
Introducing Software Engineering

by means of Extreme Programming

Görel Hedin, Lars Bendix, Boris Magnusson

Department of Computer Science

Lund Institute of Technology

Sweden

{gorel|bendix|boris}@cs.lth.se

Abstract

This paper reports on experience from teaching basic
software engineering concepts by using Extreme Pro-
gramming in a second year undergraduate course taken
by 107 students. We describe how this course fits into a
wider programme on software engineering and technol-
ogy and report our experience from running and improv-
ing the course. Particularly important aspects of our set-
up includes team coaching (by older students) and “team-
in-one-room”. Our experience so far is very positive and
we see that students get a good basic understanding of
the important concepts in software engineering, rooted in
their own practical experience.

1. Introduction

Teaching software engineering is difficult since many
of the practices are motivated by large projects and large
organisations of which the students have little or no expe-
rience. As many other universities we have previously
been running an introductory software engineering course
based on a small project. The project has been run in a
scaled down waterfall style in order to illustrate basic
concepts such as requirements analysis, specification,
design, implementation, testing, documentation, and de-
livery. This traditional set up, with little or no support
from faculty during the project, has always been problem-
atic. In particular, it has been difficult to motivate and
enforce all the practices for such a small project. With
only one iteration, the waterfall model has no place for
students to improve. The result has too often been that a
few students on each team have been doing most of the
work, drowning in details and deadlines rather than grasp-
ing concepts, and the rest of the team has learned even
less.
In spring 2002 we changed the course completely, re-

naming the course to Programming in Teams (PT) and
adopting Extreme Programming (XP) as the basis for the
course. Although our gut feeling is that all of the XP
practices are very valuable, our main goal was not to teach

XP per se, but to use XP as a vehicle for teaching the
basic concepts in software engineering. In running a prac-
tical project there is the need for following a method, and
in using XP as the basis we have found it easy to give the
students a solid basic understanding of not only the im-
portant concepts mentioned above, but also of, e.g., itera-
tive development, configuration management, and team
communication. In particular, the highly iterative nature
of XP, where the participants get rapid feedback at all
levels, makes it ideal in a teaching situation.
As a side effect, the PT-course also gives the students

practical skills in testing, configuration management, and
refactoring, they can immediately use in their projects in
later courses. We find such skills to be much easier to
teach in the new XP-based set up of the course.
The PT course is designed to fit into the larger picture

of the curriculum where many different aspects of software
engineering and technology are treated. We view the cur-
riculum as being composed of three layers. At the bottom
layer there are first and second year courses teaching basic
programming and object-oriented design. In these courses
the students work individually or in pairs. At the middle
layer we find the PT course, which is focused on pro-
gramming in small teams. At the top layer we find
courses that address software development issues in larger
organisations and/or more advanced topics.
The content of the classical introductory software en-

gineering course is placed in the top layer, while the stu-
dents only have experience from individual work thus
creating a mismatch that is hard to bridge. By having the
practical experience from the XP-based PT course, we
think that the students later on can easier appreciate, un-
derstand, and critically discuss the concepts taught at the
third level. At the top layer we also find a Coaching
course – the second course in our scheme. Here the stu-
dents learn about team coaching and software architecture.
Each student in the coaching course acts as a coach for
one of the teams in the PT course. The top layer also in-
cludes advanced software engineering courses on, e.g.,
requirements elicitation, configuration management, etc.
In all of these courses the students can benefit from their

practical experiences from a small, yet complete, project
in the PT course.
The rest of this paper is structured as follows: In sec-

tion 2 we give a short background on the XP methodol-
ogy and explain how we have adapted it for the PT
course. In sections 3 and 4 we give more in-depth treat-
ment of our experiences from applying the different prac-
tices in the course. Section 5 elaborates on the lessons
learned and compares with related work. Section 6 con-
cludes the paper and gives directions for future work.

