
Simplifying and unifying SCM for novices

Max Åberg mat09mab@student.lu.se
Jacob Burenstam Linder ada09jbu@student.lu.se

March 4, 2014

Abstract

This report gives a brief introduction to the basics of our own developed tool called
git-story [1]. We have had the opportunity to coach a group of 8 students during spring
2014 in agile software development. We used this occasion to test Git in practice in a
somewhat small project, with the goal of finding out Git’s usability and learning curve with
the help of git-story. We wanted to find out whether or not Git with a work flow tool is a
good alternative to SVN as a first encounter with software configuration management tools.
Since git-story is our invented experiment, feedback was of importance. This feedback and
git-story’s modifications, in consideration of the feedback, is described and analyzed. Finally
a conclusion is made whether git-story was a good alternative to Subversion.

1

Contents

1 Introduction 3

2 Problem 3

3 Hypothesis 3

4 Background 3
4.1 Central VCS . 4
4.2 Distributed VCS . 4

5 Suggested solution 5
5.1 git-story . 5

5.1.1 git-story configuration . 6
5.2 Maven . 6
5.3 Travis-CI . 6

6 Analysis 6

7 Discussion 7
7.1 Statistics . 8

8 Conclusions 8

9 Apendices 11
9.1 Appendix A - Summary of feedback form 1 . 11

2

1 Introduction

This study is a part of a course at the Faculty of Engineering, Lund University where students
in groups of eight to ten develop a project in an agile manner. We, the authors, are acting as
coaches to one of these groups. Our role as coaches will change during the project, considering
that we want to experiment if development tooling can benefit in agile means.

This report will explore the potential efficiency benefits of using customized development tooling
for new XP development projects, built by inexperienced developers. This is achieved by using
tools for Software Configuration Management (SCM), Continuous integration (CI), consistent
developer environment and build tools (Maven). The tools used for each of these practices will
be described later in the report.
Each integration is tested by a CI server. Feedback from test runs and other reports will be
available to developers about the state of the code.

Our goal is to empower and simplify each developers work flow, so that they can focus on
writing good, maintainable software while providing good traceability and consistency.

2 Problem

Extreme programming (XP) is now a very common software development method, since it pro-
vides a framework for code changes during a project’s lifetime, which is notoriously difficult.
XP is based around the five values: simplicity, communication, feedback, respect and courage[2].
These values have resulted in a number of methods, work flows, metaphors and other ideas based
upon the five values. We focused on improving Software Configuration Management (SCM) from
an XP perspective. We developed an SCM tool, built on top of Git, where we put emphasis on
the XP values: simplicity and feedback.

Most of the other 2014 EDA260 teams use Subversion as well as almost all other teams the
year we studied EDA260, using only one master branch which all developers pushed to. This
increases the probability of a lot of merge conflicts. Furthermore the commit history becomes
very hard to read since all commits are displayed in one consecutive list. This leads to a commit
history where small and large commits are at a glance indistinguishable. Our experience using
only Subclipse and the server provided by the Faculty of Engineering, Lund University was that
nobody ever checked the history log or reviewed commit diffs.

3 Hypothesis

We argue that by using software development tools, it could significantly increase developer
productivity. By simplifying the standard work flow for developers in agile teams, they can
focus on the code and the task at hand. It will also yield (in our variant) a more consistent
development process.

4 Background

The basic goal of any Version Control System (VCS) tool is to keep a record of file changes over
time. For develoment projects, it often means collaborating with other developers and keeping
track of each individual’s changes.

3

4.1 Central VCS

A central VCS tool has a central repository were each tracked file’s entire history is kept[3]. To
add your changes or checkout other’s changes you need to communicate with the central server.
Examples of central VCS tools are Subversion, Peforce and CVS.

Figure 1: Central VCS diagram

4.2 Distributed VCS

Using a distributed VCS tool each machine has the repositories entire history. All changes and
branches are tracked locally, no central server is required. Developers can synchronize their work
directly between them. However it is very common to have some sort of central repository that
developers push to. Example of distributed VCS tools are Git and Mecurial.

