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Abstract

Software updating is an incredibly common and important part of modern com-
puters. However, Updating software is often a costly process as the software in most
conventional programs needs to be restarted to implement the update. This causes
downtime and sometimes even a loss of information. If the program in question is
in the midst of a task such as a complex calculation, this can be costly to do. And
yet, most software today still handles updates this way, causing the program to be
shut down under the whole update period.

This downtime can further lead to yet more serious issues. The more costly the
downtime is for the user, the less likely the user is to actually update the software, in
order to avoid this costly and annoying downtime. This means that any bugs which
are fixed in updated versions still remain in the live version, which is especially
important from a security perspective. A bug which leaves an open security flaw
in the system means that a system which is not up-to-date is more likely to be
subjected to hacks, which can have very serious consequences.

An option to completely avoid these losses would be very beneficial, especially to
critical systems such as security or medical related systems where uptime is especially
vital and data needs to be kept private. To bypass the issue with conventional
updates, we then need to avoid the restart process needed to apply the update. This
can be done by using dynamic software updating (DSU), which is a field of research
that deploys different kinds of techniques to make the update process seamless.
However, DSU systems are often resource intensive, whereas many security critical
systems are resource limited embedded systems such as a security camera. In this
paper we compare three different updating methods that implement the principles
of DSU, evaluating their usability for this sort of embedded system.



Populärvetenskaplig Sammanfattning

Software updating has always been an important topic ever since the origin of com-
puter science. There exists no so such thing as a perfect complex program, so there
are always ways to improve it. A majority of updates are related to bugs, which can
cause unintended behaviour in the software and also open up security flaws in the
program.

Updating software is often a costly process, as the software in most conventional
programs needs to be restarted to implement the update, causing downtime until the
program has started back up and returned to its previously running state, and can
also sometimes cause a loss of information. If the program in question is in the midst
of a task such as complex calculation, this can be costly to do. Most software today
still handles updates this way, causing the program to be closed under the whole
update period, depending on the operating system. An option to completely avoid
these losses would be very beneficial, especially to critical systems such as security
or medical related systems where uptime is especially vital. This is the case for Axis
security cameras, where certain users of these cameras will want to avoid downtime of
the camera system. To bypass the issue with conventional updates, avoiding restarts
is thus crucial. This can be done by using dynamic software updating (DSU), which
is a field of research that deploys different kinds of techniques to make the update
process seamless.

The main goal of dynamic software updating can be said to be able to transfer
the state of a program, i.e. data used at the current point of execution, from the
older application to an updated version of it. Enabling the transfer of state means
that the updated program doesn’t need to start from scratch but instead starts with
an already initialised state where the program was executing before the update. In
this paper, we looked at one previously developed way of dynamic updating, one
partial and known way to update which we developed the missing parts to, and
developed a newly possible third way using systemd. These three options are a
library called Kitsune, the system command exec, and via the common Linux init
system systemd.

Our results show that they each have certain advantages over each other. Kitsune
makes all variable passing simple, as variables, pointers and file descriptors are all
passed the same way. However, it also uses significantly more memory and processing
time and is difficult to use for cross-compiling a program. The exec functions also
makes file descriptor storing simple and is integrated as a minor part of the program
unlike Kitsune. However, it requires a more complex system to pass variables, and
pointers cannot be directly passed at all, instead requiring the data they point
toward to be transferred. Finally, the systemd technique has the most complex
variable passing, but allows the original program to shut down completely during
an update. Unfortunately, it also increases memory usage significantly just before
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shutting down the original program, so it does not end up saving any memory by
doing this.

