
Djupstudie EDA270 - Agile Software
Configuration Management

Andreas Back d01ab, Ola Bodin d01ob

22nd February 2006

Abstract

This article presents the results of applying some of the practices defined in
the article "SCM practices for XP teams". These practices aim to prove that Ex-
treme Programming can fulfill the requirements Software Configuration Manage-
ment states for a development process in order to be complete.

1

Contents

1 Introduction 3

2 Background 3

3 The Practices 4
3.1 Incremental Refactoring . 4
3.2 Impact Analyze Refactorings . 4
3.3 Use a copy-merge work model . 5
3.4 Impact Analyze stories as part of the planning game 5
3.5 Physical Audit in the release process 5
3.6 Define configuration items and their structure 6
3.7 Trace Changes to stories . 6
3.8 Write proper commit comments . 6
3.9 Automate and optimize the release process 7
3.10 Use a version control tool . 7
3.11 Use a build tool . 7
3.12 Keep the repository clean . 8

4 Discussion 9
4.1 Practices we found needed . 9

4.1.1 Incremental Refactoring . 9
4.1.2 Automate and optimize the release process 9
4.1.3 Physical Audit in the release process 9
4.1.4 Use a version control tool 9
4.1.5 Use a build tool . 9
4.1.6 Keep the repository clean . 10

4.2 Practices we found not to be needed 10
4.2.1 Define Configuration Items and Their Structure 10

4.3 Practices we think are nice to have 10
4.3.1 Trace changes to stories . 10
4.3.2 Impact Analyze Refactorings 10
4.3.3 Impact Analyse Stories as part of the planning game 11
4.3.4 Write proper commit comments 11
4.3.5 Practices we are unsure of 11
4.3.6 Use a copy merge work model 11

5 Conclusions 11

6 Acknowledgments 12

2

1 Introduction

This in depth study is regarding the proposed additional practices to extreme program-
ming presented in the [1]"SCM practices for XP teams" article. The article tries to
bridge the gap between the XP software development process and the demands the
traditional SCM practices identifies as necessary for a fully compliant development
process by introducing additional practices.

We have tried to figure out to what extent these practices actually work, if they are
necessary and whether they still keep the agile development process agile or if they
burden the process.

In order to fully understand everything we think it could be necessary to read the
[1]"SCM practices for XP teams" article prior to this one as we our definitions of SCM
and its practices are somewhat brief compared to the original ones.

In section 2 we give a overview of what SCM is and how it relates to agile programing
methods. In section 3 we describe the proposed extensions of XP and give our com-
ments to these. In section 4 we discuss which of the practises we find necessary and
which we don’t se a need for. At the end in section 5 we summarize our findings.

2 Background

In order to fully understand the reason for this article we believe it to be important to
understand the different views on software design or software architecture that exists.
Traditionally the way of an engineer to produce something, whether it is buildings or
mechanical parts is to carefully analyze the problem. Following is a design and archi-
tecture phase trying to cover every possible problem that might arise during production.
The reason for this approach is that the cost of correcting a fault traditionally is believed
to rise considerably worse then linear as longer into the project. And thus identifying as
many possible problems early on is the economic foundation for a successful product.

This attitude has also made it’s way into software related projects as it is established
in many other areas and is believed to guarantee a quality release at a minimum (or at
least affordable) cost. It’s neatly defined as software engineering.

One thing that possibly differs software development from any other engineered prac-
tice is that the actual cost of production (ie producing and packaging a build) is much
lower. This has inspired other attitudes to software development, for instance the agile
methods.

In agile methods the cost of changing requirements or identifying that the product dif-
fers somewhat is believed to be much lower and affordable. By lowering the amount of
carefully thinking stuff through (in the meaning of spending several months on simply
planning the software product) and being prepared to always change the product in
any way that it needs the belief is that a fully working quality product can be achieved
in much less time, costing less and giving the developers a more endurable pace.

The practice of software configuration management, SCM, is about adding traceability
to all parts of the process. It is about making every version of every important part that
the project consist of (the configuration item) registered and available for traceability

3

and identifiability. This enables the team to revert to an older, perhaps working version
if something breaks or the need for a patch to that version arises. As well as the ability
to from the configuration item itself identify which version of the product it relates to.

This applies to both traditional software engineering as well as a more agile approach
yet the clear definitions and defined process makes if fit better with the first one.

This article tries to look at methods for adding explicit SCM practices to the agile
programming method eXtreme Programing (XP). The practices are proposed in the
article mentioned above[1]. The article tries to establish a set of additional practices
to make the XP process complete from a SCM point of view. This in-depth study tries
to define how well a team adapts these practices as well as if the actually are needed.
We will now cover each proposed practice and provide our comments or findings about
them.

