
A case for refactoring aware versioning

Torbjörn Ekman

Sven Gestegård Robertz

Dept. of Computer Science, Lund University

Sweden

email: {torbjorn|sven}@cs.lth.se

May 22, 2002

Abstract

The emerging agile methodologies change the way code is developed

and, consequently, the type of concurrent changes that are made and

which merge con�icts that arise from them. This paper illustrates how

version control tools needs to be changed in order to accommodate that

new way of developing software.

To give better support for merging code in a process where refactorings

are common, we propose an extended representation of di�erences between

versions by adding higher order changes and static semantic information.

We show that this extended version management leads to less false

con�icts, more informative con�ict reporting, automatic merge of a larger

set of changes and more con�icts detected by the merge tool instead of

causing compile- or run-time errors.

1 Introduction

The emerging agile methodologies, such as extreme programming (XP)[Bec99,
JAH01], promotes practices like collective code ownership, frequent restructur-
ing of the code (refactoring [Opd92]), and continuous integration. This changes
the way code is developed and, consequently, the type of concurrent changes
that are made and which merge con�icts that arise from them. This paper illus-
trates how version control tools needs to be changed in order to accommodate
that new way of developing software.

1.1 Versioning

In all software projects, it is essential to keep track of the evolution of code and
to handle multiple versions of the various parts of the system. It should always
be possible to retrieve any previous version of a certain component and to see
which changes that lead from one revision to another. This is the objective of
version control.

Version control is also necessary to handle the shared data and simulta-
neous update problems[Leo00] that arise when doing concurrent development.
Therefore, tool support for version control is paramount.

1

Most tools express the di�erence between two revisions as a set of add, delete,
and change operations. An example where one line is changed and one line is
deleted is shown in Figure 1.

b=2
c=1

a=1a=1
b=1

Rev 2Rev 1

add: c=1
change: b=2

Figure 1: Basic versioning. The di�erences between two revisions are shown.

In order to support concurrent development, the versioning tool must sup-
port merging of changes, i.e., integrating two sets of changes to the same �le to
produce a result containing all the changes. Figure 2 shows schematically how
users A and B make simultaneous changes to revision 1 of a �le and how their
changes are merged to form revision 2.

user A’s
changes

changes
user B’sRev 1

working
copies

a=1
b=1

Rev 2

a=1
b=2

a=1

c=1
b=1

a=1

c=1
b=2

Figure 2: Merging of simultaneous changes by users A and B.

If changes made by users A and B a�ect the same place in the code, an
automatic merge cannot be made. This is called a merge con�ict and has to be
solved manually. Figure 3 shows an example where a change to and a delete of
the same statement are in con�ict.

user A’s
changes

changes
user B’s

a=1

c=1
d=1

b =2 ??? b=1X

Rev 1

working
copies

a=1
b=1

a=1

c=1

c=1

a=1
b=2

c=1
d=1

STOP

Figure 3: Con�ict between the deletion of and the change to the statement b=1

1.2 XP practices a�ecting versioning

In contrast to traditional software development processes, where each developer
typically has a well de�ned area of responsibility, collective ownership encourages
developers to make changes anywhere in the code. This increases the probability
of programmers making simultaneous changes to the same parts of the code.

2

Since XP teams do not do a big design up front, the architecture needs to
evolve to accommodate requirement changes. Therefore, refactoring is a central
part of such software development. A refactoring[Opd92, Fow99] is a controlled
structural change � a change that changes the structure of the code but not the
behavior.

Integration is di�cult, and the longer the time between integration, the
more complex it gets. Therefore, extreme programmers integrate their changes
as often as possible.

1.3 Limitations of traditional version control

Currently, most commercially available versioning systems are text and line
based and work on a per �le basis. This works well in traditional projects where
strict code ownership and well de�ned programming tasks keep programmers
from doing simultaneous changes to the same �les. In such cases, merge con�icts
are not very common.

