
Fail-Fast Feedback

Filip Lindqvist (ada10fl2@student.lu.se)
Jakob Berglund (ada10jbe@student.lu.se)

Lund Institute of Technology, Sweden

January 2014

Keywords: Feedback, Courage, Mistakes, Learning, Fail-Fast, Coaching

Abstract

This report is about encroaching mistakes in a mission to learn. By
failing fast we can learn quickly, to correct and improve our practises. By
proving valuable feedback in a student project, students learn to fail fast
and learn from this. However, in the end it turns out that the project is
to small to apply all of these paradigms, since it is already an extensive
course in learning the eXtreme programming paradigms.

1



Introduction

Many say that a fear of making mistakes is the biggest mistake of all [7]. This is
the problem that this project will focus on. The hypothesis is that if the PVG
students are allowed to make many small mistakes and get feedback as soon as
they make them they will avoid making large mistakes. In the end the goal is
to give the students the courage to make mistakes and have the knowledge that
it is okay to make them. Also that when the mistakes happens is not a time for
anger or embarrassment but time for celebration over the fact that they found
it early and that they now have learnt something new.

The core concept is to allow mistakes and understanding the power of re-
flecting upon them. Because making mistakes is only useful if one reflect and
think about how to avoid to make the same mistake again. As John C. Maxwell
said in the book ”The Power of leadership”

A man must be big enough to admit his mistakes, smart enough
to profit from them and strong enough to correct them [4]

This is very true in this project since it is not a problem that someone is making
a mistake the problem is if someone is hiding the mistake or if they do not learn
from their mistakes.

Background

This project is carried out on a team programming course taken by students of
the second year. They are put in teams of 8-10 student and practise agile XP-
methods during eight-hour iterations each week during seven weeks. Each team
is equipped with two coaches, that leads the team through the XP-practises.
As team coaches it is possible to practice skills in coaching and also preform a
in-depth project.

The Courses

The student course and coaching course is taut at Lund Institute of Technol-
ogy, Sweden and the concept of the courses are described in Teaching eXtreme
Programming to large groups of students [5].

The primary goal of these courses is to let the students learn the XP-
programming paradigms and let the coaches learn to be a coach. Both courses
are grade-less and only requires the attendance of the students. This opens up
the chances of successfully learning the subject by making room for mistakes,
which allows experiments with the objective to fail, reflect and learn.

”Learning is the process whereby knowledge is created through
the transformation of experience” [6]

2



Learning

One core principles of the PVG-project is to embrace the experimental learning
cycle that was drafted by Kolb in 1984 [6]. One of the important principles
in this paradigm is that learning is a continuous process. It also states that
our knowledge is derived from our experience within the subject, not by sim-
ply reading literature. In short, learning by doing and reflecting upon mistakes
and successful progress. Kolbs cycle starts with concrete experience were we
are faced with a task which requires active involvement in the subject. We are
required to interact, because it is hard to learn with passive involvement by sim-
ply reading about it. The next stage, reflective observation, requires a timeout
from the active involvement, which requires to take a step back to reflect and
verbalise the experience. It is a time of quiet thinking and completion of logs
or diaries. Next we enter the abstract conceptualisation, where the toughs and
diaries and being interpreted. It is a process of understanding what happened
during the active involvement and figuring out the relation between the pasted
events. The learner reflects and conceptualise a theory from this understanding,
that can be applied in the next step. Finally the cycle reaches active experi-
mentation, where the learner put the understanding and theory in practise. The
learnt things are put into practise and this generates new experience which then
bring the learner into cycle again.

The core of the PVG-project is that this learning cycle is repeated six times
during seven weeks. During the eight hour iterations, the student is getting
concrete experience from practising the XP-paradigms, getting introduced to
new paradigms every week gradually during the total of seven weeks. After
each iteration each student do a personal reflection upon the iteration and this
forces the student to do a reflective observation. Later in the week, the first
half of the planning meeting is spent on doing a reflection. Here it is very
important as coaches, to align the discussions to make it arrive to an abstract
conceptualisation, that is valid and can be tested in the following iteration.
The reflection is summarised into a group reflection, but the most important
artifact from this refection is the students personal understanding. The second
half of the planning meeting is used to estimate and plan the following iteration.
During the following iteration the student can use this understanding to improve
the work and gain new experience. The repetition of this learning cycle is the
key to learning student fast and efficient.

