

Bodies/Fixed Volume

Pair wise RAPID

N-Body ECoDS

C

me
). Since
re will
ather
e total
gnifi-
RAPID (Figure 5.B). Finally, there is a slight variation in the number of total collisions per fra
detected by the two methods because the number of frames per second varies (Figure 5.C
for one method the objects move a longer distance between frames, it can happen that the
be more collisions between two frames. But the variation, as resulting from the graph is r
small. This is mainly because the collision detection takes anyway a small percentage of th
computation for one frame. On a faster machine the difference would probably be more si
cant.

10

100

1000

10000

100000

1 2 4 8 16 32 64 128

m
ic

ro
se

co
nd

s
us

ed
 o

n
C

D

Total Bodies (Fixed Density)

Pair wise RAPID

N-Body ECoDS

Figure 6: Case2: Fixed density / variable volume

A

0.001

0.01

0.1

1

10

100

1 2 4 8 16 32 64 128

C
ol

lis
io

ns
/F

ra
m

e

Total Bodies (Fixed Density)

Pair wise RAPID

N-Body ECoDS

ECoDS potential

B

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128

F
ra

m
es

/s
ec

on
d

Total Bodies (Fixed Density)

Pair wise RAPID

N-Body ECoDS

C

ugh the
me in
ber of

stem
e but

l colli-
) than
ber

ubles,
ntial
t den-
f col-

ing
urrent
anager

) to
ABB
he for

colli-
e and
llision
han the
tem, it
tion.
The second case we examined, was when the density of bodies remains constant altho
number of colliding bodies increases. We considered a density that gave one collision per fra
the previous case (32 bodies in the room) and adjust the room size depending on the num
bodies. The results are depicted in Figure 6 A, B, C.It is clear that our N-Body ECoDS sy
performs better and better than the pair wise RAPID when the number of colliders increas
the density is kept at a constant value (Figure 6.A). This is because the number of potentia
sions detected by ECoDS increase slower (proportional with the number of objects added
the number of calls to RAPID in the pair wise RAPID (proportional with the square of the num
of objects added). This is clear from Figure 6.B, where whenever the number of objects do
the number of potential collisions grows by approx. 2.5 times. Note that the number of pote
collisions keeps at a constant ten times the number of actual collisions (meaning the objec
sity is indeed constant). Finally, as in the first case, there is a small variation in the number o
lisions per frame resulted from the frames per second variation.

6. Conclusions

Collision detection is required in most dynamic 3D graphic applications. Moreover, when tim
is an issue (games, real-time simulations, etc.) fast collision detection is a must. In the c
report we presented ECoDS, an enhanced collision detection system that is a high level m
for n-body systems. ECoDS can use any 2-body collision detection algorithm (e.g. RAPID
identify real collisions, but tries to avoid unnecessary calls by various methods. It uses A
overlaps to detect and handle only those objects that may collide. It also uses a collision cac
stationary objects. Finally it employs frame coherency to perform faster detection.

The implementation presented here uses the Crystal Space graphic engine and its RAPID
sion detection plug-in. Its modularity and small number of classes makes it easy to us
extend. The experimental results show impressive results compared to a flat, pair wise co
detection approach. For large number of sparse objects ECoDS gets much faster (8 times) t
flat pair wise approach. Therefore, whenever one needs collision detection in an n-body sys
makes sense to put a small effort into implementing a high level manager for collision detec

7. References

1. Gamma Research Group at University of North Carolina
Collision Page: http://www.cs.unc.edu/~geom/collide/index.shtml

2. CrystalSpace project page: http://crystal.sourceforge.net
3. T. Möller, E.Haines.Real-Time Rendering,A.K. Peters Ltd., 1999
4. S. Gottschalk, M. C. Lin and D. Manocha. OBB-Tree: A Hierarchical Structure for Rapid

Interference Detection. In Proc. of ACM Siggraph’96.

	ECoDS: An Enhanced Collision Detection System for Crystal Space
	Abstract
	1. Introduction
	2. Collision Detection Basics
	Table 1: A Few Collision Detection Algorithms

	3. Overview of ECoDS
	Figure 1: Flat and Hierarchical Collision Detection Systems
	Figure 2: An overview of ECoDS and its place in a CrystalSpace application.

	4. Implementation and Usage
	Figure 3: ECoDS implementation class diagram
	Figure 4: Demo Snapshots. Bouncing ships in a small room.

	5. Experiments
	Figure 5: Case1: Fixed volume / variable body density
	Figure 6: Case2: Fixed density / variable volume

	6. Conclusions
	7. References
	1. Gamma Research Group at University of North Carolina Collision Page: http://www.cs.unc.edu/~ge...
	2. CrystalSpace project page: http://crystal.sourceforge.net
	3. T. Möller, E.Haines. Real-Time Rendering, A.K. Peters Ltd., 1999
	4. S. Gottschalk, M. C. Lin and D. Manocha. OBB-Tree: A Hierarchical Structure for Rapid Interfer...