The XP practices change the way code is developed. For instance, collective
code ownership makes simultaneous changes to the very same parts of the system
much more likely, frequent refactorings cause pieces of code to move around and
entities to be renamed a lot, and continuous integration causes merging to be
done much more often. Since more programmers work on the same code, merge
con�icts are more common. At the same time merging is done more frequently
and therefore has to be as simple as possible from the programmer's point of
view.

Unfortunately, traditional versioning systems give a lot of false con�icts if
extensive simultaneous changes have been made. For instance, if two program-
mers add a new method at the end of a class, most merge tools will give a
con�ict since they have added code at the same line in the �le. Even worse, if
code has been moved in a �le, or even between �les, a line-based merge tool has
no way of producing a satisfactory result since it doesn't know that the set of
deleted and added lines it sees is actually a the result of a move operation.

Renaming an entity involves both changing the declaration and all uses of
that entity. If a new use of an entity is introduced in parallel to renaming that
entity, a text based tool cannot detect that this is a con�ict that needs to be
resolved. Instead the change will result in a compile-time error.

Furthermore, a single refactoring involves a number of changes but is viewed
by the programmer as one logical operation. Hence, in order to increase aware-
ness of changes to the code and helping the user make the right decisions when
solving merge con�icts, it should be presented to the user as one, atomic, change.

2 Extended representation of changes

As explained above, traditional versioning systems do not give su�cient support
for tightly coupled concurrent development with frequent refactorings. Moved
code and renamed entities are not represented properly and this causes false
merge con�icts and unclear con�ict reporting.

Also, since a refactoring is logically an atomic operation, it would be bene-
�cial to detect that a change is in con�ict with a refactoring as a whole instead

3

of just indicating an ordinary con�ict between that change and some part of the
refactoring.

To give better support for merging code in a process where refactorings are
common, we propose an extended representation of di�erences between versions.

Higher order changes A set of changes that constitute one, logical operation,
e.g., moving a piece of code or performing a particular refactoring can be
grouped together. I.e., semantics is added to change sets. This enables
the merge tool to present changes at a higher level. For instance,if a move

and a change have been performed in parallel, the di�erences between
the moved and changed lines is displayed instead of producing a con�ict
between the changed and the deleted lines. This also allows refactoring
aware merging, where con�icts based on the semantics of the di�erent
refactorings can be detected.

Static semantic information Many refactorings involves changing names, or
signatures, of entities. If the tool knows about the semantic connections
between, e.g., a declaration and a use of a variable or method, it can detect
new types of con�icts; for instance that one programmer added a new use
of a certain variable while another programmer removed that variable. It
also allows automatic merge in cases where, e.g., uses of an entity that
has been renamed are added.

3 Typical refactorings

Many of the refactorings presented by Fowler[Fow99] share the common prop-
erties and problems described above. This section presents examples of typical
refactorings that illustrate how the extended representation of changes will im-
prove version control.

For each refactoring, a small example illustrates how a traditional merge tool
reacts when an ordinary change is done simultaneously with that refactoring.
We discuss how this could be improved with our extended representation of
changes.

In the examples, we have used the �lemerge tool from the Sun Workshop

Teamware suite, which uses a three-way merge. In the �gures, an add operation
is represented by a '+', a change by a '|' and a delete by a '-' sign. The child

view (on the left) is the locally modi�ed version and the parent view (on the
right) is the simultaneously refactored version.

3.1 Extract Method

This refactoring is used to extract a piece of code and give it a descriptive name,
improving readability and promoting code re-use.

Merge problems occur when the extracted piece of code is changed in parallel
with the refactoring. Figure 4 shows how a traditional merge tool behaves in
this case. The refactoring is represented as a change to the �rst line of the
extracted code (it is replaced by a method call), deletion of the remaining lines,
and addition of the extracted method.

Thus a con�ict is detected between the deleted lines in the refactored version
and the changed line in the other. It would be more informative to detect a

4

con�ict between the move and change operations. This is made possible by the
higher order change move.

It might seem trivial to perform an automatic merge (by applying the change
deltas to the extracted lines) but, since the extracted lines of code have moved
to a di�erent scope this is not always safe.

Figure 4: Extract method performed in parallel with a change to one of the
extracted lines. A traditional merge tool gives a false con�ict between a change
and a delete on the same line.