2. The Team Programming Course

Course format

The course is organised in a theory part followed by a
project part. This fit nicely into two consecutive study
periods of seven weeks each (corresponding to the spring
term).
The first part is a theory part with 6 lectures of 2 hours

each covering: introduction; overview of XP practices;
testing and pair programming; configuration management;
simple design, refactoring, and architecture; and planning
and estimation. At the seventh lecture the students were
given a one-hour quiz that they must pass in order to be
allowed into the project part of the course. Also, the pro-
ject and product to develop were introduced at this lec-
ture.
During the theory part there are also 3 lab sessions of

2 hours each in order to introduce the main practices and
the tools. These labs covered: planning (which was con-
ducted as a so called Extreme Hour [1]); test first and pair
programming (using JUnit); and configuration manage-
ment (using CVS). During these labs the students work
in groups of 15-20 students, presence is compulsory and a
short quiz is done at the beginning of each lab in order to
ensure that the students are sufficiently prepared to get
full benefit from the lab. The Extreme Hour was done in a
classroom, whereas the other two labs were done in the
computer lab working in pairs.
The second part of the course is a project part where

the students are grouped into teams of 8-10 students that
do an XP-style project in 6 iterations during 6 weeks of
study. Presence is compulsory for all group activities
during the project. Each team was coached by a pair of
older students, who were, at the same time, taking the
Coaching course. In the last (7

th
) week of the study pe-

riod, the resulting products are demonstrated and evalu-
ated. This is done by peer evaluation, letting each team
try out another team’s product and review their documen-
tation. These reviews were presented orally in groups of
three teams at a time.
An iteration starts on Wednesdays with a two-hour

planning meeting where the coach and the team follow up
on the previous iteration and plan for the next one. The
following Monday, the whole team and the coach meet in
the lab for 8 hours, a “long lab session”, of program de-
velopment. In the meantime, each student is expected to

spend around 6 hours of “spike time” on experimenting
and studying particular issues. Spikes could be done in-
dividually, in pairs, or in larger groups. However, actual
program development (which is checked into the common
team repository) takes place only during the long lab ses-
sions. Thus, each student spends a total of (2+6+8)*6=96
hours on the project, or 2.4 man weeks spread out over
the 7 week study period, not counting the final evalua-
tion.
As main literature we chose the book “XP Installed”

[2], and supplemented this with some articles [3, 4, 5, 6].
We find the book a good practical introduction to XP, but
it is very different from the normal text books that stu-
dents usually have. It is aimed at practitioners and ex-
plains a particular method (XP) without any broader out-
look or objectivity. We solved this by presenting the
book as a “handbook” for the particular method used,
rather than the objective final truth.
In the first course instance there were 12 teams of a to-

tal of 107 students. Students were assigned to labs and
teams in a random fashion, with the goal of making eve-
ryone’s schedule work out. All teams developed essen-
tially the same product (a system for tracking races in the
motorcycle sport Enduro) and were given the same set of
requirements (user stories in XP). All teams also had the
same person as customer (one of the authors).
In most other course projects we give fixed require-

ments that the system should fulfil. This course is very
different. Here we give the students a fixed time box
(planning time, spike time, and long lab time), and ex-
pect them to do the best of this time, producing as much
as they can of the requirements (user stories), while learn-
ing as much as they can in the process.
How can we grade a course that is time boxed and

builds so much on team work? We grade it only pass / no
pass, and for passing it is required to be actively partici-
pating in all the scheduled activities. Students could ap-
ply for an exemption from the scheduled activities due to
illness or exceptional circumstances. In order to make up
for their absence, these students got additional spike time
tasks that were valuable for their team and which was
presented to both us and the team.

XP as used in the real world

XP is a so-called agile methodology [11] promoting a
highly iterative work model with the aim of producing
high-quality software and allowing quick adaptation to
changing requirements. It is centred around the 12 prac-
tices of: Planning Game, On-site Customer, Pair Pro-
gramming, Collective Code Ownership, Continuous Inte-
gration, Small Releases, Metaphor, Simple Design, Cod-
ing Standard, Testing, Refactoring, and Forty-hour Week
[7].
In a typical XP project the team may consist of around

6-8 developers, a coach, and a customer that is “on-site”
and therefore available for informal discussions. The de-
velopment work will typically be organised in short itera-

tions of around 2-3 weeks between which planning meet-
ings are held. The intervals between releases is also short,
for some projects on a daily basis and for others after a
few iterations, the goal being to let the customer give
feedback as often as possible and to be able to steer the
project direction.