3 The Practices

In this section we define the SCM practices proposed in the SCM practices for XP
teams[1]. For each practice we state our thoughts and any experience about it with
regards to our experience as coaches during the EDA270 course.

3.1 Incremental Refactoring

Making large factoring’s in one go prohibits continuous integration and makes it harder
to return to a working version without loosing to much work. In order to address this
the article proposes the XP team to divide up the larger refactorings into several smaller
ones that can be performed and committed individually.

So far we’ve had experience with this on one occasion where a very large structural
change that impacted most of the program were about to take place. The refactoring
was actually divided into two separate refactorings done by two pairs. This proved to
be successful. As most of the other stuff, the rest of the team was about to implement,
was affected by this any reduce in time it took to implement was greatly appreciated.
The longer period between commits the larger the chance is of a large merge conflict.
And by dividing the refactoring into several incremental once commits are done more
frequently.

This practice is of curse important in all software development whenever you want to
do a major refactoring without stooping all other development. The only other way
to have some people continuing the development while others do the refactoring is to
branch but if it is a major refactoring of central parts of the code the merge can be
horrible.

3.2 Impact Analyze Refactorings

Large refactorings should be impact analyzed with regard to possible merge conflicts
prior to implementation to reduce the number of actual merge conflicts and to increase
the teams awareness of ongoing refactorings.

4

Though we generally tried to keep larger refactorings out of the actual lab hours during
the project by assigning them as spike’s once identified some large refactorings had to
be implemented at once. Our experience is that taking the time to discuss the proposed
refactoring thoroughly within the pairs affected in the group pays of greatly as the team
members then are aware about which parts of the code that are about to be changed.

This practice may seem to be very obvious but the fact that these analyzes are very
hard to do justify that this has its on practice. Before you do a refactoring you almost
always try to think about what this will mean in the code, what will have to change if
I do this but still you often bump in to crucial consequences that you still missed. To
really think through the refactoring before making it will help to minimize this misses.

3.3 Use a copy-merge work model

The article proposes the copy-merge repository work model to be used within XP teams
as all members then have their private workspace for implementation. All tests can then
be performed before committing to the collective repository.

This does seem reasonable, if for nothings else simply that a private workspace is
needed in order to keep the changes out of the repository until they have passed all
testing. We have no actual experience in working with any other repository tool then
cvs within teams. If you want to embrace collective code ownership then you will have
to have a way of merging different peoples code and you will have to have your own
copy of the code to write in and run your test on. I have a hard time to see any other
work model to use if you are using XP so this practice is definitely justified.

3.4 Impact Analyze stories as part of the planning game

This practice points out the importance of impact analyzing the stories during the plan-
ning game and including the cost of possible merge conflicts in the total cost estimation
for the story.

We believe that most (if not all) experienced XP teams do this naturally, more or less
continuously when time estimation stories during the planning game. However an-
other important part of impact analyzing the stories is that many stories are somewhat
dependent on each other, or that stories will cost a lot less if other stories are completed
before.

There is though a possibility that adding this practice to the planning game turns the
agile process into more of a hybrid one even if the amount of analyzing is kept to a
minimum. We have limited experience within our XP team of actually formally doing
this and we would like to discuss this with the rest of the coaches and teams but it is
our first impression that the team found this to be non needed formality.

3.5 Physical Audit in the release process

A Physical audit should be done for each automatically generated release to ensure that
small errors does not slip through. For instance missing configuration files or modules.

5

Our experience of this is that it is important and a very cost efficient way to ensure that
the release actually is working. Simply unpacking the release, installing it (favorably
on a fresh set of hardware) and trying to start it will catch many simple mistakes not
though about during the specification of the automated release scripts.

This practice is of curse not special for XP, every time you make a release in any
type of project it is a good idea to make a physical audit. Someone in the developing
team should try the same things the customer will do. Since XP dose not have a formal
testing phase this physical audit is easy to forget, in a more traditional waterfall method
this is a natural part of the testing phase.

3.6 Define configuration items and their structure

What items that are configuration items and the structure for them should be decided
early in the project.

If one is to use cvs as the repository this is crucial due to the lack of features regarding
properly moving and deleting files. Though this is a problem with the tools seen from a
XP perspective and the team should not have to find ways to work around this problem,
rather a more supporting tool should be used.

If the code should be agile and always be the simples design appropriate for the current
situation we can’t see why not the structure of the repository could be more agile to.
Of curse a initial structuring of directories for code, spikes and other documentation is
needed but as the project evolve the repository should be able to evolve also.

3.7 Trace Changes to stories

This enables traceability between implemented stories or tasks and the actual commits
in the repository.

Traceability is something SCM values as very important, it’s one of the main things of
SCM activities. With traceability one can determine which changes, and in which files,
that have been made to implement a certain story or task.