Another case, potentially more dangerous, is illustrated by Figure 5. Here,
one of the lines that were concurrently extracted is deleted. This should result
in a con�ict, but the traditional merge tool only sees that that line is deleted
in both versions. This does not cause a con�ict and an automatic merge is
performed. In the merged version, however, the extracted method still contains
the line that should have been deleted and the program doesn't have the desired
behavior.

3.2 Move Method

If a method �ts better in another class, e.g., because it uses more features of
the other class than its current class, the method is moved.

Merge problems occur when the moved method is changed or new invocations
of the method are introduced in parallel with the refactoring. Figure 6 shows
how a traditional merge tool behaves in that case. The method is deleted in the
source class and added in the target class. Then each invocation is changed to
reference the method in the target object. A change made to the moved method
will results in a con�ict with the deletion of the method.

Since the method has moved to another class, the programmer doing the
merge only sees that the method has been removed and will probably either put
(his new version of) the method back in the old class (leading to two inconsistent
implementations of the same functionality in di�erent classes) or discard his
changes. Just as in the Extract Method case this can be resolved by knowing
that code has been moved.

An added invocation, on the other hand, will not result in a con�ict and is

5

Figure 5: Extract method performed in parallel with a delete of one of the
extracted lines. The merge tool doesn't detect a con�ict and automatically
merges the changes, but the result has the wrong semantics.

Figure 6: A change to overdraftCharge() is done in parallel with the move
method refactoring. A con�ict is detected since there has been a change and a
delete on the same line. It would have been more informative to the user if the
system showed that the method was moved and not, as it seems here, deleted.

6

automatically merged but the resulting code will not be as expected. Either
it will not compile since the referenced method is no longer available or, even
worse, it will have a di�erent logical behavior if the moved method shadowed
another implementation.

If the tool had static semantic information, it could detect that the added
invocation referenced a method that had been moved and give a con�ict. It
could then provide the user with information about which class the method has
moved to, how this object is reached and if the parameter format has changed.

3.3 Rename Method

When a method name doesn't reveal its purpose, change the name.
This is a quite simple but powerful refactoring; just change the name in the

declaration and update all invocations to use the new name. However, in a
text based system, adding new invocations in parallel to doing that refactoring
would not be detected as a con�ict. An automatic merge would be performed
but the resulting code would not work since the added invocation tries to call
the method by its old name.

If the tool knows that the changes in the �rst version was a rename and has
static semantic information (name binding) it could automatically change the
added invocations to the new name.

4 Merging, by intention

By adding more intelligence to the versioning/merge tool, some unnecessary
con�icts can be avoided (e.g., adding two methods at the end of a class) but,
even more importantly, a larger set of con�icts can be detected. That gives the
programmer better support for doing the proper merge and increases awareness
about the logical changes made.

4.1 Improved merging

As described above, higher order changes makes it possible to introduce the
notion of moving code. This mitigates some of the shortcomings of line-based
merge tools and makes it clearer where the con�ict actually is.

Furthermore, if the versioning tool knows that a set of changes is a certain
refactoring, the con�ict reporting can be much more informative. For example, if
a move method has been performed at the same time as we add an invocation of
that method, it is much more helpful if the tool tells us to which class the method
has been moved and if the parameter format has changed than just telling us
that the method does not exist (and, of course, much better than getting an
error at compile-time which is the typical result when using a traditional tool.)

4.2 Refactoring con�icts

In order to being able to do a refactoring, certain pre-conditions must be ful�lled.
For instance, a push down method may only be performed if that method is used
only in one subclass and hide method can only be done on a method not called
from other objects. If a change made in parallel with the refactoring introduces

7

code that violates the pre-conditions of that refactoring, it is not possible to
make a feasible merge. Such a merge attempt should result in a con�ict.

This is a new type of con�ict, where it is not the changes per se that are in
con�ict, but that the change is in con�ict with the pre-conditions of a refactor-
ing.