XP in an educational setting

The PT course is set up to fit into the normal study
periods at our university. The study year is divided into 4
periods of 7 weeks each, and each student normally fol-
lows around three courses at the same time. The students
are studying for a Master of Science in Computer Engi-
neering, and they are used to quite dense and intensive
courses.
In our educational setting there are a couple of major

differences from a real XP project. First of all, we have
accelerated the iterations substantially. Instead of letting
the students do normal 2-3 week iterations, they do six 1-
day iterations of development (during a 6 week period),
and 3 releases (one release at the end of every second itera-
tion). This way, they get several rounds of feedback
through the repeated iterations and releases, while not
having to spend an unreasonable amount of time on de-
velopment.
Secondly, the students are in a learning situation. Not

only do most of them have no experience from being part
of a software development team, but they also have quite
limited programming experience in general. Therefore,
they need help both with what to do regarding the project,
but also with programming as such.
 There are several other differences as well such as the

developers being graded (pass / no pass) rather than paid,
the customer being a professor rather than a real customer.

Additional practices

Our goal has been to apply the 12 XP core practices
more or less according to the book. In addition, we have
applied a number of practices, most of which are also
described by XP practitioners, but usually not mentioned
among the core practices. These are: First Iteration, On-
Site Coach, Team-in-one-room, Spike Time, Reflection,
and Documentation. Because we run a number of itera-
tions we had the opportunity to tune and refine the prac-
tices somewhat during the project.

3. Experience from core XP practices

In this section we will detail the experience we have
from the core XP practices. The available space does not
allow us to go into details with all 12 core practices, so
we have selected some that have interesting or surprising
lessons.

Pair Programming Three of the student coaches per-
formed a thorough study on the PT students’ attitudes

and experience from pair programming during the project
[8]. They conclude with some advice on how to use pair
programming in an educational situation, e.g.:
- The coach can recommend developers to pair in a

certain way in order to spread competence and
work efficiently. However, it is the developers
themselves that ultimately should decide on who
to pair with.

- Personality matching seems to play a more impor-
tant role than competence matching for a pair to
work well.

- The coach should strive for assuring that everyone
on the team pairs with as many of the others in
the team as possible. This is important from a
learning perspective and team building. However,
certain pairs might not work well socially, and in
such cases they can pair less often and take on
simpler tasks in order to not cause bottlenecks for
the project.

- Sometimes the two developers in a pair come into
a conflict on how the code should be developed.
In this case, the coach can step in and resolve the
conflict, or call on a stand up meeting for letting
the team as a whole resolve the conflict.

Some groups established a pattern of almost fixed
pairs, while others changed partner more often. One group
even made it a virtue to mandate a change of partner after
each task. There were major differences in programming
experience, but in most cases that did not seem to cause
problems. Sometimes the coach would have to split a
couple that were in crisis with respect to solving a task to
get in “new blood” – or to simply reassign the task to
another pair.

Planning Game From the beginning many students were
somewhat sceptical at estimating tasks without any prior
experience. However, they took on the challenge and
gained practical experience on how to estimate new tasks.
Most of the groups continued to do estimates and plan-
ning right to the end, but some groups did, however, not
bother to do estimates towards the end – “we’ll just do
tasks and see how far we get”.
Some of the teams estimated in hours and others in

relative size of stories. Of the 40 hours available (5 pairs
for 8 hours) during a long lab session, one group consis-
tently got 25-30 estimated hours of work done. Especially
the first iteration served to show the students that things
took longer than they had thought.
A total of 35 stories were created for all of the 6 itera-

tions, and most teams completed around 28-30 stories.
New stories were created before each iteration and on
some occasions the customer changed his mind on priori-
ties between stories, or changed and extended data for-
mats. This was not planned beforehand, but we found it a
nice realistic illustration of how customer requirements do
change.

Test First Some groups did test first by the book and
some groups almost did it. However, in other cases unit
tests were written after the code had been written. In gen-
eral the students had big problems in understanding how
to write unit tests in a useful way. Often some small
changes to the code would also require that some unit
tests needed to be changed or rewritten because they were
too specifically tied to the implementation. At other
times there would be unit tests that worked at too high a
level and therefore did not catch more subtle bugs. For
the next instance of the course we will try to remedy this
by giving more training on writing good unit tests.

