
Master’s Thesis

Software Configuration Management in Scrum
Projects

Andreas Bergström DT06
Department of Computer Science
Faculty of Engineering LTH
Lund University, 2008

ISSN 1650-2884
LU-CS-EX: 2008-33

Software Con�guration Management

in Scrum Projects

Andreas Bergström

Department of Computer Science

Lund Institute of Technology

Sweden

June 2008

This thesis is submitted to the Department of Software Engineering and Computer Science
at the Lund Institute of Technology in partial ful�llment of the requirements for the degree
of Master of Science in Software Engineering.

Contact Information

Author:
Andreas Bergström
E-mail: bergstrom.andy@gmail.com
Homepage: www.andreasbergstrom.net

External advisor:
Magnus Hägg
TietoEnator
Homepage: http://www.tietoenator.com

University advisor:
Lars Bendix
Lund Institute of Technology
Homepage: http://www.cs.lth.se

Mailing address:
Faculty of Engineering LTH, Lund
LTHs kansli
PO Box 118
SE�221 00 Lund
Sweden

Internet : www.lth.se
Phone : +46 46 222 72 00 (Informations Desk at Faculty of Engineering LTH)

Abstract

Software Con�guration Management (SCM) is an important part of traditional software
development. It keep things under control and helps software development teams create
top-quality products without chaos and confusion. The Con�guration Manager is the key
person that makes sure all of this happens.

Scrum is becoming a very popular project management method for agile software develop-
ment. Scrum values self-organizing- and cross-functional teams, and because of this, there
should be no roles within the team, i.e. no designated Con�guration Manager. Obvious
questions that arise are; Who will handle the Con�guration Management? Is it considered
at all?

Since there are very little information written about SCM in Scrum projects, this thesis aims
to investigate if- and how SCM is commonly handled in Scrum projects.

From interviews with Scrum practitioners I learned that it is rare for SCM to be considered
explicitly. The main reason seems to be lack of knowledge. Because of this I have written
checklists to help unexperienced teams with their SCM-functionality.

The Con�guration Manager will still be an important asset, but his or her duties will probably
shift to more educational and consulting when SCM improvements are needed and when
problems arise.

Keywords

Con�guration Management, Scrum, Agile, Software Development, Roles & Responsibility

Preface

After discussing several alternative for my thesis with my supervisor at TietoEnator, the
idea about Software Con�guration in Scrum projects came up. He was currently working as
a Con�guration Manager and I had previously taken some courses that covered basic SCM,
which I found very interesting. I looked into it some more, and there are indeed lots of book
and articles written about Scrum, SCM, and even Agile SCM. However, almost never is SCM
mentioned explicitly in the Scrum literature or vice versa, leaving Scrum people with the
expression that SCM is not needed and SCM people with the impression that Scrum is not
sound from an SCM perspective.

I therefore intend to enlighten these topics further, and I hope to be able to make a small
contribution to the development industry.

Acknowledgments

First and foremost I would like to thank all the knowledgeable and experienced people I
interviewed. They took time from their busy schedule to answer my questions, shared their
experience and gave valuable feed-back to my ideas.

My supervisor Magnus Hägg for introducing me to the subject and for all his help during
the project, giving me valuable feed-back and setting me up with the right people.

Last but not least my examinator Lars Bendix for all his help and assistance during the
whole time. His research and knowledge about SCM and agile methods has been a great
inspiration and a big help for me.

Andreas Bergström

IV

Contents

Preface IV

1 Introduction 1
1.1 Research Questions . 2
1.2 Aims and Objectives . 2
1.3 Method . 3
1.4 Limitations . 3
1.5 Disposition . 4

2 Theoretical Background 5
2.1 Software Con�guration Management Bene�ts 6
2.2 Traditional Software Con�guration Management 7

2.2.1 Con�guration Identi�cation . 7
2.2.2 Con�guration Control . 8
2.2.3 Con�guration Status Accounting . 9
2.2.4 Con�guration Audit . 10

2.3 Developer Oriented Software Con�guration Management 11
2.3.1 Version Control . 11
2.3.2 Workspace Management . 11
2.3.3 Build Management . 12
2.3.4 Change Management . 12
2.3.5 Release Management . 12

2.4 Scrum . 13
2.4.1 Overview . 13
2.4.2 Scrum roles . 13
2.4.3 The Process . 15
2.4.4 Advantages . 16

V

2.4.5 Important values in Scrum . 17
2.4.6 Why Scrum sometimes fail . 17

3 Analysis 19
3.1 Why should we use SCM in Scrum? . 20
3.2 The SCM-expert's role in Scrum . 22
3.3 Traditional SCM in Scrum . 23

3.3.1 Con�guration Identi�cation . 23
3.3.2 Con�guration Control . 24
3.3.3 Con�guration Status Accounting . 24
3.3.4 Con�guration Audit . 25

3.4 Developer oriented aspects of SCM . 26
3.4.1 Version Control . 26
3.4.2 Workspace Management . 27
3.4.3 Build Management . 28
3.4.4 Change Management . 31
3.4.5 Release Management . 34

4 Results 37
4.1 The Product Owner . 38

4.1.1 Con�guration Identi�cation & Control 38
4.1.2 Con�guration Status Accounting . 39
4.1.3 Con�guration Audit . 40

4.2 The Scrum Master . 42
4.3 The Scrum Team . 43

4.3.1 Version Control . 43
4.3.2 Workspace Management . 44
4.3.3 Build Management . 45
4.3.4 Change Management . 46
4.3.5 Release Management . 46
4.3.6 Naming Convention . 47
4.3.7 Branch Strategy . 47

5 Conclusions and Future work 48

Bibliography 51

Appendix A: SCM-checklist for the Product Owner 52

Appendix B: SCM-checklist for the Scrum Master 54

Appendix C: SCM-checklist for the Scrum Team 55

1
Introduction

Software Con�guration Management (SCM) is an important part of Software Development.
A properly implemented SCM system keep things under control and helps software devel-
opment teams create top-quality software without chaos and confusion. The Con�guration
Manager is the key person(s) that makes sure all of this happen.

Scrum is becoming a popular project management method for agile software development.
Scrum is more like a framework and says nothing about how to develop software (unlike
eXtreme Programming for example), instead it's about how to manage the development
process. Furthermore, there should be no speci�c roles within the Scrum Team, i.e. no
designated Con�guration Manager.

Because of this, there is an obvious risk that no one will consider SCM activities and that
the project will be unmanageable after some time, especially if the practitioners are un-
experienced in the area and they don't know the bene�ts. From interviews with Scrum
practitioners I learned that it's rare for SCM to be considered explicitly, mostly because
of lack of knowledge. Although a lot of literature has been written about Scrum, SCM is
almost never mentioned explicitly.

1

SCM in Scrum Projects CHAPTER 1. INTRODUCTION

1.1 Research Questions

The questions I intend to answer with this thesis are the following:

� Is Scrum complete in a SCM perspective?

� How can SCM practices provide service and support to Scrum projects?

� In what way can the Product Owner bene�t from SCM?

� In what way can the Scrum Master bene�t from SCM?

� In what way can the Scrum Team bene�t from SCM?

� How can/should the Con�guration Manager act when working with a Scrum Team?

1.2 Aims and Objectives

As I see it, there is a clear need to investigate just how well SCM is handled in di�erent
Scrum projects, since there are so few guidelines and material covering this topic.

When using Scrum (and other agile project management methods), there is often no desig-
nated Con�guration Manager within the development team. This is because the team should
aim to be cross-functional and thus, it should be up to the team members it-selves to handle
the daily SCM-tasks together. If the team has limited knowledge about SCM it can quickly
lead to chaos.

This report aims help Scrum practitioners to implement SCM-functionality and explain
which SCM tasks are necessary and why some, probably, could by left out, i.e. to make
Scrum complete in a SCM-perspective.

One stakeholder of the project, the Scrum practitioners, will bene�t of having a 'manual' or
some guidelines how to improve their SCM-functionality, which could perhaps also work as
template when writing a brief SCM-plan. These guidelines will look di�erent for each of the
three roles in Scrum; the Product Owner, the Scrum Master, and the Scrum Team.

The other stakeholder, the Con�guration Manager, will need to know how their duties will
di�er when working with a Scrum Team, and which things are important to think about.

Andreas Bergström 2 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 1. INTRODUCTION

1.3 Method

In the beginning of the project I concentrated on studying the main topics: Software Con-
�guration Management and Scrum. By doing this I got a much greater theoretical ground
to stand on.

In order to �nd out more about how SCM is handled in di�erent Scrum projects I interviewed
experienced people from di�erent companies. I talked to Scrum Masters, Product Owners
and SCM-experts. I did not manage to organize a meeting with a Scrum Team.

After theory studies and the preliminary interviews I had an analysis phase where I collected
materials and ideas from many di�erent sources, and from that I made some �rst conclusions.

These conclusions were later discussed with a few of the previously interviewed persons in
order to get feedback. Based on the new input I continued working further with the analysis.

During the project I also held presentations at the annual IKEA IT CM-conference (Helsing-
borg) and at The Scandinavian SCM day (Lund), where I also got some valuable feedback
from experienced Con�guration Managers.

1.4 Limitations

One of the most di�cult parts was to �nd people to interview, and as I mentioned I did
not get a chance to talk to a Scrum Team. However, several of the Scrum Masters and
Product Owner had a wide experience and had been closely involved with the Scrum Teams.
I therefore think I got the same information and feed-back from them as I would have got
from a Scrum Team.

Unfortunately I had no chance to test my results in a real development project, which would
have been valuable. The chapter about developer oriented aspects of SCM is only theoretical
and have not been reviewed by Scrum people. However, most of the techniques are commonly
accepted 'best practices' so they are likely to be useful. The checklists however have been
reviewed by experienced Product Owners and Scrum Masters and I received very positive
feed-back.