Figure 2: Distributed VCS diagram

4

5 Suggested solution

To increase developer productivity we decided to experiment with tools. Tools that will result
in empowerment and knowledge and at the same time making development as easy as possible.
Instead of only using already developed tools we also created our own tool, extending Git. This
tool, called git-story, enforces the usage of the GitHub flow branching model. It provides a simple
user-friendly command line interface and automates good VCS practices.

5.1 git-story

git-story is a shell script that uses Git under the hood. It performs various checks inorder to
preempt common misstakes. Further it is possible to set version controlled commands for run-
ning tests and making releases. It requires the usage of a central server, inorder to use all of
git-story’s functions.

We were inspired by the branch model described in Scott Chacons blog post GitHub Flow [4].
GitHub Flows branching model provides a clear and easy to read history where each feature is
developed in its own branch and then merged using GitHub pull requests. The model provides
excellent traceability since each branch is logically named (i.e task8.1, fileprinter bugfix) and an
aggregated diff can be displayed on GitHub. Each branch has its own commit log where each
commit can be reviewed separately.

GitHub flow main principles:

1. master branch is always releasable

2. create each new feature from master branch

3. create a pull request on GitHub to merge with master

git-story design goals:

1. As simple as subversion

2. Unified development process

3. Run tests before each commit[5]

4. Integrate with the project’s build and test process

The main design goal was to simplify the teams work flow and they should feel comfortable using
it in five minutes. This was accomplished with a shell script utility. The script can be used with
only two commands to achieve the standard development work flow: gs dev and gs done.

Before each commit the project’s entire test suite is runned. The developer gets prompted
to answer if the tests pass and can choose to abort the commit or ignore the failed test and
commit it anyway. gs dev sets up a new working branch based of the latest version of master
(or specified) branch in the remote repository. gs pull synchronizes the remote master branch
with the current working branch. gs done ”commit message” commits changes and synchronize
changes from remote master (or specified) branch and pushes the committed code to the remote.

Along side this, GitHub will be used (though there are several alternatives CodebaseHQ etc.) in
order to provide a simple and intuitive interface for reviewing commit diffs, branch merges and

5

general project activity.
On GitHub we added a “service hook” [6] to Travis-CI, which signals Travis-CI that a push has
been made to the repository. Travis-CI will then run the project’s test suite and report back the
result to GitHub.
In order to get your code merged to master a pull request has to be made from the GitHub web
interface. In the pull request view, feedback from Travis-CI is displayed (OK, error, fail etc.)
and a pull request should only be merged to the master branch if Travis-CI has run all tests
successfully. If any errors occur or if any test fails, rinse and repeat.

5.1.1 git-story configuration

Configuring git-story is done by defining certain variables at the project root in a file named
.gitstoryrc. All project specific configurations are defined in that file. Available configuration
options are pre-commit hook, pre-commit checklist message and various prompt flags.

5.2 Maven

We decided to setup the project with Maven [7] since it is a very mature and free project that is
very commonly used in the Java community, though there are several alternatives that achieves
the same functionality. The rationale for using Maven, was that we wanted each development
environment to be as similar as possible, so that if any dependencies where added all developers
would use the exact same version of the dependency etc. Maven also has the ability to build
jar-files, so that releases can be build with ease by any developer in the team.

5.3 Travis-CI

We choose to use Travis-CI [8] as our continuous integration server. There are several alternatives
such as Drone.io or you could roll your own Jenkins server. We chose Travis-CI because of their
pre-built integration with GitHub. Each time the commit is pushed to the project’s GitHub
repository GitHub signals Travis-CI that there is new code to test. Travis-CI then downloads
the commit, builds and tests using Maven and sends back a signal to GitHub whether all tests
pass.

6 Analysis

Many larger software companies have dedicated “tooling teams”. Their only responsibility is to
maintain and build development tools for other developers within the company. Other companies
use “hack weeks” in order to let developers build their own tools [9].