Small Releases The students did three releases – one
every two iterations. The first release was done to the
customer and included installation and user manuals. The
customer was overwhelmed by work in evaluating and
commenting the 12 releases, so for the subsequent re-
leases they had to release to a peer group to relieve the
customer. An additional advantage of this was that the
students were forced to see the release from the customer’s
point of view. For these releases they should also include
source code and documentation, not just the executable
and manuals. In many groups the first release went
wrong, so they did a new “first” release after iteration
three as well (plan to throw one away).

On-site Customer Since the students are fairly inexperi-
enced programmers and in a learning situation, we wanted
to have good control over the user stories. There should
be a sufficient number of stories so that several pairs
could work in parallel, and be reasonably simple to im-
plement so that a pair of students had a chance of getting
through each story in one iteration (one day of program-
ming). To accomplish this we needed a customer with XP
experience. We therefore settled on not bringing in any
outside customer, instead one of us acted as the customer.
We picked a product where the customer had deep domain
knowledge due to his leisure interests (the Enduro MC
sport) to make the product and requirements realistic. It
was a realistic option that the products developed by the
students could in fact be used for a real Enduro competi-
tion.
Since we had only one customer, all teams had to

share him. The customer made short visits to each team
during both the long lab sessions and planning meetings.
However, for spontaneous questions and discussions he
was less available, and the coach therefore often acted as a
stand-in customer.

4. Experience from the added practices

In this section we describe how we have applied the added
practices and our experiences from them in a teaching
perspective.

First Iteration The First Iteration practice [9] says that in
the beginning of a project it is very important to build up

an executable skeleton of the system, forming an initial
thin but complete system. The idea is to make sure early-
on that the necessary infrastructure can be built and that
subsequent development can proceed in small chunks.
This idea is somewhat similar to the Elaboration phase in
the Unified Process, at least according to the recent inter-
pretations of it as of Craig Larman’s “Agile UP” [10]. In
XP, First Iteration serves the role of getting early feed-
back on the system architecture. If some architectural as-
pect of the system is not working, it is better to evolve
the architecture early on before too much time has been
invested in building functionality. For this reason, First
Iteration is also called “Zero Feature Iteration”.
Building a First Iteration requires experienced pro-

grammers and would have been very difficult for our nov-
ice students to do. We therefore applied First Iteration by
letting the coaches build a tiny first iteration of the sys-
tem. The PT students could then immediately start add-
ing functionality to the existing system. To aid the
coaches in this initial phase we suggested three possible
architectures of increasing complexity and suggested that
they should start with the simplest one and later evolve it
to the more advanced ones, if needed.

On-Site Coach The importance of having a coach, in
particular when starting out with XP the first time, has
been stressed by many XP practitioners [7, 1, 9]. In a
situation of learning or adopting a new set of practices it
is important to do a serious job of actually applying the
practices. It is all too easy to forget or simply dismiss a
practice while concentrating on the actual development.
The coach knows the practices, can explain them and mo-
tivate why they are important, and can also help the team
to actually enforce the practices. Once the practices are
mastered the individual is in the position of challenging
them and adapting them. We think this is an important
way of adopting a new methodology regardless of whether
it happens to be XP or something else.
In the accelerated process that we are working with in

the project it is important that the coach is always avail-
able and actively follows the activities of the team mem-
bers. The coach needs special skills and training and we
therefore came up with the idea of creating a course for
third and fourth year students on coaching software teams.
The coaching activity is the trainee part of the Coaching
course that also covers theoretical aspects of these areas.
A pair of students from this course serve as coaches, pro-
ject leader, tracker, and chief architect for a team of stu-
dents doing the XP project. Before each iteration we have
a 2 hour meeting with the coaches to discuss their experi-
ence from the previous iteration and give instructions for
the next one.
During the long lab sessions, the coach constantly

keeps track of what the team members are doing,
“stresses” them when that is needed, and “caresses” them
when that is appropriate. An important goal for the coach
is team building, to make sure that the team members
communicate and collaborate for the common product.

The first time we gave the PT course we naturally had
no students with XP experience to enrol on the Coaching
course. In order to “bootstrap” the process, around half of
the coaches were teachers and Ph.D. students and the rest
were hand picked undergraduate students that we believed
would be interested as well as do a good job. The student
coaches more than fulfilled our expectations, not the least
considering team building. In this first instance of the
coaching course, we included some condensed XP train-
ing with literature studies and discussions as well as lab
sessions. There is a lot to be said about the coaching role
and the coaching course, but that will be the focus of a
forthcoming paper.