Andreas Bergström 3 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 1. INTRODUCTION

1.5 Disposition

Chapter 2: I will in this chapter give a brief Theoretical Background of the two major topics
discussed throughout the report; Software Con�guration Management and Scrum.

Chapter 3: After the theoretical overview, I will do an analysis about how SCM and Scrum
can work together in an agile fashion. I will also talk about how the CM-role is likely
to be a�ected.

Chapter 4: Based on the Analysis, a result will be presented in Chapter 4.

Chapter 5: At last; Conclusions and Further work.

Andreas Bergström 4 Lund Institute of Technology

2
Theoretical Background

Since the target groups of this thesis are both Scrum practitioners and Con�guration Man-
agers, I will in this chapter give a brief introduction of the two major topics discussed
throughout the report, i.e. Scrum and SCM.

As I understand, there might be limited knowledge about SCM in development teams, and
it will therefore be useful for some readers to get a short overview about what SCM is all
about, and about its bene�ts. We will talk about the traditional aspects of SCM, which are
more aimed towards management, and also some developer oriented aspects.

It is perhaps equally important for the Con�guration Managers, who is about to start working
with a Scrum Team, to understand not only how Scrum works, but also the values behind
Scrum that must be respected when implementing the SCM-functionality.

The analysis in Chapter 3 about how SCM and Scrum can work together, will partly be
based on the basic theory presented in this chapter.

5

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

2.1 Software Con�guration Management Bene�ts

Con�guration Management is the art of identifying, organizing, and controlling modi�cations
to the software being built by a programming team. The goal is to maximize productivity
by minimizing mistakes [1]. Practicing con�guration management in a software project has
many bene�ts, including increased development productivity, better control over the project,
better project management, reduction in errors and bugs, faster problem identi�cation and
bug �xes, and improved customer goodwill [2].

Software projects are becoming more complex in size, sophistication, and technologies used.
In addition, users of software systems have matured, and the bugs and defects in a system are
detected and published faster than ever. So if the companies wants to keep their reputations
intact and prevent its market share from dropping, they have to provide the �xes and patches
quickly.

To survive in this competitive world, organizations need some sort of mechanism to keep
things under control or total chaos and confusion will result, which could lead to product
or project failures and put the company out of business. A properly implemented Software
Con�guration Management system is such a mechanism that can help software development
teams create top-quality software without chaos and confusion [2].

A properly designed and implemented SCM system has several bene�ts, including [2]:

� Improved software development productivity

� Easier handling of software complexity

� Improved security

� Higher software reuse

� Lower software maintenance costs

� Better quality assurance

� Reduction of defects and bugs

� Faster problem identi�cation and bug �xes

� Assurance that the correct system is built

There are both the traditional aspects of SCM, which are more aimed towards management,
but also developer oriented aspects. In the following two chapters we will go further into
this.

Andreas Bergström 6 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

2.2 Traditional Software Con�guration Management

In order to follow the analysis in Chapter 3, and the results in Chapter 4, it will be necessary
to get a brief brief overview of the concepts of Traditional SCM.

SCM traditionally consists of the four activities: Con�guration Identi�cation, Con�guration
Control, Con�guration Status Accounting and Con�guration Audit [2].

If the reader is already familiar with these concepts, this section can be skipped.

2.2.1 Con�guration Identi�cation

Con�guration Identi�cation is the activity where a system is divided into uniquely identi�-
able components, called Con�guration Items (CI), for the purpose of software con�guration
management.

Examples of CI includes: project plan, speci�cations, design documents, source code, test
plans and test data, executables, make �les, tools and the SCM Plan.

A checklist for the selection of con�guration items can include:

� Is the item critical/high risk and/or a safety item?

� Is the item to be used in several places?

� Will the item be reused or designated for reuse?

� Would the item's failure or malfunction have an impact on the system?

� Will the item be maintained by diverse groups at multiple locations?

� Is the item highly complex or does it have strict performance requirement?

� Is the item likely to be subject to modi�cation or upgrading during its service life?

Each Con�guration Item must be uniquely identi�ed. The identi�cation method could in-
clude naming conventions and version numbers and letters.

When using a waterfall method this will be the �rst major SCM function, providing the
basis for the other SCM activities. Since you have to establish the structure and elements
of the complete software system and de�ne interrelationships between the CIs, it can be a
very heavy activity, especially for large projects.

Andreas Bergström 7 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 Con�guration Control

Software requirements can change often and quickly, and the development team must be
able to respond to these changes in order to satisfy the customer. However, if changes are
implemented in an uncontrolled manner, it will sooner or later lead to chaos. Con�guration
Control is about handling changes in a controlled way through formal change control pro-
cedures, including: evaluation, coordination, approval or disapproval and implementation of
changes to con�guration items.

A change request (CR) is a document containing a call for an adjustment of a system. CRs
typically originate from one of �ve sources [3]:

1. Problem reports that identify bugs that must be �xed, which forms the most common
source

2. System enhancement requests from users

3. Events in the development of other systems

4. Changes in underlying structure and or standards (e.g. in software development this
could be a new operating system)

5. Demands from senior management

A change request is �rst evaluated by a Change Control Board (CCB), that approves or
disapproves the request. The concerns the CCB discusses in order to make this decision
include the following [2]:

� Operational impact. What will the e�ect of this change be on the �nal product?

� Customer approval. Will the change require customer approval? Is it a major change?

� Development e�ort. What is the impact of the change on interfaces and internal
software elements of the �nal system?

� Interface impact. Will the change a�ect the established interfaces of the system?

� Time schedule. At what point is this change incorporated? What is the time for
incorporation with minimal impact on cost and schedule?

� Cost impact. What is the estimated cost of implementing the change`

� Resources impact. What resources (e.g., infrastructure, skill, people) will be required
to implement the change?

Andreas Bergström 8 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

� Schedule impact. How will the processing and incorporation of the change a�ect the
current schedule?

� Quality impact. How will the change a�ect the quality and reliability of the �nal
product?

� Feasibility. Considering all of these factors, can this change be made economically?
What is the risk of implementing the change? What is the risk of not implementing
or deferring the implementation?

If a request is approved, the proposed change is assigned to a developer for implementation.
When completed, the implementation needs to be veri�ed through testing before the CCB
can �nally close the Change Request.

2.2.3 Con�guration Status Accounting

The aim of Con�guration Status Accounting (CSA) is to keep managers, users, developers,
and other project stakeholders informed about the various con�guration stages and their
evolution. This implies three basic tasks: data capture, data recording, and report generation
[2].

CSA involves the storage and maintenance of:

� Information about the product's con�guration (such as part numbers or changes install
in a given unit)

� Information about the product's operational and maintenance documentation

� Information about the SCM process (such as the status of change requests)

A good status accounting system should be able to answer question such as the following,
and many more:

� What is the status of an item?

� What items were a�ected by a particular change request (CR)?

� Which version of an item implements a certain CR?

� What CRs are assigned to whom?

Andreas Bergström 9 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

� How many high-priority CRs are currently not implemented?

� What is di�erent about a new version of a system?

Status accounting reports include change logs, progress reports, CI status reports and trans-
action logs.

The information provided by the status accounting function is useful in determining the
performance characteristics of the project, such as number of change requests, approval rate,
number of problem reports, average time for a change resolution, average implementation
time, and cost of implementing a change. This information will help when evaluating the
performance of the project an when comparing di�erent projects. Also, these details will
help �ne-tune the estimation and costing procedures of the organization.

2.2.4 Con�guration Audit

The objective of the Con�guration Veri�cation and Audits is to verify that the software
system matches the con�guration item description and that the system is complete [2]. The
process can be divided into three parts; Functional-, Physical-, and In-process Con�guration
Audit.

Functional Con�guration Audit

A functional con�guration audit aims to ensure that the software product has been built
according to speci�ed requirements. This process often involves testing of various kinds.

Physical Con�guration Audit

A physical con�guration audit determine whether all the items identi�ed as a part of CI are
present in product baseline.

In-process Con�guration Audit

An in-process audit ensures that the de�ned SCM activities are bring properly applied and
controlled.

Usually a representative from management, the Quality Assurance (QA) department, or the
customer performs such audits. The auditor should have competent knowledge both of SCM
activities and of the project.

Andreas Bergström 10 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

2.3 Developer Oriented Software Con�guration Manage-

ment

In the last section we talked about the Traditional SCM activities. They are mostly about
keeping control over the project; ensure that it progresses according to schedule and that its
delivery contains all the right parts. Thus aimed more towards management.

There are however also developer oriented aspects of SCM, including: Version Control,
Workspace-, Build-, Change-, and Release Management [4].

With the background of these concepts, further analysis about how they can work together
with Scrum will be made in Chapter 3.

2.3.1 Version Control

A Version Control System o�ers many advantages to both teams and individuals. It allows
multiple developers to work on the same code base in a controlled manner, and it keeps
a record of the changes made over time. If you see some strange code, it's easy to �nd
out who made the change, when and why. Besides this, you can easily go back an hour,
a day, or a month and �x the mistake. The system also allows you to support multiple
releases (branches) of your software at the same time as you continue with the main line of
development.

2.3.2 Workspace Management

Workspace Management is about setting up the developer's private workspace, also known
as 'Sandbox', in an appropriate way. The workspace should be optimal for the developer's
productivity and also allow several developers to work in parallel without disturbing each
other.

Andreas Bergström 11 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

2.3.3 Build Management

Build Management handles the activity of putting together modules in order to build a
running system. The build can include steps like retrieving the correct components from
various locations in the repository, compilation, running scripts that generate source �les
from meta-data, etc. Multiple variants of the system can be described in a single system
model and the Build Management tool will derive di�erent con�gurations, e�ectively building
a tailored system for each platform or product variant. Incremental builds, that only compile
and link what has changed, can be used during development for fast turn-around times. A full
build, rebuilding the entire system from scratch, is normally used during system integration
and release.