Feedback

Providing feedback in a good way is not always easy. There is however some
guidelines for how to provide quality feedback [8]. We tried to use these when-
ever we gave the students feedback on their work. The most important and the
thing that is at the essence of this project, is to provide feedback in a positive
way, both positive feedback and negative. If the students feel that they get
punished or get an unpleasant feeling when they get feedback on their mistakes
then they might hide the mistakes. This would only make the mistake larger

3



and more problematic since it is simple to solve a mistake in the beginning but
harder and more expensive the longer time it takes. Therefore if the students
feel safe and believe that it is positive when they get feedback they will not hide
or get uncomfortable when they make mistakes. Both mistakes and successes
should be celebrated since both imply that the team or student have learnt
something.

When giving negative feedback it is important to make it clear that it is not
the person that is wrong or is a failure but the actions that where made. And
try to learn something from the actions.

When giving feedback to students it is important to be clear about what
was wrong. It is however it is also important to perhaps not always give all
the answers and tell the person what was wrong but create a discussion about
the problem and allow the student to think for them self. This is the moment
people learn when they are not told what is right or wrong but when they figure
out by them self what is.

It is also important to give feedback as soon as possible. This is important in
this project since it is all about fast failures. If the students do not get feedback
about what they do correctly and what they do incorrectly within minutes the
students will forget what they did. This is how the brain works it prioritise
special occasions and save these for later. This is the same thing as Pavlov’s
Dogs[9] if the dogs did not get the food directly they would never have created
the connection between the bell and the treat. Just as the students brain will
not connect the mistake/success with the celebration or the reflection.

Method

Several different approaches was used to teach the PVG students that making
mistakes is good and should be a natural part of software development. Some
parts are already built in to XP that all students uses during the PVG project,
like Pair programming and Test driven development.

Pair Programming

Because they work in pairs the students will always have someone that will
inspect the code that they write [10]. Because of this, they will get instant
feedback as soon as they do something wrong. This eliminates both small errors
like spelling or forgetting a comma. In addition to larger structural errors, since
the students have someone to talk to and discuss design with. Since the students
in this project are mostly second year students they are not all that familiar with
programming and because of this, the fact that they are always a pair should
improve the final code. However, there are problems with this method since it
can produce more stress than what would be the case if they where working by
them self. Especially students with less programming experience can feel that
they are stressed when they are working with a better student. This should not
be a problem in this course since there is plenty of time and the students are

4



supposed to learn new things and challenge their comfort zones.

Test Driven Development

Test driven development (TDD) [3] is one of the hardest parts of the course to
learn and will be hard for the students to get familiar with. It is also hard for
the students to understand the benefits. However there are several benefits to
doing TDD from a feedback view point. Because if the test coverage is high
and the tests are well written. When the students do the implementation they
will already have thought about the design and will see the progress of the
implementation since more and more tests will succeed. This progress will give
them feedback about the state of their code and if the implementation is correct
or not. Later a different team will be able to see if the implementation is correct
by only looking at the test. Since test normally is easier to understand than
code it will be a lot faster to just inspect the test.

Atlassian Clover

Clover [2] was used as an test coverage tool. Every time the team did a com-
mit that commit resulted in a test coverage report. The students and coaches
where then able to study the report and quickly find problematic areas that
was untested. It was also possible to check if it was useful to test a specific
method or if it was better to let it be. Since high test coverage will not give the
complete story. Making useless tests only to get high test coverage is just as bad
as not making any tests at all. Because in best case these tests will only take
space and make it harder to find things in the test classes. However in worst
case they will fail because something is changed in the code. Then it will only
take time to debug and find the error witch have cost that the customer will
not want to pay. A useless test would for example be to test an unused method
from an interface. This method would lower the test coverage if it is not tested
but there is no point in testing it.

SonarQube

Sonar[11] is a code complexity and static code analysis tool. It checks the code
for common problems that might create issues in the future. However most
of the problems it discovered was small problems like not following the Java
conventions. It is possible to remove errors that is not important in the project
and thereby filter out the real problems that will impact the code. It also give
some statistics over how many lines of code that has been produced and similar
metrics. All this information give the team feedback in different ways. The
issues the software finds helps the developers to reduce small errors that can
be problematic in the future. One of the most useful issues found is when the
software throws exceptions but do not give the user any feedback of the error.
When the customer later points out that errors need to be logged. Then a list
of places to do the implementation is done and ready to be used this reduces
the time it takes until the software is fixed.