In traditional software development a change control board decides whether or not
changes should be implemented and then by whom. So a record of what has been
changed will be available. In XP however at best the log files for the repository as well
as any documentation from the tracker would trace each story to the changes.

One possible solution would be to include the current story or task implemented in each
commit comment. We believe that this is a small enough effort that it doesn’t burden
the agile process too much. This will be more effective if the team follow the practice
of small changes that is tested an committed, by committing often the traceability to
what story or task that was implemented will be increased.

3.8 Write proper commit comments

Each commit comment should properly document which changes that have been made
and the reasons for them increasing the actual awareness within the team as to what

6

has happened earlier.

We have currently told our group to include the current task they are working on in
each commit comment, as to which extent they have complied with this we are not
fully aware of but until today we have had no reason that we know of to actually use
this information. We believe the reason for this the short time span of the project as
well as the smaller team size in XP.

This practice relates to “Trace Changes to stories” in that with better commit comments
it will be easier to do tracing. But this practice is hard to follow when doing small
changes and committing often, if you don’t make a big change the comment is hard
to express in a meaningful way, and we think that this may be one of the reasons that
commit comments ofter are quite badly written.

3.9 Automate and optimize the release process

Make it possible to automatically perform a release using scripting or other functions
within the tools. This automation should package everything properly that is to be
expected from the release and the end product should be the finished release itself.

Usually the release process contains many different things, many of which are easy
to forget or in other way miss. For instance making sure configuration files or other
files the release is dependent on really is packaged. By automating the release process
a successful release is very probable given that one has been made prior. We cannot
find any real argument for not automating the release as many tools exist that gives the
functionality at a very low cost.

This is also a practice that allays not only to XP but to software development in general.
If you are doing a larger project of more than fore people it is almost a necessity if the
release is to be done in a reasonable time.

3.10 Use a version control tool

Use a version control tool to synchronize the common configuration items into a com-
mon repository.

The XP practices themselves rely heavy on tool support. Continuous integration would
be very hard to implement without any tool support. The version control itself might
not be necessary for all teams since XP much more then any other development pro-
cess lies very little focus on the past versions. The merge support and conflict resolve
support though that most of these tools provide are probably much needed. Any team
that might face product updates or patches to any version other then the most current
one would very much need some kind of version control.

3.11 Use a build tool

Use a build tool for building the executing product as well as producing the documen-
tation.

7

Although we agree on the importance of using a build tool it’s very hard to imagine
anyone actually implementing a full XP development process without it. The cost
is very low in implementation and the payoff is high for anything built more then
once (manually building libraries used and keeping track of dependencies can be really
tedious and takes time even for medium size projects). The more time one puts into
configuring there build tool for there project the more they will be able to reuse and the
more time they will save in the end.

3.12 Keep the repository clean

The common code in the repository should always work. Everything must compile and
all junit tests should pass.

For any working XP team this should come naturally as the cost of non compiling or
in any other way erroneous source code as well as the spread of it within a very short
team quickly reaches impressive effects.

We did a test in our group where we let our team check in broken code due to a major
refactoring they didn’t finish at et end of the iteration. What we wanted to see was how
hard this was to fix in the following week. The test went quite well the pairs that had
coded the refactoring had time during the week to look at what needed to be done and
was able to fix the problem early the following lab. The reason this went so well is
probably because no one else was committing into the repository during the week so
no one was affected by the broken code. Trading speed for security in this way is not
the XP way of doing things but it’s a gamble with potential high payoff, thou we would
not recommend it if you don’t have confidence that it wont slow you down.

8

4 Discussion

4.1 Practices we found needed

These are the practices that we believe are truly needed for a working XP process and
of such importance that they need to be formally specified as practices.

4.1.1 Incremental Refactoring

By using incremental refactoring, integration can be done more continuously and in
much smaller steps. This will be of no doubt to great help for any team and reduce
merge conflicts.

4.1.2 Automate and optimize the release process

The difference in time and effort between a manual release process and a tool supported
automated process is very large. Often the release includes small tweaks, or other stuff
that can be easily ,forgotten simply because of the volume of them. This is especially
true if there is limited time for the release. The effort that need to be put in producing
any form of simple script supported automated release is so low that it will pay back
without any doubt for any team.

4.1.3 Physical Audit in the release process

By physically auditing the finished release one makes sure that the amount of small
errors causing the release not to run or function optimally is reduced. Small errors
can for instance be missing files or similar. If the release process is optimized such
problems should only arise the first time for each new dependency.

4.1.4 Use a version control tool

To successfully apply continuous integration one is dependent on tool support for merg-
ing different source version and handle, or at least indicate eventual merge conflicts.
This is a feature which is normally found in common version control tools.