2.3.4 Change Management

Change Management is a general term encompassing controlling and tracking change. It
includes tools and processes which supports the tracking of changes from the origin to the
approval of the actually implemented source code. This is commonly handled through a
formal Change Control Board which must allow the change before it can be implemented.
In some cases it may important to keep traceability between a change request and its actual
implementation, and also to allow each piece of code to be associated to an explicit change
request.

2.3.5 Release Management

Release Management deals with both the formal aspects of the company releasing to the
customer and the more informal aspects of the release to the project. In the case of a customer
release, it's necessary to preform a con�guration audit before the actual release. When
releasing changes to the project, we must decide how to integrate changes from developers,
when this should be done, and the quality requirements of the change.

Andreas Bergström 12 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

2.4 Scrum

In the previous sections, we got an overview about what SCM is. Here we will continue
the theoretical background and talk about Scrum; a project management method for agile
software development [5].

As with the previous sections, it will be necessary to know some basic concepts in order to
follow the analysis in Chapter 3 and the results in Chapter 4.

2.4.1 Overview

The illustration in Figure 2.1 shows the basic Scrum Process, which we will return to in
section 2.4.3. But �rst some basic terminology:

The Product Backlog is a prioritized list of all product requirements, including new features,
functions, technologies, enhancements, and bug �xes. The content can come from anywhere;
users, customers, sales, marketing, customer service, and engineering can all submit items
to the backlog. However, only the so called Product Owner (explained below) is allowed to
prioritize the list, and will as a result decide what will be implemented. The �rst Product
Backlog may be a list of requirements from a vision document, and then emerges as the
customer's understanding of their needs increase.

The development teams take on as much top-priority Product Backlog items (Change Re-
quests) as they think they can manage during the following iteration, called a Sprint in
Scrum. During each Sprint, the teams maintains a list of tasks to perform, called the Sprint
Backlog. Each Sprint should result in a fully functional, and potentially shippable version of
the product.

2.4.2 Scrum roles

Scrum has three important roles; the Product Owner, the Scrum Master, and the Scrum
Team.

Product Owner

The Product Owner is the one representing the customer. As already mentioned, he or she
is responsible for creating and prioritizing the Product Backlog, and at the end of the Sprint,
the Product Owner is also responsible for reviewing the system.

Andreas Bergström 13 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: The Scrum Process (image from Softhouse)

For commercial development, the Product Owner may be the previous product manager.
For in-house development, the Product Owner could be the project manager or the user
department manager.

Scrum Master

The Scrum Master is responsible for ensuring that Scrum values, practices, and rules are
enforced. The Scrum Master is the driving force behind all the Scrum practices; he or she
sets them up and makes them happen. The Scrum Master presents management and the
team to each other.

The Team Leader, Project Leader, or Project Manager often assume the Scrum Master role.

Scrum Teams

Scrum Teams are small (5-9 people), self-organizing and cross-functional, thus performs all
design, development, tests etc. together. The team has full authority to do whatever is
necessary to achieve the Sprint Goal. It is only constrained by organizational standards and
conventions. Team members can interview others, bring in consultants, read books, browse
the web, or whatever they need (within budgetary constrains) to achieve the goal.

There are no roles or titles within the team and the members doesn't have job descriptions
other than doing the best work possible.

Since the team size are relatively small, multiple teams often develop product increments in
parallel, all teams working from the same list of wanted features. This set-up is known as a
Scrum of Scrums. How this in�uence and e�ect the SCM functionality is however outside
of my scope.

Andreas Bergström 14 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

2.4.3 The Process

Sprint Planning Meeting

At the Sprint Planning Meeting, customers, users, management, the Product Owner and the
Scrum Team determine the next Sprint goal and functionality. The Sprint Planning Meeting
actually consists of two separate meetings. First, the teams meets with the Product Owner,
management and users to �gure out what functionality to build during the next Sprint. At
the second meeting, the team works by itself to �gure out how it is going to build this
functionality during the Sprint.

Daily Scrum Meetings

Each Scrum Team meets daily for a 15-minute status meeting called the Daily Scrum. The
Scrum Master is responsible for successfully conducting the Daily Scrum, by keeping it short
and making sure the team members speak brie�y. Other stakeholders can also attend the
Daily Scrum, but they are there as guests and are not allowed to interfere in any way.

Every person from the team shall, one at a time, brie�y answer three questions:

� What have you done since the last Daily Scrum?

� What will you do between now and the next Daily Scrum?

� What got in your way of doing your work?

The �rst two questions gives the attendants a brief progress report, and lets the team syn-
chronize their work. If a team member identi�es something that is stopping him or her
from working e�ectively, it is the Scrum Master's top priority to remove that impediment.
Such impediments can be that a server is down or that the team member was asked by
management to do something else.

Sprint Review Meeting

The Sprint Review Meeting is a four-hour informal meeting, where the team presents what
it has been able to build during the Sprint.

Management comes to the Sprint Review to see what the team has been able to do with the
resources that it has been given. Customers come to see if they like what the team has built
and the Product Owner comes to the Sprint Review to see how much functionality has been
built.

Andreas Bergström 15 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

Since this is suppose to be an informal meeting, no one should prepare extensively for it.
That is why Power Point presentation and similar are forbidden. The Sprint Review is a
working meeting where everyone should get an understanding for the product increment, as
this is the knowledge they will need for the next Sprint Planning Meeting.

Sprint Retrospective Meeting

After each Sprint Review, but before the next Sprint Planning Meeting, a Sprint Retrospec-
tive is held at which all team members re�ect about the past Sprint. The purpose of the
retrospective is to make continuous process improvement.

2.4.4 Advantages

Short iterations (Sprints)

By having these short iterations and daily meetings, the team will always know exactly
where they are all the time. For example: every day you will know which features remains
to be completed, if the team members did what they were suppose to, and by looking at the
so called Burndown chart (visualizes estimated remaining work) you will see if the team is
progressing as the marketing (project management) has hoped.

No waste of time

Because you only work on a few, top-priority, features at a time, Scrum makes sure that the
team is not spending time and money developing stu� that no one will use. As a result, the
development speed is likely to increase.

Cross-functionality

Scrum wants to avoid the barrier between di�erent rolls and make everyone work together
towards the same goal. Everyone is responsible for the whole product and by working
together the team will join their skills to create better software with higher quality.

According to two of the principles behind the Agile manifesto [6]:

� Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

� The best architectures, requirements, and designs emerge from self-organizing teams.

Andreas Bergström 16 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

2.4.5 Important values in Scrum

When using Scrum, self-organizing and cross-functional teams are empowered to �nd their
own way through complex situations. This freedom, along with the creativity that results
from it, is one of the core bene�ts of Scrum. The development team will take more respon-
sibility for the product if they are not told what to do all the time.

The Scrum Master is a coach or a leader - not a boss. Therefore, there will in many cases
be a necessary shift from controlling to facilitating. This is probably the hardest thing in
many organizations - to change the way they think.

It is also important for the customer participants to be committed, knowledgeable, collab-
orative, representative, and empowered. Otherwise the developed product typically do not
transition into use successfully, even though they may satisfy the customer.

2.4.6 Why Scrum sometimes fail

The organization is not ready to adopt Scrum

Maybe the most common way for Scrum to fail is that organizations are not ready to adapt
Agile development. The Product Owner continues to work controlling instead of facilitating,
doesn't empower the team, and won't let them come up with their own way of working. This
fear of loosing control is seen when requirements are over-speci�ed and the team has lots of
constraints. It is therefor essential to have an experienced Scrum Master who can help the
Product Owner write requirements more abstract and to make sure that management knows
what is needed in order for Scrum to work in their organization.

In conclusion, for Scrum to work, a change of mind-set is necessary.

The Product Owner can't prioritize

Another thing that is guarantied to wreck a Scrum project is if the Product Owner is unable
to prioritize the work. One major bene�t is that the development team always should work
on what gives the most business-value. This can of course only be done if the Product Owner
know what he or she is doing, make good decisions, and is able to e�ectively communicate
and collaborate with the team.

Andreas Bergström 17 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 2. THEORETICAL BACKGROUND

The teams are not ready to work cross-functional

Traditionally there are �xed roles within the team; designer, programmer, tester, CM etc.
In Scrum, everyone in the team should work cross-functionally.

The bene�ts of this is that everyone feels much more responsible for quality and the overall
success of the project.

The team are not willing to improve their engineering skills

Much like some organizations and managers can have problems adapting to a new method,
so can developers. A common problem is that developers doesn't work in an Agile fashion
when it comes to method and technique. They have to use the power given to them and
react to upcoming problems - otherwise the project is doomed.

Already existing problems become obvious

The problems that will arise the �rst time you try Scrum will probably not have anything
to do with the method itself. Instead, it causes problems that are already there to become
obvious.

� Every day you might �nd out that the people in the team didn't do what they were
suppose to.

� Only one team member knows how to build the system.

� By looking at the Burndown chart, you will early see that your project is not on track.

� At the end of every Sprint you might �nd out that the team are not progressing as
marketing (project management) has hoped.

On the bright side - you will �nd this out while you still have time to �x it.

Andreas Bergström 18 Lund Institute of Technology

3
Analysis

In the previous chapter we got an overview of the basic theoretical background of SCM and
Scrum. That will work as an instrument when analyzing how the two major topics; Software
Con�guration Management and Scrum, can work together. The analysis however are not
only based on theory. I have also taken into consideration real life experience from the people
that I have interviewed; both Scrum Masters, Product Owners, and Con�guration Managers.