5



Atlassian Bamboo

Both Sonar and Clover would not be useful in the context of this report without a
build system like Bamboo [1]. When source code is committed to the repository
Bamboo will notice this and make an update and compile of the software. When
the build is done it will also run all tests and give the results of the tests. If
any test fail it will clearly show this failure. During the labs this information
was the mostly used by the students since they quickly understood that just
because the test works on their compute it doesn’t mean that they will work on
every computer.

As soon as the students discovered this they quickly became interested in the
results of the build. Since the build was done in under a minute most students
looked at screen that displayed the build results until the results were showed
on the screen. Thereby they quickly got feedback on potential problems within
their code and tests.

Bamboo also helped in the later releases with producing a release on every
commit. This reduced some of the stress within the team but it also meant that
the students for the second release thought that they were able to add more in
the last minutes before the release than what was really possible. This was not
ideal.

Coaches

Since the students in the project are both inexperienced programmers and in-
experienced members of a team. The coaches have an important role [5]. In the
beginning of the project the coaches role is to structure and lead the students
using an instructing leadership. However as the project progresses the students
are given more responsibility. Therefor it is important that the coaches teach
the students to take the correct path and to quickly give the students feedback
when they are on the wrong path. However, it is also important to allow the
students to make errors because that is how one learns the fastest. All these
factors make the coaches job a balancing act. In the end it is important to allow
the students to find their own answers. As the famous saying ”Give a man a fish
and you feed him for a day; teach a man to fish and you feed him for a lifetime”
this is also true for the students. If the coaches give the student the answer the
student will solve his current problem but if the coaches teaches the student to
find answers the student will never have to ask again. Therefor it is important to
create an environment for the students that inspires them to think for them self.

Observation will be used to collect information about how well the different
method work. Observations will be made both during the labs and during the
planing meetings.

6



Results

The observations will be written in a weekly diary form. Each week consists of
observations from both the lab and the planing meetings. They will also contain
some initial analysis from the observations.

Observations

Week 1

The first iteration was full of confusion and but the students quickly learnt
that communication is very important. Both within each programming pair
and between the pairs. They were also quickly introduced to the build system
Bamboo and test analysis tool Clover. However there was no focus on the tools
at this lab since the team first needs to make some of the social mistakes like
communication before they can start using the tools.

The lack initial communication between the teams lead to some misunder-
standing of the stories. The small parts produced by the first initial tasks was
not integrated into something useful. By the end of the iteration it was clear
to everyone that the communication between the pairs had to be improved, in
other words they had learnt from their mistakes.

Week 2

Since the focus of this iteration was all about Test Driven Development the
students were shown a screen that showed the test status of the project. In
the beginning the students made some mistakes and the repository was red for
almost an hour. However after this had been pointed out to the students they
learnt that they need to check the screen since what works on their computer
might not work on all computers. An interesting phenomenon was then observed
when the students stopped and looked at the screen an waited for the results of
the automatic tests to complete before they continued with the next story.

Week 3

This week the team started to appreciate the feedback that the build system
was giving by running the tests in a separate environment. After every commit
the authoring pair waited a minute to see the build come out clean on the
dashboard screen. This gave them confidence and courage that the tests and all
dependencies were correctly submitted to the versioning system. One problem
that occurred during the second half of the iteration was that the tests became
unstable and altered between red and green. This forced the team to rerun each
build several times to make sure that is was green. This lowered the courage and
the team could no longer rely on this feedback. The problem originated from a
faulty test that was not using atomic timestamps to compare the outcome of a
test. The assertion timestamp was taken when the test suite was initiated and
the result was asserted in the end of a test case. The solution was to delegate

7



one pair to track down the test and repair it. After a quick introduction to
the test statistics in Bamboo, the pair narrowed the fault down to a single test
case. Which was repaired, to make the timestamp just before the assertion
instead. After this fix the feedback was restored and the team quickly regained
the confidence in the tests.