Team-in-one-room Real XP projects are often set up so
that all of the members share an open workspace where
program development takes place [3]. We adopted this
practice: program development takes place only at the
long labs where all members of the team are present in the
same lab room. We found this to be an extremely impor-
tant practice.
First of all, the students can easily communicate so

that everyone is aware of what is happening, and help
from fellow students is always near at hand. For example,
when one pair got stuck they could immediately get help
from others on the team, switch tasks, switch pairs, etc.,
in order to more easily solve the problem at hand.
Secondly, being all in one room allowed the coach to

easily spot any problems, be it a specific programming
task, some pair not following the practices, or a situation
when the coach could see that two pairs needed to com-
municate. On such occasions the coach would take a
“time-out”, i.e., gather the team for a short stand-up meet-
ing to discuss the problem and find a solution. Rather
than telling the developers exactly what to do, the coach
would on such occasions ask the developers to come up
with a solution. This way, the coach helps the developers
to learn to help each other, and soon the developers would
themselves call on stand-up meetings when needed.
Thirdly, being all in one room very strongly promotes

team building. The teams were put together randomly so
initially the students did not know each other well. How-
ever, due to all the interaction during the long labs, most
of the teams soon developed a very strong social team
spirit which again promoted further communication and
awareness.
It may not always be easy to schedule full day labs for

students who take several classes at the same time. How-
ever, since these are 2

nd
 year students, most of their

schedule is still fixed by mandatory courses, and it was
therefore possible for us to negotiate a schedule that did
not interfere with other courses. For scheduling reasons,
one third of the teams did their long lab from 1-10 PM
(rather than from 8AM-5PM). Scheduling was a bit of a
problem for some of the student coaches, but this was
handled by letting them coach in pairs, so that at least
one coach was always present for each team.

Spike time In addition to program development, the de-
velopers need time to do individual work, e.g., to read
and learn about various practical issues, to think about
how to solve a particular task, or to do experimental pro-
gramming with new solutions. We termed this “spike
time”. During each planning meeting, the team allocated
this spike time in the way they thought best for the team
as a whole, thereby providing a pool of additional re-
sources. We gave the coaches some initial ideas for how
to allocate the spike time, and after some iterations the
following patterns emerged:
- Spiking for a task. In order to be able to program

a particular task at the long lab, the students ex-
periment with some key aspects, for example find
out what Java libraries to use, and write or find
some simple example code that can be used as a
starting point later in the long lab.

- Reading/learning about tools. In some teams, a
“CVS expert” was appointed whose job it was to
use all his/her spike time for learning about CVS
in order to help the team mates at the long lab. In
other teams, all team members were allocated a
couple of hours for experimenting with CVS.
Similar spiking was done for other basic tools
like JUnit and makefiles, and also for tools intro-
duced during the project such as a refactoring tool
for one team, and an acceptance testing tool for
another team.

- Refactoring. After a couple of iterations many
teams found the need for doing large refactorings
of the code. This was difficult to do during the
long labs since it affected and/or delayed many
teams and produced many merging conflicts. Sev-
eral teams adopted the policy of allocating spike
time for such refactorings. In these cases, refactor-
ings were usually done by a single pair.

- Code review and unit tests. Some teams found
that they had too few tests, and used spike time
for doing systematic review in order to find code
with missing unit tests and to remedy that.

For each team an additional CVS repository was set
up that included results from the spikes. This way, the
developers could easily share their results with their team
members. Not only code was checked in, but also short
manuals and other material that the developers produced
during their spike time. The general rule was to not check
in to the regular repository during spike time, since
changes there should only happen when all the team was
present at the long labs. However, many teams developed
the practice that certain tasks that were allocated to spike
time, e.g., big refactorings and adding test code, could be
checked after agreeing before-hand at the planning meet-
ing.
The coach meetings (when all coaches met and dis-

cussed the previous and next iteration) allowed the
coaches to share ideas for how to use the spike time and
resulted in many new ideas that we had not been able to
foresee. At the last iterations, there was less need for

spike time because development had become very intense,
and the developers needed more time for development
rather than for spikes for new tools or new tasks. How-
ever, there was always the need for increased code quality,
which motivated e.g. spike time for writing more test
cases and refactoring.