After each iteration we asked the team to evaluate the tools we had chosen for them.
During the first iteration there was a fair amount of confusion regarding the tools we choose to
use. Even though we gave all of them an hour long spike1 to get acquainted with git-story. The
confusion was mostly a result due to inexperience with our predefined work flow in collaboration
with git-story. The most common reason that resulted in trouble was that the developers forgot
to branch and developed directly in the local master branch. The development environment used,
Eclipse, also caused a lot of problems. In collaboration with the Maven environment the JUnit
dependency didn’t work as expected, this due to that Eclipse didn’t take these dependencies
to account. On some of the developers logins, Eclipse couldn’t find/define the different class

1Homework of ca. 4 hours

6

paths and errors were distributed through all the code. This was taken care of manually by us
coaches through the build path option. However it wasn’t long before all programming pairs was
comfortably using git-story and later in the afternoon almost no questions arose.
Other problems that were unrelated to our study also surfaced. We experienced a bottleneck in
the afternoon, this happened due to a distributed denial of service attack (DDOS) on GitHub.
Groups not using Git didn’t experience this problem but did instead experience other problems
and more often with their version control tools, which in some cases took hours to resolve2.
Switching pairs was also a difficult practice for the team to apply. We as coaches needed to step
in and enforce them to switch pairs.
Something that really surprised and impressed us was their will to refactor their code in the first
iteration. The developers initiated a smaller meeting amongst themselves, on their initiative, and
discussed possible future problems with their existing structure and counter actions as solutions.

Unfortunately these counter actions that were discussed were very specific and didn’t leave much
room for bigger changes in the code. Although this the developers did manage to develop a lot,
for a limited amount of time.
Before the 4th iteration we predicted that architecture problems would arise, and right we were.
This because of the previously refactoring wasn’t general refactorization, the team had only done
refactorizations that temporary treated problems in the nearby future (next coming story). We
decided to step aside a little, since we previously had stated the importance of refactoring, and
let the team discover this for themselves. Unfortunately they discovered this in the afternoon
and not much was successfully delivered. The customer had prioritized technical document and
the focus was mostly placed on that, but even this task wasn’t done effortlessly.
Sadly the technical documents were stored in the Maven target folder. After a pull, Maven
runs all tests and outputs to the target folder and therefore the files were erased. This folder is
git-ignored and changes were not tracked. The issue was resolved by using the Eclipse history-
feature.
That Git didn’t track the target folder was expected behaviour, the problem occurred because
the developer didn’t know about the gitignore. This might have been naive from us and at the
same time bad practice from us. We should also have emphasized the importance about gitignore
and made it clear which paths/folders that are ignored.

7 Discussion

As expected several problems and issues evolved during the project’s life cycle. Both issues
related and unrelated to our developed tool git-story. Since we want to focus on the impact of
our tool in software development, we will only discuss problems and solutions related to git-story.

In the initialization phase the developers were not comfortable and inexperienced with git-story,
which was expected. The branching problem mentioned in section 6 was directly due to a ne-
glection when implementing the tool. This was immediately taken care of by rewriting the gs

dev command in git-story. The new implementation resulted in an extra parameter to the com-
mand (--force) that, as the name states, forces a branching even if uncommitted changes are
present [10]. Early on duplication issues arose due to pairs editing the same code. This could
not be prevented with our tool, but the manual revert was annoying. To accomplish even more
simplicity we implemented another command in git-story (gs stash) , that pushes the newest
changes on to a local stack and removes it from current working directory.

2Group 2 in computer room Alfa

7

An issue that recurred a few times was ”red code”3 in the repository. Not a big problem, but
should not have happened. The problem was that we as coaches hadn’t emphasized and ex-
plained the steps in a review of a task and therefore the developers overlooked these issues. By
simply explain this to the developers made the problem obsolete for future pushes.

These issues mentioned are the only ones that occurred during the project’s lifetime, that were
related to our tool git-story. A lot fewer problems than we hade expected. But to ensure that
we are not biased, we established a questionnaire regarding the features and benefits of git-story
[11]. A summary of the developers responses can be seen in Appendix A [12].
To ensure the reader that a non bias study has been performed, statistics and comparisons have
been made and are presented below.

7.1 Statistics

The number of pull request remained fairly stable the first two iterations. It indicated that
developers SCM work flow didn’t drastically change after using git-story a while. The third
iteration had a spike in number of commits, due to some bad-smells in the code base, which
caused a number of commits fixing thoose bugs. During the forth iteration a larger refactor
branch was created, which increased the number of branches. Before the fifth and sixth iteration
we put emphisis on writing documentation and updating the manual as part of each task. This
had previously been done after commiting code and tests changes, hence the commit-counts were
noticeably lower.