During this iteration a lot of stories was introduced concerning the user in-
terface of the program. These were not completely defined, with purpose to
force the team to communicate with the customer. However the team was not
ready to communicate with customer, which resulted in a complete story being
implemented the ”’wrong”’ way. We as coaches noticed that the pair imple-
menting this story was not embracing the XP-paradigm ”Stories are promise of
conversation”. Since one of our project goals is to embrace ”’Learning by fail-
ure”’ we let the pair continue with this and release the solution to the customer.
After the release the customer feedback was mainly concerning the details in
the user interface and most of the implementation had to be rewritten. How-
ever in the personal reflection the pair members reflected over the fact that the
communication with the customer had to be increased and that stories should
be discussed with the customer before they were released. Our goal as coaches
were achieved.

Week 4

During this iteration the communication with the customer was a continuous
process throughout the day, with a lot of questions concerning the user interface.
Since the team concluded that the graphical interface is very important to the
costumer, and that stories was a promise for conversation. The team even
convinced the customer that their solution was easier and cheaper than his
original design. This is one of the important strengths of XP, having a on-site
consumer to get feedback from during the iteration. Unfortunately this is not
always the case in the reality. To get this feedback a team might have to conduct
user testing or contact a distant costumer.

The iteration had a heavy focus on delivering stories. As the release passed,
the feedback from Clover and Sonar showed that the technical depth and com-
plexity had increased noticeable. In the personal reflections some admitted that
the code had become more complex and that it was hard to implement changes.
In the group reflection we asked the team what could be done to avoid this in
the future and how we could simplify the existing code. One of the suggestions
resulted in a spike targeting a checklist of refactoring tasks.

Week 5

This iteration the students were told that they will need to handle all of the
planing in the iteration them self. They were told that the release should happen
at 3pm and that they should send the release to the customer and a different
team. After this they hold a quick meeting to plan the iteration and when they
should have an release ready. During this meeting the students planed a new

8



meeting at 2pm to decide what the release should contain.
The students made a common error when it comes to planning which is that

they thought it was better to insert unfinished and untested stories to make the
customer happy. This error was made to a large degree because the students
get stressed when they are close to a release and think that they should add
things just because they like to have something to show for the customer. They
are never told that the customer rather like a high quality release than more
features. Since the students are not thought what the goal they should have
with the releases they believe that features are the most important.

On the planing meeting the release was discussed and the students agreed
that it was stupid to insert unfinished functionality. For the last iteration they
will focus on quality and make sure that the program works flawlessly.

Week 6

This iteration one voluntary student was picked to be chairman at the morning
meeting. The team discussed what had to be done during the iteration, in order
to improve upon the feedback from the customer and the reviewing team. No
new features was implemented and most of the day was spent on correcting
the program and the documentation. Problems with file paths using different
operating systems lowered the team morality during morning. Afterwards we
organised a lightweight retrospective, which covered the different iterations and
the focuses that they targeted. The goal from us as coaches was to give the
students an understanding of why we use the different practises and how they
apply in the real world. It is hard to learn without an understanding of why
we apply certain practises. For each of theses focuses we coached the team
discussion, to navigate down to the core of why we use the XP practises.

Analysis

From the diary we see that the confidence grew in the group for every iteration.
As coaches we also allowed them to take more responsibility. In the beginning
the students were inexperienced and did not really know how to work in a team.
However, already after the first iteration they learnt their first valuable lesson.
Communication is very important not only in every pair but also between differ-
ent pairs. This lesson impacted their thinking throwout the course. Everybody
felt that it was critical that the communication went perfect. Of course the stu-
dents was not able to create a situation were everybody knew everything and
where there were no communication problems. This was especially noticeable
when approaching a release since the stress level grew and some pairs felt that
they needed to get one more thing done even if they sacrificed quality.

The third and fourth iteration taught the group to write tests and make
automatic builds and releases. This posed two challenges, both learning to
embrace test driven development and learning the tools to do automatic builds.
Test driven development is a real challenge to teach and learn during the few

9



weeks. Learning to design and structure code by writing the test first is hard
and take years to grasp. The build tool ANT itself is very unfamiliar to the
students and it took them quite a lot of time to grasp why and how the tool is
used. Furthermore the releases fine-tune the release process, making the student
aware of the fact that they can not put in stories at the last minutes. It also
introduces a lot of problems with maintaining the repository in a clean state.