First, some general di�erences when using SCM in Scrum projects, and also how the Con-
�guration Manager is likely to be a�ected by them. Then I will discuss how the Traditional
SCM-activities can be handled in Scrum. Last I will also talk some about how the developer
oriented aspects of SCM can be used in a Scrum project. Most of these techniques are com-
monly known as 'best practices' (for Agile development at least) and does not necessarily
have to be done in a di�erent way when using Scrum.

It's important to stress that the material in this chapter are not about how things should be
done, rather it's a discussion about how they can be done.

Based on the Analysis in this chapter a 'result' will be presented in Chapter 4, which attempt
to help unexperienced teams to implement an appropriate SCM-functionality.

19

SCM in Scrum Projects CHAPTER 3. ANALYSIS

3.1 Why should we use SCM in Scrum?

It may seem that there is no (or little) room for SCM in agile- or Scrum projects, because
many regard SCM as a process-heavy thing that gets in the way of the 'real work' of software
development. This is of course not true. Even in agile development there is need of having a
successful SCM-functionality, and it will bring much of the same bene�ts mentioned in section
2.1. It will however, have to be handled di�erently in order to meet the agile principles.

SCM will be di�erent in Scrum

Much of the same bene�ts in SCM that are found in traditional development will also be
found in agile development, for instance when it comes to keeping track of and coordinating
the project. However, to meet the Scrum (and agile) values and principles, there are a few
important things to think about [7]:

� Serve its practitioners and not vice-versa!

� Track and coordinate development rather than trying to control developers

� Respond to change rather than trying to prevent it

� Strive to be transparent and 'frictionless', automating as much as possible

� Frequent and fast coordination and automation

� Eliminate waste - add nothing but value

� Simplicity - the art of maximizing the amount of work not done - is essential (Agile
manifesto)

� Working software is the primary measure of progress (Agile manifesto)

� Lean Documentation and Traceability

� Continuous and Visible Feedback on Quality, Stability, and Integrity

In short: add nothing but value and strive to be transparent!

Andreas Bergström 20 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

SCM is a 'whole team' responsibility

One of the most profound di�erences is that instead of being the responsibility of one or
more Con�guration Managers, SCM will be a 'whole team' responsibility. Scrum wants to
avoid the barrier between di�erent roles and make everyone work together towards the same
goal of successfully meeting the project's business and technical objectives. Everyone should
be responsible for the whole system and by working together the team will join their skills
and create better software with higher quality. This should of course also apply to SCM!

SCM should be part of every team member's day-to-day tasks and activities. Everyone is
responsible for regularly integrating, building, and testing in their workspace before commit-
ting their changes. If the build breaks, the whole team takes ownership of getting it working
again.

Automate as much as possible

In Scrum you are working in very short iterations or Sprints. Because of this, you will in
most cases test- and build your system several times a day, make a release every two weeks
and also deploy to production very often. Therefore, automating these events will be a key
factor for a successful SCM functionality.

Despite the fact that many activities will have to be automated, it's important that SCM
tools and practices/processes doesn't get in the way of development. Achieve this by min-
imizing your artifacts, adding nothing but value, eliminate waste and center on the people
who add value.

Educate the Scrum practitioners

Since there are no traditional Con�guration Managers, there is an obvious risk that some
essential SCM tasks are forgotten or ignored due to lack of knowledge and experience. The
Product Owner, the Scrum Master and the Scrum Team will need more education about the
bene�ts of having a working SCM-functionality and it is vital that traditional Con�guration
Managers, or at least SCM experienced people, are near to assist the practitioners when
problems arise. In Chapter 4, we will also look at some SCM related questions to ask
yourself, as a help when getting your SCM-functionality started.

If SCM is done badly by unexperienced members, it can slow down the development, frustrate
the developers and limit customer options. If SCM is done 'right' however, it can give you:
reproducibility, integrity, consistency, coordination and a better quality.

Andreas Bergström 21 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

3.2 The SCM-expert's role in Scrum

In Scrum there are no de�ned rolls within the team. In addition, the team should perform
all the work required to meet the Sprint goal, which also includes SCM-tasks. So where does
that leave the traditional Con�guration Manager?

In traditional software development, the Con�guration Manager (CM) is a central part of
the development process. The CM is the one who carries out all the work. It is for example
his or her job to build the system, make sure that all artifacts are under control, that all the
right parts are included in a release and that the overall SCM-functionality works smoothly
for everyone.

In a Scrum project, the daily tasks performed by a traditional CM is likely to be divided
into separate parts; one for the Product Owner and one for the Scrum Team (and perhaps
also one for the Scrum Master).

Although, some might argue that regular developers cannot do the work performed by a CM;
they don't have time, they don't have the knowledge and (perhaps foremost) they don't have
any interest in SCM concerns. In some shops it seems like the development team and the
Con�guration Managers are two species that doesn't get along very well. Developers see CMs
as overly formal, rigid and bureaucratic. People that just gets in the way of the actual work
- writing code. CMs see developers as undisciplined or ignorant of SCM concerns, constantly
compromising product quality or integrity in the name of schedule or development speed.

As mentioned in section 2.4.4, one of the core values and advantages in Scrum is having
a self-organizing and cross-functional team. Scrum wants to avoid these barriers between
roles and make everyone work together towards the same goal. Similar disputes- and mis-
understandings can of course arise between more roles than just CMs; testers, designers,
security-experts etc. can all have a preferred way of working and consider the other's way
as totally unreasonable.

As a result of Scrum's cross-functional ideology, the work performed by CMs will probably
change quite radically.

One possible scenario for CMs is to be a permanent member of the team. They will be
the expert on SCM tasks, but will also contribute on design, writing test, source-code,
documentation - everything that is needed to meet the Sprint goal. They will also educate
others, so for example everyone in the team knows how to build the system. Just like former
testers will educate and help former CMs when needed.

One other possible scenario is for the CMs to be a SCM-coach or in-house consultant/service
provider. They will assist and help the people involved in development with SCM-related

Andreas Bergström 22 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

problems, both the Scrum Teams and the Product Owners.

The combination of these two would also be a possibility (and in many cases perhaps the
best approach). In the beginning of the project, the CMs work closely to the team, helping
them to set up the appropriate infrastructure, probably including source code control, a
build machine, continuous integration etc. They stay with the team and educate them until
they know enough to handle the daily SCM routines them selfs. After that, the CM can be
available for another team, and/or be of assistant when problems arise.

In conclusion, the former Con�guration Manager's knowledge will still be of great value and
an important asset also when working with Scrum. However, their work description will
probably not be the same.

3.3 Traditional SCM in Scrum

In the section 2.2 we talked about the Traditional SCM-activities; Con�guration Identi�-
cation, Con�guration Control, Con�guration Status Accounting, and Con�guration Audit.
In this section we will return to these activities, but this time, in a discussion about if or
how they can be handled in a Scrum project. The analysis are based both on theory and on
interviews.

3.3.1 Con�guration Identi�cation

Much like in traditional development, the Con�guration Identi�cation will be the �rst major
SCM function even in a Scrum project. It will not be as heavy though, since the team only
plan for one short Sprint (2-4 weeks) at a time. On the other hand, the activity will be done
repeatedly during the project (in the beginning of every Sprint), compared to only ones in
for example a waterfall method. In addition, Scrum strive to minimize their artifacts, adding
only what will bring business value. Therefore, it might not be necessary to write artifacts
like a project plan, design documents, test plans and a SCM plan. Because of these reasons,
the Con�guration Identi�cation is likely to be a much smaller, and simpler, process.

I believe that applying a Version Control System forces the selection of con�guration items;
all artifacts that are important for the project become con�guration items and goes into the
shared repository. This should be done as early as possible so the information about them
can be shared among the team.

Andreas Bergström 23 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

3.3.2 Con�guration Control

In Scrum, there is no Change Control Board (CCB) like in a traditional SCM environment.
Instead, change requests from the Product Backlog are discussed, prioritized, and decided
by the Product Owner in the Sprint Planning Meeting. The team then takes the top priority
items and puts them in the Sprint Backlog. The amount of items is based on the length
of the Sprint and the complexity of the changes/features. In my opinion, this functionality
can be described as a light-weight CCB. Much of the same activities including; evaluation,
coordination, approval or disapproval are indeed present, only far less formal.

Two other important aspects of Con�guration Control are tracking and traceability. This
could be for instance the possibility to trace the changes made to a �le back to the speci�c
change request or user-story. Likewise it can be the possibility to trace the �les (source code,
test cases, documentations) that were changed/created when implementing a certain change
request or user-story. This will further be discussed in section 3.4.4.

3.3.3 Con�guration Status Accounting

According to one of the principles behind the Agile manifesto [6]:

The most e�cient and e�ective method of conveying information to and within
a development team is face-to-face conversation.

Also in Scrum, much of the Status Accounting are done with face-to-face conversations.
Every day a short Daily Scrum meeting is held where all stakeholders can come and listen
to the progress; which user-stories the team are working on at the moment, how much is
done, and how much is left until the end of the Sprint. They can also hear if anything is
interrupting their work. The task-board is fully visible at all times, and a Burndown chart
is used to illustrate the Sprint progress. In addition they can take a look at the Product
Backlog to see what will be implemented in the future. At the end of every Sprint (about
every 2-4 weeks) the Product Owner (and other stakeholders) can come and listen to the
result and get a demo of how the system works so far. Since the items in the Sprint Backlog
are limited, it's easy to keep a list of what new features and changes were made in the
di�erent Sprints, and to write the corresponding release note.

In some projects however, it can be impossible to get together in a daily face-to-face meet-
ing, for example when di�erent teams are speared geographically. Then, the use of a tool,
specially designed for Scrum, can help coordinating and keeping everything in one place. All
information should then be visible both to the Product Owners and the teams; the Product
Backlog, the Sprint Backlog and the (automatically generated) Burndown chart.