Iteration Pull requests Branches Commits Builds
1 21 18 67 90
2 23 21 73 101
3 20 20 126 103
4 28 21 86 116
5 18 18 60 100
6 13 9 87 103
Total 123 107 499 613

Table 1: Statistics regarding the code for every iteration

Overall the team produced a rough average of 5 commits per branch. Each task or story is
contained in it’s own branch and are therefore easier to track than a flat history of five hundred
commits.

8 Conclusions

Even though problems arose, these problems would have happened with any other tool. Our tool
is not in anyway comprehensive but has evolved during its lifetime after receiving developers feed-
back. git-story is open-source [1] and is therefore customizable to suit developers applications.
The feedback from the questionnaire speeks for itself and summarizes a result that fulfill our
initial hopes, that git-story has been a problem solver and served it’s purpose regarding version
control in agile development teams.

3Code that can’t be compiled

8

With the help of git-story, in collaboration with Git, traceability and simplicity has been a
lot easier for both us coaches and the developers. Even though many developers in our team
were inexperienced using VCS tools.
There are several ways in which git-story can improve. Inorder to be used full scaled, as Git
and Subversion are, it would need a lot of work. git-story shows however that there are several
advantages for such a tool, especially working with an inexperienced team.
git-story is also being tested at a small startup consisting of both designers and experienced
developers. git-story was used to enable the designers to work using the same branch and test
strategy as the rest of the development team. The feedback has been positive, requests has
mostly been better feedback and error messages.
All in all we think that git-story is a viable substitute to Subversion for the PVG course.

9

References

[1] GitHub. Git-story. https://buren.github.io/git-story.

[2] Chromatic. Extreme Programming Pocket Guide. O’Reilly Media, July 2013.

[3] Scott Chacon and Junio C Hamano. Pro git, volume 288. Springer, 2009.

[4] S. Chakon. Github flow. http://scottchacon.com/2011/08/31/github-flow.html, Au-
gust 2011.

[5] Lou Kosak. Testin at airbnb. http://nerds.airbnb.com/testing-at-airbnb/.

[6] Webhooks. http://developer.github.com/v3/repos/hooks/.

[7] Maven. https://maven.apache.org/.

[8] Travis. https://travis-ci.org.

[9] Joakim Sunden. Organizing a hack week. http://labs.spotify.com/2013/02/15/

organizing-a-hack-week/, February 2013.

[10] GitHub. Issue 14. https://github.com/buren/git-story/issues/14.

[11] Questionnaire. https://docs.google.com/forms/d/1GgRrwFOEseIx8oKEanqbl9Ua7eInX78LMb-EVv_
7prk/viewform.

[12] Questionnaire response summary. https://docs.google.com/forms/d/

1GgRrwFOEseIx8oKEanqbl9Ua7eInX78LMb-EVv_7prk/viewanalytics.

10

https://buren.github.io/git-story
http://scottchacon.com/2011/08/31/github-flow.html
http://nerds.airbnb.com/testing-at-airbnb/
http://developer.github.com/v3/repos/hooks/
https://maven.apache.org/
https://travis-ci.org
http://labs.spotify.com/2013/02/15/organizing-a-hack-week/
http://labs.spotify.com/2013/02/15/organizing-a-hack-week/
https://github.com/buren/git-story/issues/14
https://docs.google.com/forms/d/1GgRrwFOEseIx8oKEanqbl9Ua7eInX78LMb-EVv_7prk/viewform
https://docs.google.com/forms/d/1GgRrwFOEseIx8oKEanqbl9Ua7eInX78LMb-EVv_7prk/viewform
https://docs.google.com/forms/d/1GgRrwFOEseIx8oKEanqbl9Ua7eInX78LMb-EVv_7prk/viewanalytics
https://docs.google.com/forms/d/1GgRrwFOEseIx8oKEanqbl9Ua7eInX78LMb-EVv_7prk/viewanalytics

9 Apendices

9.1 Appendix A - Summary of feedback form 1

11

12

13

14

15

16

	Introduction
	Problem
	Hypothesis
	Background
	Central VCS
	Distributed VCS

	Suggested solution
	git-story
	git-story configuration

	Maven
	Travis-CI

	Analysis
	Discussion
	Statistics

	Conclusions
	Apendices
	Appendix A - Summary of feedback form 1