At the two last iterations the students were more or less self going. The
students held the last stand-up meeting by them self and were not told what
to do. They then went trow the spikes and also planed the iteration. This was
valuable for the students since they were allowed to think by them self. While
doing the retrospective at the end of the day one of the students also said that
the most fun part of the PVG project was that they were allowed to think by
them self. This is something that is often missed in education today. Most
things that is taught at Universities are not designed to allow students to think
by them self and do research without knowing that there is a nice answer. Even
if these skills are the most important skills a student could have when starting
work in the real world.

The most used tool that we provided the students was Bamboo first as a
clean test environment. They quickly understood that just because tests worked
on their computers did not mean that they will work on every computer. This
feedback forced them to think different when they wrote their tests. They had
to make them robust enough so that they would work on every computer but
they still needed to be a good test. This was clearly one of the most appreciated
tools. Both proving a quality indicator of the repository test state and providing
complete releases with every commit being made.

Clover however they started to use a bit later mostly because they did not
have any control of what code was tested and what code was not tested. With
clover they easily found where they had missed to add tests. This is clearly
illustrated in clover. The students appreciated the fact that the tool was web
based and not running on their computer mostly since they always got the same
results but also since they knew that they always had a report to look at. The
students did learn that it is hard to get perfect code coverage not only because
some things are hard to test but also because even small changes to the code
could impact a lot of tests. This was one of the things that the students felt
was the biggest problem with TDD. Because even if they did follow TDD and
write all the tests they often ended up having to rewrite or remove tests to be
able to commit.

It was during the last iteration that the students were really introduced to
Sonar. They then used Sonar to find problem in the code. They looked at the
list of issues Sonar provided them and tried to fix these. After this exercise the
students felt that some of the issues Sonar had found were a bit stupid and did
not create any real problems in the code. This is an issue because if the students
spend a long time fixing non issues just to make Sonar happy then the moral in
the group would decrease. Therefor it is important that every tool that is added
to a development process do not just create extra work for the developer but
also really help the developers in their work. In Sonar it is possible to remove

10



issues that the team feels are non issues. This is important to do because it
keeps the moral up.

Conclusion

One of our core goals in this practice project was to give the student feedback
on their work. Both fast and wide feedback on the project outcome. We also
tried to encourage retrospection and learning throughout the different parts.
The students learnt a lot throwout the project. They went from not having an
image of how real software is developed to being familiar with both the concepts
of XP and Continues Integration (CI). They have not learnt the tools; Bamboo,
Clover or Sonar, but they have learnt why tools like this can and are useful in
real development. They also learnt that a good idea is not good until they get
feedback from the customer. This they learnt several times when developing
the GUI since they in the beginning did not care about asking the customer
however in the end as soon as they liked to change something they went and
got feedback from the customer.

In the end is this project a bit to small and intense for the students to really
learn and use all the tools they had at their disposal. In a larger project with
more time it would have been possible to drive the Fail Fast Feedback concept
even harder. However in the available time it was not possible to get enough
focus from the students since they were stressed about different stories that the
customer had given them.

It is also important not just to add new tools to a development process
because if the developers do not understand how the tool would be useful they
will not use tool or even worse the tool might decrease the moral in the team.
This is something that could not only hurt the team on the current iteration it
could hurt for a long time. Therefor a good rule is to never add a tool if it is
not seen as usable by the developers.

11



References

[1] Atlassian. Bamboo: Continuous integration & build server, 2014.

[2] Atlassian. Clover: Java code coverage, 2014.

[3] Kent Beck. Test-driven Development: By Example. 2003.

[4] Joel Garfinkle. Ten Ways to Provide Quality Feedback. 2005.

[5] Boris Magnusson Görel Hedin, Lars bendix. Teaching eXtreme Program-
ming to large groups. 2003.

[6] D.A. Kolb. Experiential learning: experience as the source of learning and
development. 1984.

[7] D.A. Kolb. Code Complete. 2004.

[8] John C. Maxwell. The Power Of Leadership. 2001.

[9] Saul McLeod. Pavlov’s dogs, 2013.

[10] Johan Rix Mia Nyström, Karin Wanhainen. En studie om parprogrammer-
ing i praktiken. 2002.

[11] Sonarqube.org. Sonarcube, 2014.

12