Andreas Bergström 24 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

Most of the time, this status transparency seems to be enough for the stakeholders. However,
the Scrum Master has to operate within the culture of the organization, and in some projects
the management or the customer may require additional information. For example, they may
want to be able to generate statistics about speed, the amount of code written, how much
time it usually take to �x a bug or implement a feature, and how much maintenance it has
generated. It can also be that management are unable to come to the Daily Scrum meetings,
and instead requires a weekly progress summary. It's important though to be aware of the
fact that all these reports comes with a price, and because of this, make sure not to produce
status reports that no one will ever read.

3.3.4 Con�guration Audit

In traditional development, the Con�guration Audit activity is a formal veri�cation that all
the required items are present and that they all meet the requirements. The core objective
of the audit are also present in the Scrum method, however it is as expected far less formal.

The Con�guration Veri�cation and Audits are done at the Sprint Review Meeting. The
Sprint Backlog contains all the required items for that delivery and since the team has only
been working for 2-4 weeks, the list is usually quite short. The team demonstrate each story
in the Sprint Backlog to the Product Owner and he or she can than see that (or if) the items
satis�es the requirements. Thus, both the physical- and functional con�guration audits are
done in an informal and face-to-face manner. In some occasions however, it's possible that
the Product Owner requires more than just a demo. This could for example include test
results and/or written documentations.

From my interviews I've heard that the in-process con�guration audit is not a common task
in the Sprint Review (unless the Product Owner requires it). Instead, this can be discussed
in the Sprint Retrospective meeting.

In conclusion, I think it's fair to state that the four Traditional SCM-activities are in fact
present in the Scrum method but are, not surprisingly, handled far less formal. All four
activities are instead done in a face-to-face manner, which hopefully will lead to enhanced
corporation between the roles and increased understanding of each others concerns.

Andreas Bergström 25 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

3.4 Developer oriented aspects of SCM

The traditional SCM activities are mainly directed to the managers - how to keep track and
organize the project, thus aimed toward the Product Owner in Scrum. There are however
also developer oriented aspects of SCM, as mentioned in section 2.3. These activities will be
the responsibility of the Scrum Team to handle, and includes: Version Control, Workspace
Management, Build Management, Change Management and Release management.

In the Theoretical Background chapter, we only got a short overview about what the concepts
are about. Here we will instead talk about just how the Scrum Team can use them.

Since the Scrum method doesn't say anything about how to develop software, none of these
techniques will - or can - be speci�c only to a Scrum Team. The techniques will however be
of use for them, if they choose to embrace the bene�ts of a successful SCM-functionality.

3.4.1 Version Control

The main purpose of Version Control is to manage di�erent versions of con�guration object
that are created during the software engineering process [8]. A Version Control System
(VCS) keeps track of all changes to every �le and supports parallel concurrent development
by enabling easy creation of variants (branching) and the later re-integration of the variants
(merging). Every type of object that evolves in the software development environment should
be Version Controlled and kept in the repository. This does not only include source code,
tests and documents, but also binary objects such as word-processor documents, executable
programs and bitmap graphics objects.

Besides keeping track of changes to a �le and enable parallel development, a Version Control
System can roll back to a previous version of a given �le in case of a problem or for debugging.
It can compare two version of a �le, highlighting di�erences to see what changes are made,
and it will maintain an instant audit trail on every �le: versions, modi�ed date, modi�er,
and any additional amount of meta data your system provides for and that you choose to
implement [2].

Thus, Version Control gives the ability to trace the history of all CIs in a system and to
re-create any previous version of a �le. When things are not working, the �les can be rolled
back to previous versions and the changes made after the successfully working version can
be inspected to �nd out what is causing the error or malfunction.

One of the keys to agile development is knowing what is happening. The SCM repository
needs to be a communication tool. If you can't put your code change in the repository when

Andreas Bergström 26 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

you have done your unit-testing, only you know its state, and others have to work from an
older state of the corresponding �les. This complicates everyone's work, forcing additional
parallel changes and merge/test cycles. Make sure your process will allow developers to put
code into the repository when it is ready, and not when someone else is [9].

3.4.2 Workspace Management

As mentioned in the previous section, the Version Control System typically have a repository
where all versions of the system are kept. Since this repository is shared by all developers, the
individual members can't work directly within it. Instead, they place a copy of the system in
their private workspace, make the desired modi�cations, and then add the changes back to
the repository. As a result, several developers can work in parallel without disturbing each
other.

The more attention you pay to setting up the workspace, the better you will be in the long
run. E�ective private workspaces give you the following advantages [10]:

� Productivity: By providing a way for developers to control how and when they start
working with new code you allow them to focus on the task at hand and minimize
interruptions in thought. This helps the individual. Likewise by providing build and
test processes that developers run pre-commit, you catch integration issues before they
make it into the repository, and improve the productivity of the team.

� Progress: By enabling frequent integration and testing, you give developers more
con�dence in the code base. This will enable them to feel more comfortable about
integrating frequently, and moving forward in a regular fashion.

� Accountability: Developing build and integration processes at the beginning of the
process allows you to get the application to a point where you can demonstrate it to
stakeholders earlier.

The integration between the workspace and the Version Control System will also enable
you to use Continuous Integration (CI). CI allows all developers to bene�t from changes
as soon as possible, and it allows you to integrate changes from the rest of the team for
early detection of incompatible changes. This will reduce complex integration problems
that are common in traditional projects that integrate less often. According to Farah [9],
Continuous Integration is one of the biggest gains of an Agile development process, which
when properly administered leads to greater product quality. For more information about
Continuous Integration, I can strongly recommend Martin Fowler's article [11].

Andreas Bergström 27 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

Setting up workspaces for your team may require a bit up-front work, but the increased rate
of progress will make it well worth the e�ort.

3.4.3 Build Management

There are mainly three types of di�erent builds [12]. The Private Developer Build, which
provides a consistent way for the developer to build the software in the con�nes of their
private workspace. The Team Integration Build to synchronize the team and give feedback on
code quality/integrity. Last the Formal Release Build which creates the deployable package.

In section 3.4.2 we talked about the bene�ts of having a properly set up private workspace.
In Scrum, as well as most agile methods, we develop in short iterations and will therefor have
to integrate the work done by the developers much more often than when using a waterfall
method. Because of this, it will cost e�ective and probably also necessary to automate the
integration build process.

Bene�ts of having an automated build process

Ideally, you will rebuild every time someone makes a commit to the shared repository. Here
are some of the bene�ts [13]:

� Minimize risk: �nd out about incompatibilities when they occur. This makes it
easier to manage these incompatibilities and easier to �x.

� Improved quality: The product is always in a usable state, so less time is spent
dealing with quality issues later in the development cycle. This also allows testing to
start very early in the development cycle, making it easier to deal with usability issues
that testers may raise. When a bug is �xed, testers are able to verify that �x quickly.

� Speed up bug �xing: it is always easier and quicker to �x bugs when they appear
rather than later, when more code may have to be examined to �nd the bugs.

There are no hard and fast rules on when and how the builds should be done, however, here
are some suggestions to help you on your way [13]:

Build all, or not at all: "The Daily Build" should build the entire project, compiling
every line of code in the project and produce every executable, dll or library. In other words,
the build process should be producing all the deliverables that can be produced at the time.
This avoids issues involving compatibility between dll's etc.

Andreas Bergström 28 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

If the build fails, �x it and then build again: the longer issues that cause a build to
fail are left, the harder they become to resolve. Fix the problems (be they erroneous code or
design issues) as soon as possible, don't leave them on some TODO list waiting for someone
to remember to do it.

Label successful builds in your Version Control System: if your VCS supports the
concept of labeled versions, then make use of this feature. This make it easier to revert to a
"known good build" when things go horribly wrong or when some weird impossible to �nd
bug appears.

Archive the binaries for each build: This will help you �nd those weird an impossible to
�nd bugs. You can simply test the applications to �nd out when the bug began appearing,
and along with labeled versions in your VCS, will give you a starting point for code changes
that may be the cause of the problem.

Use robots, not people. Humans are not very good at repetitive tasks, often performing
steps out of order, or missing steps altogether. An automated build process overcomes this
by being able run the build process in a repeatable manner. And it doesn't get bored easily!

A way to automate the build process

There are many approaches to get a successful Build Management functionality, and I will
here talk about one possible way. For more information, I can recommend the book "Ship
It!" [14].

Develop in a private workspace

The �rst thing to have is a proper workspace where you can play around without disturbing
other developers. In addition to the developer machine and the repository, you have a build
machine. The build machine is an unattended server that simply gets all of the latest source
code from the repository, builds, and tests it, over and over again. The result of this build is
the product release. Most of the time, this release will just be thrown away after each build,
but every so often this is will be what you ship to your customers and end users. It's built
the same whether it's a regular daily build or it's the �nal release build.

Script your build

A build converts source code into a runnable program. Depending on the computer language
and environment, this may mean you're compiling source code and bounding images and
other resources together as needed. Remember we're not talking about compiling/building
within your IDE. We're talking about a build on your own machine that parallels the "o�cial"
build on the build machine.

Andreas Bergström 29 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

You can build your product in a variety of ways. You could have a list of steps that looks
something like this:

1. Compile your code.

2. Copy the compiled code to your installer program.

3. Move the latest copy of your third party libraries (e.g. database drivers and parsers).

4. Drop in your non-code �les such as HTML, graphics and documentation.

5. Copy over your help �les to the installer.

6. Build the installer.

You should be able to run the build script just by typing a one-line command (for instance:
ant buildinstaller or make all). You have a problem if you do anything by hand in
your build or packaging process. This will be a wise investment of your time early in the
project.