Reflection The Agile Manifesto [11] lists reflection as
one of the principles in order to follow an agile method-
ology: “At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behaviour accordingly”. In our XP project, there were
several occasions when such reflection occurred spontane-
ously, e.g. at stand up meetings called on by the coach in
order to discuss a particular practice, and at the planning
meetings when the results of the previous iteration were
discussed. On such occasions it was often decided to do a
spike to avoid that a problem repeated itself.
In the next instance of the course we will introduce re-

flection as an explicit practice so that all teams make a
habit of doing some reflection over their work practices at
each planning meeting. It is our experience that the spon-
taneous reflection that occurred in some teams, greatly
helped in team building, as well as improved the effec-
tiveness of the team.

Documentation XP does not prescribe any specific
documentation, but views the code as the most important
(and always up-to-date) documentation. However, core XP
can of course be extended with additional practices to
cater for appropriate additional documentation. In our XP
project, we let the customer write a user story demanding
a technical documentation of the system, including an
architectural description, build description, description
over internal file formats, etc. This was very easy to mo-
tivate since the customer might like to take the finished
source code and let another team develop it further at a
future time.
Several teams also spontaneously developed additional

internal documentation like instructions for how to do a
release, story test descriptions, etc. Part of this documen-
tation was developed during spike time.

5. The lessons

We have learned many things from running the PT
course in this new format, and we summarise our most
important lessons below.

Team-In-One-Room is fundamental

Of all the additional practices we introduced, the prac-
tice of having the whole team in one room was perhaps
the most important of all. We have heard of other experi-
ments in applying XP in education where the teams are
just left to themselves to find a common time and place
for programming, in which case it usually results in the
team splitting into fixed pairs, splitting the stories be-

tween them and programming them at different times
without much communication, learning, or reflection. In
these cases they usually also get problems with collective
code ownership and resort to code owning practices [12].
We believe Team-In-One-Room is a fundamental practice
to apply in an educational setting, and that if it is not
possible to schedule full day lab sessions like we did,
splitting into a couple of half day lab sessions is better
than splitting the team.

Coaching by older students

In novice teams there is a need for someone with a bit
more experience who can take an overall perspective on
both the product architecture and the team practices. We
had very good experience from applying older students as
coaches. This way the coaches had some authority both
due to their general seniority and in that they were given
special training in the coaching course, yet they were not
too distant socially from the PT students which made it
easy for them to build a good team spirit. The coaches
also found it very stimulating to take on the needed re-
sponsibilities.

Underestimated difficulties for the students

During the course it became apparent to us that we had
underestimated the difficulty of several practices.
- The “Test First” practice was much more difficult

to explain and teach than we initially thought.
There is a need for very clear examples on how to
write tests, and we will try to include that in the
next instance of the course.

- The “Simple Design” practice was also more diffi-
cult to teach than we expected. Some students
misinterpreted “Do the simplest thing that can
possibly work” to mean “Change as little as pos-
sible to incorporate a new feature”, resulting in a
bad design. Here, there is again need for many
good examples (and maybe also anti-examples)
and to follow up this better during the project.

- A related point is refactoring. Only one of the
teams used a refactoring tool in the project, and
then only on an experimental basis. This lack of
tools had the effect that the students were very re-
luctant to do refactoring, which again had a bad
effect on maintaining a simple design. For the
next iteration of the course we hope to introduce a
refactoring tool, e.g., by using the Eclipse envi-
ronment [13], and to give them lab exercises so
they gain some confidence and proficiency in us-
ing such tools. We expect this to have a major
impact on the designs.

- Both the students and we underestimated their
problems in putting together a release. Fortunately
though, we had scheduled for three releases. Sev-
eral students thought it would take around 15
minutes to produce a release, whereas in reality it

took up to half a day for a pair, and many of the
first releases did not even work. After this experi-
ence many of the teams allocated a pair at the next
iteration to put together a “release process”, i.e. to
build a checklist for how to put together a release
and what things to check in order to be assured
that it would work. Once that was in place, the re-
lease process went very smoothly for most teams
and they could produce a new release in a matter
of minutes.