5 Related work

The ideas of grouping changes together and including semantic information to
improve merging are not new. The di�erence between the previous work and
the work presented in this paper is that in the previous work, this information
is primarily used by the merge tool to do the merge or detect con�icts. We
argue that this information also should be used to give better information to
the programmer in order to increase awareness.

5.1 Change Oriented Versioning

Change oriented versioning[LCD+89] focuses on functional changes in a software
product. It is a way of grouping a set of changes and assigning some properties
to them and is intended as an extention of conditional compilation.

We use the idea of grouping changes and assigning properties to them in
order to add semantics to a set of changes, for instance that they constitute a
refactoring.

5.2 Structure-Oriented Merging

The IPSEN system includes structure-oriented merging[Wes91] which preserves
context-free correctness and detects context-free con�icts. It also takes binding
of identi�ers to their declarations into account. Westfechtel also mentions that
in the future, cut and paste operations should be taken into account. This
corresponds to our high-order change move.

5.3 Semantic merging

The extended representation of changes proposed in this paper is limited to
static semantic informantion, and our approach is to detect con�icts and give
adequate information to help the programmer resolve con�icts manually. This
is a big improvement over purely syntactic tools but is quite conservative in
con�ict detection.

There have been e�orts in improving automatic merging and making con�ict
detection more accurate by doing full semantic analysis on the program in order
to decide if two sets of changes interfere or not[HPR89]. That algorithm has been
extended to detect semantics-preserving transformations[YHR92], i.e., changes
to the implementation of a program that doesn't change its output. To our
knowledge, the currently available systems for semantic merging are limited to
handling very small imperative languages and don't support e.g. object-oriented
languages. The downside of full semantic analyis is that it is highly language
dependant and that it may be costly to add support for a new language.

8

6 Conclusions

We propose that the traditional representation of changes between revisions are
extended with the notions of higher order changes and static semantic informa-

tion. Higher order changes are a set of changes with a semantic meaning used to
represent a logical operation, e.g., moving a piece of code or performing a refac-
toring. Static semantic information, e.g., name binding, is necessary in order to
merge, or detect con�icts in, changes involving the declaration of entities.

The proposed extensions make con�ict detection more accurate; �rstly, by
removing many false con�icts and, secondly, by allowing detection of semantic
con�icts. It also makes it possible to report con�icts at a higher level, i.e., not
only showing where the con�ict is but also which type of high level change that
caused it. This is particularly helpful when the scope of the changes are multiple
con�guration items. It also increases the programmers' awareness and guides a
programmer doing a manual merge by expressing the underlying reason of the
con�ict.

We conclude that extending version management with higher order changes
and static semantic information leads to less false con�icts, more informative
con�ict reporting, automatic merge of a larger set of changes and more con�icts
detected by the merge tool instead of causing compile- or run-time errors.

References

[Bec99] Kent Beck. Extreme Programming. Embracing Change. Addison
Wesley, 1999.

[Fow99] Martin Fowler. Refactoring. Improving the design of existing code.
Addison Wesley, 1999.

[HPR89] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering ver-
sions of programs. ACM Trans. Prog. Lang. Syst., 11(3), 1989.

[JAH01] Ron Je�ries, Ann Anderson, and Chet Hendrickson. Extreme Pro-

gramming Installed. Addison Wesley, 2001.

[LCD+89] A. Lie, R. Conradi, T. Didriksen, E. Karlsson, S. O. Hellsteinsen,
and P. Holager. Change oriented versioning. In Proceedings of the

Second European Software Engineering Conference. Springer-Verlag,
1989.

[Leo00] Alexis Leon. A Guide to Software Con�guration Management.
Artech house publishers, 2000.

[Opd92] William F. Opdyke. Refactoring object-oriented frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[Wes91] Bernhard Westfechtel. Structure-oriented merging of revisions of
software documents. In Proceedings of the Third International Work-

shop on Software Con�guration Management. ACM Press, 1991.

[YHR92] W. Yang, S. Horwitz, and T. Reps. A program integration algo-
rithm that accomodates semantics-preserving transformations. ACM
Transactions on Software Engineering and Methodology, 1(3), 1992.

9