If you're using your manual build system properly, you will be able to build your entire
product:

� With one command

� From you Version Control System

� On any team member's workstation

� With no external environment requirements (such as speci�c network drivers)

Build Automatically

An unattended build is an automatic one. However, before you can implement an automatic
build, you must already have a manual build system in place that you can run with a single
command. You can't automate a process that doesn't exist.

Ideally, you will rebuild every time the code changes. That way you'll know immediately if
any change broke your build. Add a light weight set of smoke tests to this system, and you
also get a basic level of functional insurance as well. You'll move beyond 'Does it compile?'
and also ask 'Does it run?'.

Andreas Bergström 30 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

With a well selected test suite, basic functionality is retested and bugs are not allowed to
be reintroduced. The immediate feedback on every code change catches problems quickly
so that issues can be �xed quickly. If you're using an automatic build system, you are far
ahead of most software teams. But there are still a few questions you need to ask yourself:

� Do you have test in the system? After all, no one cares if it compiles if it doesn't run.

� Is anyone paying attention to the system? Are the noti�cations turned on?

� Does your build get �xed quickly or stay broken for days?

� Does your build �nish in a reasonable time, or does it take too long to complete?

3.4.4 Change Management

As mentioned in section 2.2.2, traditional Change Management is handled through a formal
Change Control Board that must allow the change before it can be implemented. This is
not the case in Agile development though. In Scrum, changes (as well as new functionality)
are approved and prioritized by the Product Owner at the Sprint Planning Meeting.

Every day, you have a Daily Scrum meeting in which each team member must answer the
following three questions:

� What have you done since the last Daily Scrum?

� What will you do between now and the next Daily Scrum?

� What got in the way of doing your work?

Issues that arise which may impact a task are raised and added to ether the Sprint Backlog
or the Product Backlog, depending on the magnitude of the issue. Change Management
that successfully meets the need of an agile project must thus focus on close collaboration
via informal face-to-face communication, and on keeping processes and tools lean and simple
[15].

The �rst step toward agile Change Management is a change in mind-set! Those who think
of change control as preventing changes to an agreed upon 'baseline' of project/product
scope must change their mind-set to embrace change as a natural and expected part of
development. The focus needs to shift from preventing change, to managing expectations
and tracking changes. Instead of saying "No!" to a change request, the "agile" answer should

Andreas Bergström 31 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

simply inform the customer of the associated risk and impact upon the currently agreed upon
cost, schedule, scope and quality, and then let the customer make an informed decision. This
is what the fourth 'value' of the Agile Manifesto [6] implies when it espouses "Responding
to change over following a plan".

A way to make Change Management easier

Agile Change Management must help us do these two things [15]:

� Be more responsive to change requests

� More quickly and easily implement those changes

Be more responsive to change

The Scrum method enable projects in several ways to be more responsive to changes. By
authorizing and empowering the Scrum Team to correct problems with the code's behavior
and structure, the waiting time for a formal change proposal to be approved is eliminated. By
having a Daily Scrum meeting, developers can raise larger problems to the backlog and make
everyone in the team aware of it. Having short Sprints minimizes the time between specifying
a change request and the implementation of it. The Team and the Product Owner will
meet at the Sprint Planning where change-control decisions can be made and communicated
quickly and communicated face-to-face with minimal waiting and documentation. The team
will inform the Product Owner of impact and risk, and puts him or her in control of the
scope and priorities.

Quickly implement changes

Agile methods enable projects to more quickly and easily implement changes by [15]:

� Working in short but complete cycles on the smallest possible 'quanta' of work with
tight feedback loops (e.g., short iterations, test-driven development, continuous inte-
gration, etc).

� Mandating simple design, and emergent design methods (like refactoring) to make the
code as simple and easy as possible to change

� Minimizing the number and size of non-code artifacts that must be produced or up-
dated in order to implement a change

� Working only on the features scheduled for the current iteration

Andreas Bergström 32 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

Perhaps the single most in�uential practices that agile methods provide for Change Man-
agement are the use of incremental and iterative development to quickly deliver very small
but very frequent executable milestones and obtain customer feedback on the results. In
addition, close customer collaboration to promote daily interaction and face-to-face commu-
nication between customers and the development team.

Traceability

Traceability between artifacts in a software development project can provide several bene�ts
including: validate that the right system (i.e. what the customer paid for) was built, identify
and isolate a set of changes that were made (e.g. for debugging), maintaining an audit trail
about who did what, when, where, why and how, and for various status reports. However,
Traceability can also be a very heavy- and time-consuming process for several reasons:

� It can impose unnecessary restrictions upon the speed and productivity of development

� It can make it harder to make necessary changes and encourages rigidity rather than
�exibility

� It can encourage 'analysis paralysis' and heavy 'up front' planning and design

� It goes against the values in the 'Agile Manifesto' because traceability emphasizes
comprehensive documentation over working software and contract negotiation over
customer collaboration

A lean approach to Traceability should instead aim to work in accordance with Agile values,
Lean principles and the basic tenets of sound SCM, without introducing any friction to the
development process. Several good articles describe ways to achieve this:

To easily trace changes without overhead and heavy-handed process, the use of change-
packages is the number one practice according to Joe Farah. It makes developer's work easy
and it makes it easier for them to trace back through history looking for speci�c changes
[16].

Along the same line, Brad Appleton et. al. describes in one of their articles [17] how to
achieve Lean Traceability by using techniques like Task-Level Commits, Task-Based Devel-
opment and Test-Driven Development, combined with a basic integration between a Version
Control tool and a Change Tracking System. Promising approaches such as Event-Based
traceability can also help automate this.

Another recommended article by Brad Appleton et. al. about traceability is "The Trouble
with Tracing: Traceability Dissected" [18], where they discuss more about how traceability
adds value to the business and how you can make it easier.

Andreas Bergström 33 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

3.4.5 Release Management

In Scrum, you develop in short iterations and every other week you have to produce a
potentially shippable release. Because of this, it will be very important to have a good
release process set up. A successful Release Management functionality will have bene�ts
like: high quality releases, be able to make quick and accurate release builds, a repeatable
process for deploying releases, and as a result getting cost-e�ective releases.

In the last section we just brie�y mentioned the Release Build as one of the three builds (the
other two were the Private Developer Build and the Team Integration Build). Typical steps
of a Release Build could include [12]:

� Apply a label to the code line

� Get a copy of the code line (workspace or instance) to your build machine

� Build the application

� Possibly test the application and report on those tests

� Package the targets of the build by either checking them into the Version Control Tool
and label as appropriate

� Zip up the release for distribution, or possibly even run installer software against the
release to package it for distribution

� Email a report showing the results of the build

While the integration and release builds are similar in many ways, the primary di�erence
is that the release build is intended to package and store the build results for installation
and distribution purposes. The integration build is intended to test the quality of the code
line and o�er feedback to the development team while the recipient of the Release Build is
typically the developer's customer.

Andreas Bergström 34 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

To be even more speci�c about the di�erences between an Integration Build and a Release
Build, the following points are worth noting [12]:

� Integration Builds typically operate on the latest (tips) on the branch, not always the
case with a Release Build

� Integration Builds run exhaustive tests on the build, not always the case on a Release
Build

� Release Build packages the release for installation and distribution, mostly not the case
with Integration Builds

� Release Builds include automated SCM reports like BOM (bill-of-materials) and CR
(change-request) reports - rarely the case with Integration Builds

� Release Builds occur only when the development team intends to package a release of
software for distribution (Test or production environments), and thus occur far less
often than the typical Integration Build.

Bene�ts of having a good release process

Some of the bene�ts that will come when having a good release process can include that:

� You can quickly make a release, and meet release deadlines

� You know exactly what went into a particular release, and by then you can also make
sure that all the right versions of pieces shipped or was published

� Your release will have a better quality

According to Robert Cowham [19], the production of Release Notes is a key indicator for
process health. These are typically a list of changes: bugs �xed and features added. They
are very useful to everyone to understand what is in the release, how it di�ers from previous
releases, and whether a particular problem will be �xed by upgrading or not.

Some ways to make the release easier

The Scrum method alone will make your team better at making releases. Every two weeks
you will have to produce a potentially shippable release, and because of this continuous
practice you will improve you skills and constantly be forced to address problems and �ne
tune the release. Compare this to a waterfall method where you perhaps only produce a
release ones a year.

Andreas Bergström 35 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 3. ANALYSIS

Using SCM patterns can also make the release easier. These can include using a Version
Control System, Task-Level Commits [20], Test-Driven Development [21], Continuous Inte-
gration [11] etc.

Automation is a basic requirement for frequent releases. Automation of unit testing in agile
methods leads to much greater con�dence that the system works and that bugs have not
been introduced. Automated builds catch integration problems early making them much
easier to �x. Automation of the production of release notes makes the project much more
controlled and less subject to surprise. Automation of installs and upgrades are also key
requirements for systems these days.

Andreas Bergström 36 Lund Institute of Technology

4
Results

The biggest Software Con�guration Management-related problem in Scrum project seems to
be the overall lack of knowledge about what it is, how to use it, and its bene�ts. All of the
people that I interviewed agreed on this.

In Chapter 2 we got an overview about what Con�guration Management is, and about its
bene�ts. In Chapter 3 we talked about both how the traditional- and the developer oriented
activities could successfully be handled in a Scrum project. Based on the analysis in Chapter
3, I have written SCM-related questions for the Scrum practitioners to answer. By answering
these, the goal is to �nd out what actions you have to take to get a better SCM-functionality
in your project. The questions are divided according to role; Product Owner, Scrum Master,
or Scrum Team. I have also formatted the questions in this chapter into three checklists,
that can be found in the corresponding appendices.

This will thus be the result of my thesis. An aim to convince and help these unexperienced
Scrum practitioners to decide on an appropriate SCM-functionality - for their speci�c project!
This is an important thing to remember; the checklists are not in any way complete for every
project. Furthermore, they are not intended to be a step-by-step way to know what you need
to do - but rather a step-by-step way to know what you need to think about. The idea is
that they should be a good start and it shall inspire the Scrum practitioners to start think
about, and discuss, SCM in a practical way.