Although we underestimated many difficulties and the
students ran into many problems during their project, this
is not necessarily a bad thing. On the contrary, we found
it very valuable for the students to run into these prob-
lems so they could better appreciate their solutions. Due
to the many iterations they got experience from both hav-
ing problems and solving them which provides a good
basis for learning. The preceding theory part of the course
together with the coaching during the project did, how-
ever, provide the students with a reasonable background
and framework so they did not run into all problems at
once, but could feel that they did progress with each itera-
tion.

Being a customer is much work

We underestimated how much work it is to be a cus-
tomer. We needed a good amount of stories that were not
too difficult and that could be done in parallel by several
pairs. Due to the very short 1-day iterations the stories
needed to be much smaller than for a real XP project. To
accomplish this we broke down the larger stories into
smaller tasks, although this is something that normally
the team would do itself, and we also gave the teams di-
rections for the initial architecture and possible ways of
evolving the architecture. For the next instance of the
course we plan to simply use the same product and stories
as we had this year. As we get more experience with the
course we might get bolder and bring in new products on
the fly, and put more responsibilities on the coach like
breaking down stories to tasks and giving them more
responsibilities for coming up with the architecture.

XP might have positive effects for minority stu-
dents

The high interaction and collaboration within an XP
team, in particular when guided by a trained coach, might
have positive effects for students in minority groups. At
the computing engineering program, only around 10% of
the students are women. Most women on the course had
very positive experiences from the course, and anecdotal
evidence points towards them more easily being able to
take on active roles as compared to earlier courses.

6. Related work

There seem to be several experiments on including some
of the XP practices into the undergraduate education, e.g.
[14, 15, 16], as well as experiments with a more complete
set of XP practices. Müller and Tichy [17] performed a
study of two small 4

th
 year student XP teams, focusing

primarily on evaluating the XP practices. They confirm
our observation that coaching is very important. Noll [18]
provides some observations from initial experience on
applying XP to student projects, confirming our experi-
ence that XP is an excellent aid in learning, due to its
highly iterative nature, allowing students to make mis-
takes and learn from them. Both these studies also con-
firm our experience that the Test First practice is difficult
to learn. Our study differs by being much larger in scope,
both in the number of students and teams, and in the
number of additional practices applied. Our study also
differs in being focused on XP as an aid in learning soft-
ware engineering concepts rather than finding out if XP as
such is efficient or not.
Williams and Upchurch [19] provide some guidance

on the use of the XP practices in an educational context.
Most of their advice is in agreement with our experience.
However, their advice on not using collective code owner-
ship for novice students is in contrast to our findings. We
found collective code ownership to be very important and
not problematic at all. All our teams used CVS and were
taught to synchronise frequently. In combination with the
practice of keeping the whole team in one room, this is
probably the reason for our success with collective code
ownership. Some teams did initially not synchronise fre-
quently, but the merge problems they then got made them
understand how important this is.

7. Conclusions

When our course in introductory Software Engineering
needed to be revised we set out to try to teach basic prin-
ciples applicable on the team level and to use XP as the
method. Other secondary goals of the course is to get the
students more experienced as programmers, to better un-
derstand the problems of working in a team with others,
interacting with a customer/user and to expose them to
some new programming tools. The course was taught in
full scale with 107 students with a background in funda-
mentals of programming, but no training in Software
Engineering. It is followed by courses giving a more tra-
ditional software engineering perspective.

In contrast to earlier versions of the course we decided
to take a larger responsibility for the management of the
project part of the course, actually teaching a method,
enforcing and supporting it during the project. For us it
was a very interesting alternative to use XP as the method
which we judged would suit this situation and would be a
vehicle to expose the students to some fundamental soft-
ware engineering principles and practices.

The result was very positive: we feel that the students
have a good understanding for fundamental problems and
techniques in software development in mid size teams
including testing, inspection, interaction with
user/customer, requirements, release process. They also
understand how to work in an iterative method and were
exposed to the problems of changing requirements. Dur-
ing the project they learned the problems of being many
developers changing the same source and some mecha-
nisms to handle these: configuration management, merge,
short check-out times, refactoring and separated tasks. The
students gave a very positive feedback after the course - it
was at times very intense for them, but they report that
they learned a lot and were very satisfied with the course.

