

Robot Design Introduction to NQC - p. 5/17

LUND UNIVERSITY

Program structure 2

// body

subroutines (no args, no nesting, max 8) sub mysubroutine() {

may be global and local

variables: always 16 bit integers

AI@CS

Department of omputing Science

limited pool: 32 global, 16 local (declare as locally as possible!) arrays declare: int my_array[3]; use: my_array[0] = 12; my_array[2] = my_array[1]; (note limitations!)

need to be declared (int x; or int y = 2;)

Statements;

Lund

UNIVERSITY

Al@CS

Department of

- variable declaration;
- assignment;
- control structures
 - if (condition) consequence
 - if (condition) consequence else alternative
 - compound statement ({ . . . }
 - while (condition) body
 - do body while (condition)
 - for (stmt1; condition; stmt2) body
 - repeat (expression) body
 - switch (expression) body
 - **goto label**:

Statements 2

access control (prioritisation):

acquire (resources) body acquire (resources) body catch handler

event monitoring:

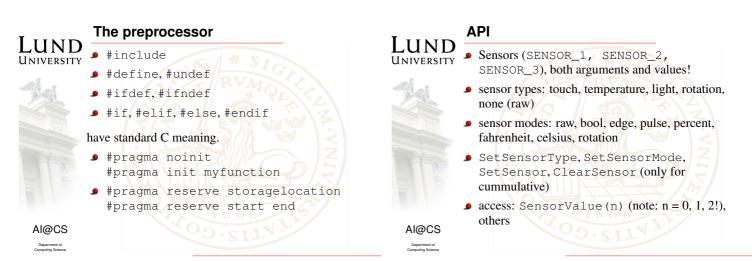
monitor (events) body monitor (events) body handler list

catch (catch events) handler catch handler

Al@CS Department of Computing Science

Events must be numbered (EVENT_MASK () macro)

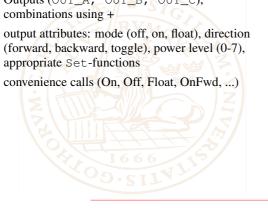
duction to NOC - p. 9/17


Statements 3, Expressions

- task activation (start, stop)
- break, continue within loops
- expression (only x++; or y- -; make sense)

- values and their combinations by using operators, yield a value
- conditions, yield a logical value (true, false, usual C convention)

Robot Design Introduction to NOC - p. 10/17



Robot Design Introduction to NQC - p. 11/17

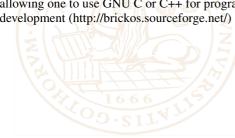
API 2

- Lund UNIVERSITY
- Outputs (OUT_A, OUT_B, OUT_C), combinations using +
- output attributes: mode (off, on, float), direction (forward, backward, toggle), power level (0-7), appropriate Set-functions

AI@CS Department of

Sound, Display, Communication Lund PlaySound (constant), SOUND_CLICK, UNIVERSITY SOUND DOUBLE BEEP, SOUND DOWN, SOUND_UP, SOUND_LOW_BEEP, SOUND_FAST_UP. PlayTone(int freq, const duration) mute, unmute, clear SelectDisplay (mode). SetUserDisplay (var, const) Message () reads the buffer, ClearMessage() clears it SendMessage(int), SetTxPower(const) Al@CS serial communication is possible Department of omputing Science

Robot Darian Introduction to NOC - p. 14/17


Timers, Counters Other Stuff Lund Lund Timers: 4 with 100ms or 10ms resolution; SetPriority (prio) - sets task's priority to ٩ UNIVERSITY UNIVERSITY prio. Useful for access control ClearTimer(0), Timer(2), SetTimer(3, x), FastTimer(2) (acquire-statements) Counters — overlap with memory locations 0-2event monitoring - up to 16 freely configurable (use #pragma reserve!) events logging data: CreateDatalog(size), ClearCounter(1), IncCounter(1), DecCounter(1), Counter(1) AddToDatalog(val) Mait (hundreths) StopAllTasks() Random(const) Al@CS Al@CS sleeping, program switching, battery access, firmware version, clock access Department of Computing Science Department of Computing Science tion Introduction to NOC - p. 15/17 Robot Davian Introduction to NOC - p. 16/17

Other systems than NQC

- LeJOS (www.lejos.org), works also for NXT (new generation brick): gives you Java Virtual Machine (but without GC)
 - BrickOS replacement operating system, allowing one to use GNU C or C++ for program development (http://brickos.sourceforge.net/)

Al@CS Department of Computing Science

Robot Design Introduction to NQC - p. 17/17