37

SCM in Scrum Projects CHAPTER 4. RESULTS

4.1 The Product Owner

As we saw earlier, the traditional SCM activities are mainly directed to the managers, and
thus, aimed toward the Product Owner in Scrum. The SCM related questions that a Product
Owner should consider will because of this be about how to keep track of the project, make
sure you get everything you need, and if you need to put any organizational constraints on
the team.

4.1.1 Con�guration Identi�cation & Control

Do you need to put any of the following constraints on the Scrum Team:

Version Control Tool?

The project might be part of a bigger project within the organization, and it may therefore
be necessary to use the same Version Control System (e.g. Clear Case), for integration
reasons.

Repository structure?

For the same reason as the previous question it might be necessary to have a certain repos-
itory structure.

Identi�cation Conventions?

The organization might have a preferred way of describing the identi�cation (numbering)
criteria for the software and hardware structure, and for each document or document set.

Naming Conventions?

There might also be an organizational standard about which �le naming convention to be
used in projects and how �le con�guration integrity should be maintained.

Labels?

Describe the requirements for labeling media and application software.

Branch Strategy?

Does the team have to use any speci�c Branch Strategy?

Andreas Bergström 38 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

4.1.2 Con�guration Status Accounting

Is the Product Backlog and the Sprint Backlog visible for everyone?

The Product Backlog and the Sprint Backlog should be visible for everyone (all stakeholders)
at all times. If teams are spread geographically it could be wise to use a tool to coordinate
and keeping everything in one place.

Is the Burndown chart updated on a daily basis?

The Burndown chart should be updated every day in order to illustrate an accurate progress.

Does other stakeholders than the Scrum Team attend the Daily Scrum Meeting?

The Daily Scrum Meeting is an excellent way to get a brief verbal update about the progress
of the project. It's good if other stakeholders (e.g. management, customers etc.) attend the
meeting as well. This in order to avoid unnecessary progress reports.

Is the Status Accounting enough for the organization?

In some organizations, the transparency Scrum provides (highly visible Product Backlog,
Sprint Backlog, Burndown Chart, Daily Scrum Meetings etc.) are not enough to meet all
stakeholder's interests. This might be the ability to product certain statistics, especially
when dealing with critical systems. It can also be that managers doesn't have the time or
possibility to attend Daily Scrum Meetings or Sprint Reviews, and would instead value (for
example) a short written summary after each Sprint.

Andreas Bergström 39 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

4.1.3 Con�guration Audit

Do you need to have Traceability?

Does the bene�ts of having a certain degree of Traceability overweight the cost?

Often organizations seems to need Traceability between code and requirements because 'it
is good to have'. But when asked, no one ever uses it. Be aware of the cost and be sure
to consider the Return On Investment (ROI) before deciding that the team needs to keep a
certain degree of traceability between their artifacts.

One reason for having more traceability can be in critical complex systems where it's essential
to �nd bugs very quickly.

Di�erent degrees of traceability includes:

� Requirement -> User-story

� User-stories -> Sprint (Common Release note)

� User-story -> Tests

� Files -> User-story

� Lines of code -> File

Do you need to have Documentation?

Ask yourself:

� Does the bene�ts of having a certain degree of documentation overweight the cost?

� Who will read it?

� Will it be di�cult to understand the system without documentation?

� Are there any other better ways to transfer the information found in a traditional
documentation document, e.g. by having a meeting?

Di�erent types of documentations include: Architecture, Design, Technical, User manual,
Test, Marketing, Maintenance, Deployment and Con�guration.

Andreas Bergström 40 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

Does the team know how the system should be delivered?

For example if the delivered increment after each Sprint should be able to install by a
update/patch or if it should be a full product (monolith deploy).

Does the team know your 'Done'-criteria?

That a user-story or a new functionality is 'done' can mean many things. Does it include
tests, documentation etc.? Make sure you and the Scrum Team speak the same language.

Do you get everything else you need on the Sprint Review?

You might need to get test results and/or printed documentation etc.?

Andreas Bergström 41 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

4.2 The Scrum Master

The Scrum Master's main responsibility is to ensure that the practitioners can work in the
most e�cient way possible. This will also include e�cient use of SCM. The questions will
thus focus on helping, inspire, and coach the team as well as the Product Owner to do the
best work possible.

Is the team cross-functional?

As mentioned in section 2.4.4, one of the core values in the Scrum method is having a cross-
functional team. This should of course also apply on SCM, and thus, there should not be a
designated Con�guration Manager.

Does the team have basic knowledge about SCM?

If the Scrum Team has very little knowledge about SCM, it might be good to take on less
new functionality in the �rst Sprint and instated time-box education and/or workshops.
An experienced Con�guration Manager can for example help the team implement basic
functionality and make sure all team members learns how to use it. Convince the Product
Owner that this will pay of later.

Does everyone know how to handle the daily SCM-tasks?

All team members should for example know how the Version Control System works and how
to build the system. Since there will not be a designated Con�guration Manager to handle
the builds, the team members them selfs must learn how to do this.

Does the team have all necessary hardware and software for their development
infrastructure?

For example in section 3.4.3, we saw some of the bene�ts of having an automated build
process, and that you might need a separate build machine.

Do we follow up the SCM activities on the retrospective meeting?

Discuss your new SCM activities with the Scrum Team. Are they helpful or not for your
project, and what can you do even better the next Sprint?

Have you done everything else to help the team with potential SCM-problems?

If you see a potential SCM-problem that the team has not though of - raise the question for
discussion and talk about what you can do about it.

Andreas Bergström 42 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

4.3 The Scrum Team

The Scrum Team will preform all the daily SCM activities. This could include the content
in section 2.3, i.e. handling the Version Control System and performing Builds and Releases.
They must also make sure the customer gets the requested 'SCM-products'. The �rst thing
to do when implementing your SCM-functionality would be to �nd out exactly what you
need to have in your speci�c project. The questions in this section aims to help with that.

The Sprint Planning Meeting can be a good opportunity to discuss new SCM functionality.
Bigger implementations should be time-boxed in the Sprint Backlog - just like any other
new functionality. The implemented SCM functionality can/should later be discussed at the
Retrospective Meeting; What went good? What do we need to change or remove? What
can we do even better during the next Sprint?

4.3.1 Version Control

Do you need to roll back your server or your program to recover from a bug in
a short amount of time?

This is something that all project will encounter sooner or later and a Version Control System
makes this much easier.

Can the whole team work simultaneously?

It is of course vital for high e�ectiveness that no one have to wait for another developer
before they continue- or start with a new task.

Do you immediately get access to other's new features or bug �xes as soon as
they are done?

When using a Version Control tool you will get instant access to your team member's changes,
as soon as they check it in to the shared repository.

Can you create multiple branches at need?

A good Version Control tool should allow the developers to create branches in order to
develop in di�erent ways independently of the other (e.g. one branch for each supported
platform; Windows, Unix, Macintosh etc).

Andreas Bergström 43 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

Does everyone in the team know how to use the tool e�ectively?

For this to work, it's essential that all developers know what they are doing. They should
have a good process about check-in and check-out procedures, know how branching works
etc.

4.3.2 Workspace Management

Is your development machine optimal for your productivity?

For example, you should be allowed to use the IDE of your choice. If not, is there a good
reason that everyone in the team uses the same IDE?

Can you develop without disturbing other developers?

Can you work with your code uninterrupted from other team members, and can others work
with their code uninterrupted from you?

Do you have a good integration/synchronization with the Version Control Sys-
tem?

You should be able to check out code from the repository, play with it until it works satis-
factory, and then check it back in.

Is it rare that you spend a lot of time integrating your system?

If you often have to spend days integrating the system, you should consider implementing
Continuous Integration in your project. You will then be able to integrate changes from the
rest of your team as soon as they are ready for early detection of incompatible changes.

Is it rare that you have a lot of bugs after integration?

Likewise, if after integration you spend days correcting bugs, you might want to consider the
bene�ts of a CI system.

Is it rare that outstanding bugs remains undetected in the system for a long
time?

By integrating, and running test several times a day, it is a much higher probability that you
�nd bugs as soon as they are introduced. In addition, if they are discovered quickly, they
will also be much easier to solve.

Andreas Bergström 44 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

4.3.3 Build Management

Can you build your private system in your sandbox easily before checking in?

Every team member should be able to do a private build before checking in their code into
the repository. If not, lots of bugs will infect the repository and spread to the other team
members. You should be able to run a build script with a single command, if not, it's a risk
that most of the team won't bother.

Can the system be built on any team member's workstation?

The build script should also stay under Version Control and work on all workstations.

Are the build process automatically executed when someone checks in a new
task?

Ideally, an Integration Build should run every time a new functionality are checked in to the
repository to provide quick feed-back to the development team.

Does everyone in the team know how to build the system?

The Scrum Team should be cross-functional, and this should of course also include builds.
Besides, it could be very dangerous if only one member know how to build-, or release the
system.

Does the team receive information when a build fails?

It has no value to build after each commit if no one notice that a build failed.

Does your build get �xed quickly?

It has no value to build after each commit if builds stays broken for days.

Andreas Bergström 45 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

4.3.4 Change Management

Can you respond quickly to changes?

If an important change request arise, can you have it implemented at the end of the following
Sprint? Or in the case of a more critical change, terminate the Sprint and start working on
the change right away?

Can you implement the change quickly and easily?

Does it often cause a lot of work to implement a change, e.g.: a lot of artifacts need to be
updated etc.?

Have you considered a practical degree of traceability between artifacts?