Our experience is also that XP worked very well for
this setting, introducing practices and techniques that
could be motivated directly by the situation the students
were facing. Having a blank table to start with we set out
to use as much of XP practices as we found motivated,
expecting that they would support each other. We did,
however, have to do some amendments and additions due
to the particular teaching situation. The most important
additions we feel are to provide support for the architec-
ture, having to do with rather inexperienced students, and
thus providing a first iteration from the start and putting
more of the responsibility for the software architecture on
the coaches. We also broke up the work in smaller tasks
than customary in order to have the students perform
many iterations.

The format of the course needed to be adjusted to the
use of the XP method and in particular we managed to
schedule one full day each week for software develop-
ment. We thus had the students in the same location for 8
hours and could use pair programming with changing
partners. Only during this time was it allowed to develop
production code. The set-up also was very important in
order to build a team and to get all the participants to
actually know each other well enough. Another unusual
set-up was to use students of a second SE course as
coaches for the teams. This allowed a much more inten-
sive coaching than would have been possible using ordi-
nary faculty resources, and provided a realistic setting for
the coaches to learn practical aspects of architecture, team
building, and leadership.

Acknowledgements
The development of the PT course and the coaching
course has been a large collaborative effort by many peo-
ple at the department. In particular, we would like to
thank Torbjörn Ekman and Christian Andersson who
came up with the initial idea of full day lab sessions, and
for being very helpful in the implementation of the
course.

8. References

[1] K. Auer, R. Miller, Extreme Programming Applied,
Addison-Wesley, 2002.
[2] R. Jeffries, A. Anderson, C. Hendrickson, Extreme
Programming Installed, Addison-Wesley, 2001.
[3] K. Beck, Embracing Change with eXtreme Program-
ming, IEEE Computer, October 1999.
[4] K. Beck, E. Gamma, JUnit Cookbook,
http://junit.sourceforge.net/doc/cookbook/cookbook.htm.
[5] W.C. Wake, The Test Code Cycle in XP: Part 1,
Model, http://www.xp123.com/xplor/xp0002.
[6] W.A. Babich, Software Configuration Management –
Coordination for Team Productivity, Chapter 1,
Addison-Wesley, 1986.
[7] K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.
[8] M. Nyström, J. Rix, K. Wanhainen, En studie om
parprogrammering i praktiken (in Swedish),
http://www.cs.lth.se/Education/LTH/01.Dokt.XP/Djupstu
dier/NystromRixWanhainen.pdf.
[9] W.C. Wake, Extreme Programming Explored,
Addison-Wesley, 2002.
[10] C. Larman, Applying UML and Patterns: An Intro-
duction to Object-Oriented Analysis and Design and the
Unified Process (2

nd
 Edition), Prentice-Hall, 2001.

[11] Manifesto for Agile Software Development,
http://agilemanifesto.org/.
[12] L. Bendix, G. Hedin, Summary of the Subworkshop
on Extreme Programming, Nordic Journal of Computing,
Vol. 9, No. 3, Fall 2002.
[13] Eclipse Platform Technical Overview, Object Tech-
nology International, Inc., http://www.eclipse.org/.
[14] O. L. Astrachan, R. C. Duvall, E. Wallingford:
Bringing Extreme Programming to the Classroom, in
Extreme Programming Perspectives, Addison-Wesley,
2003.
[15] M. Holcombe, M. Gheorghe, F. Macias: Teaching
XP for Real: Some Initial Observations and Plans, in
Extreme Programming Perspectives, Addison-Wesley,
2003.
[16] D. H. Johnson, J. Caristi: Extreme Programming
and the Software Design Course, in Extreme Program-
ming Perspectives, Addison-Wesley, 2003.
[17] M.M. Müller, W.F. Tichy, Case Study: Extreme
Programming in a University Environment, in proceed-
ings of ICSE 2001, Toronto, Canada, May 2001.
[18] J. Noll, Some Observations of Extreme Program-
ming for Student Projects, position paper at the Work-
shop on Empirical Evaluation of Agile Processes, Chi-
cago, Illinois, August 7, 2002.
[19] L. Williams, R. Upchurch, Extreme programming
for software engineering education?, in proceedings of
the 31

st
 ASEE/IEEE Frontiers in Education Conference,

Reno, Nevada, October 10-13, 2001.