4.1.5 Use a build tool

There really are no valid reasons for not using a build tool. Any project with any form
of dependencies will gain from it, even if it’s just a simple script performing all the
commands needed for the build.

9

4.1.6 Keep the repository clean

A clean repository without compilation errors is crucial for a working team. A full set
of working acceptance tests likewise ensures that all team members tries not to break
something, compare this to that its much easier to leave something broken if it was
like that when you arrived. A update/commit intensive process as the XP process fully
requires the repository to be clean in order to function optimally.

4.2 Practices we found not to be needed

Here are the practices we think are not necessary for the XP process.

4.2.1 Define Configuration Items and Their Structure

It feels kind of awkward if a process values agility within the source code but not in
the file or directory structure itself.

We believe that the configuration management tool in use itself defines if this is needed
or not. If one uses the CVS tool this practice is crucial, however if subversion is used
one should be able to change the directory structure as they see fit throughout the
project duration.

4.3 Practices we think are nice to have

These are the practices we find nice to have but that we have too little experience to
actually state whether or not they are needed. They are all sound and some of them we
think most successful teams are already performing, just that they are not specified as
specific practices.

4.3.1 Trace changes to stories

The need for tracing changes have never really occurred at any point of the project and
thus we have no experience about it. If the need arise though it could very well be very
crucial and if no traceability is available great problems could very well be the result.

4.3.2 Impact Analyze Refactorings

Hopefully, anyone about to implement any refactoring takes a minute to reflect on
eventual side-effects or dependencies. Though, applying this practice could be a very
nice way of assuring that the whole team is aware, and have the possibility to add any
insight, to refactorings about to be made. The risk of a large merge conflict should be
reduced.

10

4.3.3 Impact Analyse Stories as part of the planning game

This practice depends alot on how much the team finds it. If it finds the practice to
be working it could very well add valuable information to the team. If not it results in
more work during the planning game. While the intentions where very good very few
stories actually got any form of usable information in the project. From what we have
heard this was the same for most other projects.

4.3.4 Write proper commit comments

The XP process is very focused on progress, not on previous work, thus what we have
seen so far is that the log of the repository is used very seldom. When it’s actually used
itt’s mainly to find out what team members that last committed something, in order to
perhaps settle a merge conflict or ask questions about what they did. This is all covered
without any commit comments at all.

The cvs repository tool have no support for grouping multiple file changes into one
commit, and thus some people specify the collection of files modified in the com-
mit comment. However this is a tool specific practice and with other tools this is not
needed.

4.3.5 Practices we are unsure of

We are somewhat unsure about one of the proposed practices,

4.3.6 Use a copy merge work model

Any model that support the different team members to work in a separate sandbox
should work, or does all of the possible solutions here adhere to the copy merge model?
It feels awkward to state a specific model to be needed though it is certain that, in order
for TDD development to work, a separate sandbox for each developer is needed.

5 Conclusions

Much work trying to get the agile and more traditional software engineering oriented
developers to respect each other have resulted in solutions that the traditional develop-
ers can agree with but that the agile developers are not quite that fond of. Part of the
presented practices are indeed helpful while others simply states what many (success-
ful) teams are already doing. One should be very careful with adding formality to agile
methods simply because thats heavily lessens the agile part.

However if a software development process is to be judged only by the documents
describing it every part of it needs to be documented in order for it to be accepted as
a fully SCM compliant process. Perhaps the most important answer the practices can
give is that it actually is possible for an XP like process to be fully SCM compliant.

11

Being fully SCM compliant adds safety to the process, and any process relying on
practices that are not stated (as some of the practices have been identified as being
necessary) relies heavily on the team itself and success will then vary very much
between teams.

6 Acknowledgments

We would like to express our deepest thanks to the programming team we had the
fortune to coach during the spring of 2006.

References

[1] Ulf Asklund, Lars Bendix, Torbjörn Ekman: Software Configuration Manage-
ment Practices for Extreme Programming Teams

[2] Lars Bendix & Ulf Asklund: A Study of Configuration Management for Open
Source Software

[3] Shawn A. Bohner & Robert S. Arnold: Questioning Extreme Programming

[4] Pete McBreen: An Introduction to Software Change Impact Analysis

[5] Tom Milligan, IBM: Better Software Configuration Management Means Better
Business : The Seven Keys to Improving Business Value

[6] Christian Rose et.Al.: Software Configuration Management Plan for the Holi-
dayTree Project

[7] Lars Bendix, Otto Vinter: Configuration Management from a Developer’s Per-
spective

[8] Peter H. Feiler: Configuration Management Models in Comercial Environments

[9] Roy Andersson, Lars Bendix: Towards a Set of eXtreme Teaching Practices

12