Most project at least keep traceability between Sprints and User Stories, i.e. release-notes.
As mentioned in section 3.4.4, more detailed traceability could cause a lot of work, but it
doesn't have to, and it can be very bene�cial for some projects.

4.3.5 Release Management

Can you quickly do a release?

Since you have very short iterations in Scrum (e.g. 2 week Sprints), it should not take long
to do a release at the end of the Sprint. The release process should be automated.

Do you know exactly what went into a particular release?

It could be very bad if you don't keep this under control. However, in Scrum you just focus
on a few top-priority features each Sprint, so the number of artifacts to keep track of is much
smaller than in, for example, a two year waterfall project.

Can you release multiple variants simultaneously?

Your build-, and release script should be able to easily create multiple variants of a release.

Can your end-users easily install your software?

Does the release contain a user manual, or a small instruction of some sort? Or will it be
obvious for all users how to install your system?

Andreas Bergström 46 Lund Institute of Technology

SCM in Scrum Projects CHAPTER 4. RESULTS

Does several people in the team know how to release the system?

It could be very dangerous if only one person in the team knows how to release the system.

4.3.6 Naming Convention

Do you have a naming convention de�ned within the team?

You should de�ne a naming convention and make sure everyone in the team uses it. The
artifacts will be easier to keep track of and understand.

Does your naming convention follow the general organizational standard (if any
exist)?

Sometimes the company have a general naming convention. Talk to the Scrum Master if you
have any doubt about it.

Does the Product Owner have a preference about it?

Your project might just be one part of a bigger project. In that case the, Product Owner
could inform you about which naming convention is preferred.

4.3.7 Branch Strategy

Does your team have a Branch strategy de�ned?

Discuss with your team, and decide on a good branch strategy for your speci�c project.

Does the Product Owner have a preference about it?

Perhaps there is some organizational standard, or a preferred way to handle branches. Ask
the Scrum Master to �nd this out.

Andreas Bergström 47 Lund Institute of Technology

5
Conclusions and Future work

I found that the traditional Software Con�guration Management activities are in fact in-
cluded in the Scrum method, although quite di�erent and much less formal. In general,
Scrum (as other agile methods) tends to value face-to-face information transfer instead of
formal reports, and this is very much re�ected in the Scrum approach to the four traditional
SCM activities.

To answer the �rst of my questions: "Is Scrum complete in a SCM perspective?" the answer
would be no. The Scrum method does not mention SCM explicitly, but it also doesn't
contradict SCM practices. It should ultimately be up to the empowered and self-organizing
team to �gure out the optimal (and Lean) way. However, in some organizations, the common
informal way of dealing with SCM in a Scrum project might not be enough to meet their
standards.

From my interviews I learned that often the developer oriented aspects of SCM, such as
Version Control, Workspace Management, Build Management, Change Management and
Release Management, are not being considered much. The main reason for this is lack of
knowledge.

This leads us to my second question: "How can SCM practices provide service and support
to Scrum projects?". To get unexperienced teams started with the SCM-functionality I have
written checklists for the three di�erent roles in Scrum; the Product Owner, the Scrum
Master, and the Scrum Team. It was necessary to split them up because the di�erent roles
will bene�t from SCM in di�erent ways. It is important to stress that these checklists are not
intended to be a step-by-step way to know what you need to do - but rather a step-by-step
way to know what you need to think about. I have also written recommendations about how
to implement the selected SCM-functionality in an Agile- and Lean fashion that should �t
well within the Scrum method.

48

SCM in Scrum Projects CHAPTER 5. CONCLUSIONS AND FUTURE WORK

The Con�guration Manager will still be an important asset to all the three Scrum roles,
but his or her duties will probably shift to be more educational and consulting when SCM
improvements are needed and when problems arise.

Further work

The checklists may not complete for every project. It's a good start, but will probably have
to be tailored for the speci�c project.

As mentioned in the introduction chapter, I had no chance to test my result in a real
development project, which of course would have been valuable. However, I have showed it
to experienced Scrum practitioners and received very positive feed-back.

This thesis was also limited to one Scrum Team. When several teams are working together
in a Scrum of Scrums, it will probably add complexity to the SCM-implementation. This
scenario would have been interesting to investigate further - perhaps in another master's
thesis.

Andreas Bergström 49 Lund Institute of Technology

Bibliography

[1] W. Babich, Software Con�guration Management - Coordination for Team Productivity,
Addison-Wesley, 1986.

[2] A. Leon, Software Con�guration Management Handbook, Artech House, second edition,
2005.

[3] Wikipedia, Change Request, http://en.wikipedia.org/wiki/Change_request.

[4] L. Bendix and T. Ekman, Software Con�guration Management in agile development,
2007.

[5] K. Schwaber andM. Beedle, Agile software development with Scrum, Prentice Hall,
2002.

[6] Manifesto for Agile Software Development, http://agilemanifesto.org.

[7] B. Appleton, Agile Con�guration Management Environments, Chicago Software
Process Improvement Network (C-SPIN), 2004.

[8] J. Koskela, Software Con�guration Management in agile methods, 2003.

[9] J. Farah, The next generation of Agile CM, CM Journal, 2007.

[10] S. Berczuk, B. Appleton, and R. Cowham, Private Workspaces - Where Develop-
ment Process Meets CM Process, CM Journal, 2006.

[11] M. Fowler, Continuous Integration, 2006, http://martinfowler.com.

[12] S. Berczuk, B. Appleton, and S. Konieczka, Build Management for an Agile
Team, CM Journal, 2003.

50

SCM in Scrum Projects CHAPTER 5. CONCLUSIONS AND FUTURE WORK

[13] V. Parrett, Build Process Automation, 2000,
http://www.�nalbuilder.com/articles.aspx.

[14] J. Richardson and W. G. Jr., Ship It! A Practical Guide to Successful Software
Projects, The Pragmatic Programmers LLC, 2006.

[15] B. Appleton, S. Konieczka, and S. Berczuk, Agile Change Management - from
�rst principles to best practices, CM Journal, 2003.

[16] J. Farah, CM: THE NEXT GENERATION of Top 10 Best Practices, 2007.

[17] B. Appleton, R. Cowham, and S. Berczuk, Lean Traceability: A smattering of
strategies and solutions, CM Journal, 2007.

[18] B. Appleton, R. Cowham, and S. Berczuk, The Trouble with Tracing: Traceability
Dissected, CM Journal, 2005.

[19] R. Cowham, B. Appleton, and S. Berczuk, Release Management: Making it Lean
and Agile, CM Journal, 2004.

[20] A. Hastings, SCM Patterns: Building on 'Task-Level Commit', CM Journal, 2004.

[21] T. Freese, Toward Software Con�guration Management for Test-Driven Development,
CM Journal, 2003.

Andreas Bergström 51 Lund Institute of Technology

Appendix A: SCM-checklist for the Product Owner

Con�guration Identi�cation & Control

Do you need to put any of the following constraints on the Scrum Team:

Version Control Tool?

Repository structure?

Identi�cation Conventions?

Naming Conventions?

Labels?

Branch Strategy?

Con�guration Status Accounting

Is the Product Backlog and the Sprint Backlog visible for everyone?

Is the Burndown chart updated on a daily basis?

Does other stakeholders than the Scrum Team attend the Daily Scrum Meeting?

Is the Status Accounting enough for the organization?

Con�guration Audit

Do you need to have Traceability?

Requirement -> User-story?

User-stories -> Sprint? (Common Release note)

User-story -> Tests?

Files -> User-story?

Lines of code -> File?

Do you need to have Documentation?

Architecture?

Design?

Technical?

User manual?

Test?

Marketing?

Maintenance?

Deployment?

Con�guration?

Does the team know how the system should be delivered?

Does the team know your 'Done'-criteria?

Do you get everything else you need on the Sprint Review?

If you have any checked boxes - be sure to inform the team what you need and why it is
important for the delivery.

Appendix B: SCM-checklist for the Scrum Master

Is the team cross-functional?

Does the team have basic knowledge about SCM?

Does everyone know how to handle the daily SCM-tasks?

Does the team have all necessary hardware and software for their development infras-
tructure?

Do we follow up the SCM activities on the retrospective meeting?

Have you done everything else to help the team with potential SCM-problems?

Appendix C: SCM-checklist for the Scrum Team

Version Control

Do you need to roll back your server or your program to recover from a bug in a short
amount of time?

Can the whole team work simultaneously?

Do you immediately get access to other's new features or bug �xes as soon as they're
done?

Can you create multiple branches at need?

Does everyone in the team know how to use the tool e�ectively?

Workspace Management

Is your development machine optimal for your productivity?

Can you develop without disturbing other developers?

Do you have a good integration/synchronization with the Version Control System?

Is it rare that you spend a lot of time integrating your system?

Is it rare that you have a lot of bugs after integration?

Is it rare that outstanding bugs remains undetected in the system for a long time?

Build Management

Can you build your private system in your sandbox easily before checking in?

Can the system be built on any team member's workstation?

Are the build process automatically executed when someone checks in a new task?

Does everyone in the team know how to build the system?

Does the team receive information when a build fails?

Does your build get �xed quickly?

Change Management

Can you respond quickly to changes?

Can you implement the change quickly and easily?

Have you considered a practical degree of traceability between artifacts?

Release Management

Can you quickly do a release?

Do you know exactly what went into a particular release?

Can you release multiple variants simultaneously?

Can your end-users easily install your software?

Does several people in the team know how to release the system?

Naming Convention

Do you have a naming convention de�ned within the team?

Does your naming convention follow the general organizational standard (if any exist)?

Does the Product Owner have a preference about it?

Branch Strategy

Does your team have a Branch strategy de�ned?

Does the Product Owner have a preference about it?

	Framsida 2008-33.pdf
	Master’s Thesis
	Andreas Bergström DT06

	Department of Computer Science

	blank.pdf
	Bergstrom.pdf