In a general use-case without hardware restrictions, Kitsune is likely the best
option, as its simplicity of use makes for only minimal code changes. If however,
there are restrictions such as in an Axis camera, exec is the best option if you require
fast update times and/or low memory usage. The systemd method turned out to
be worse compared to the other options in all these aspects.
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Chapter 1

Introduction

Software updates have been a very important topic ever since the origin of modern
computers. Writing a complex program without any flaws is very hard. Given
enough time and large enough collection of code, bugs will occur. Most bugs are
related to unintended behaviour of the program, sometimes it’s not apparent at all
that a bug exists and can be a hidden security flaw. There are also performance issues
that may need to be resolved, usability improvements for lackluster functionality,
or content additions to the software. Regardless, no matter what the reason, some
type of software update will generally be needed. This software will typically be
very similar to its previous version, with some parts of the code being exchanged to
mend any of the issues mentioned above.

A question one then might pose, is how do we then exchange parts of the code
with as little trouble as possible. The easiest solution is to simply consider the
update and the old version as two different programs entirely, remove the old and
add the new one. There are some issues with this. First of all, removing the program
causes a loss of live data. Some data can be saved depending on what program you
update, but especially with programs that rely heavily on hardware while running,
data loss issues can arise. By relying heavily on hardware we mean for example
programs that conduct large floating point operations. This is an example of a
program that utilises a lot of the memory and cannot save the result to hard drive
until the calculation is done. Secondly, to update a program more than often requires
a restart of said program, which causes non productive sections of time. The third
and last issue is a by-product of the other two, namely that restarts and loss of data
can cause issues in security critical systems as they lose the ability to perform their
tasks. For example a security camera guarding a gate or medical machines that
monitor patient health.

The three above mentioned core issues are important to the company whom
we developed our thesis with, Axis Communirations. They are the current market
leaders in network cameras. Out of the above issues, especially number two and three
are important for Axis due to the nature of their business. In Axis cameras today,
updates have to be manually applied by the user on-site. This can be problematic in
systems which have such high security requirements, and needs to have the ability
to update fast. Since the cameras are dependent on the Linux kernel, once a security
loop hole has been identified in Linux, all cameras are suddenly vulnerable to that
attack. Because users have to update manually, updates takes longer time to apply.
The longer the vulnerability is exposed, the greater is the risk that the camera will
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be attacked by a tool exploiting this loop-hole. But security is not the only issue
linked to manual updates. It creates extra work for the customer who then might
either choose to avoid updates or simply forget to apply them. The reason Axis
can’t use a more automatic update process used by many other applications today,
such as Windows 10 Home which restarts your device when it chooses, is because of
the security related issues of automatically taking down the device for maintenance
at a time when the camera needs to be online.

The aim of this thesis is therefore to try to improve traditional update methods by
investigating and creating update methods which can circumvent the issues with loss
of data, restarts and the related security issues. We aim to do this by investigating
the problem deeper and at what previous attempts have been made to tackle these
issues. Along with this we will also try to develop our own methods, to better
understand and hopefully come up with a solution to the problem.

We are not aware of any modern day solutions where non-traditional updates
are in use. The most common solutions for updates today can be seen in major
operating systems. In Windows, updates are left to each application to sort out.
Most applications are split between either prompting the user to update it, or they
simply skip this and perform the update automatically, but then with the above
mentioned program restart similar to Windows 10’s own update system. In many
Linux distributions, the set-up is similar. For system updates, the user can be
prompted to choose whether to install these partial updates. For the remaining
software upgrades, the most common solution is via a package manager such as
Advanced packaging tool, which can update all software it has been made aware,
but only does so when prompted to update them by the user.

An important reoccurring theme among all the above is that all the above ways
to update software requires this software restart, meaning that there is a period
during the update in which the software is unusable. Companies running a large
amount of servers have come up with a solution that avoids restarts from the user’s
point of view. They do this is by starting a second server that runs the updated
version of the software in parallel to the old server running the old software that has
already been running for a while. All new traffic can then be relayed to the updated
server, while the old server handles only the requests that were already active before
the updated server came online. Once all those old connections are completed, the
server with the old version can shut itself down, so the only remaining server is then
the updated one. Unfortunately this approach isn’t directly applicable to all local
software, as it requires a constant stream of new incoming requests from an external
source. The security critical systems mentioned above will typically just have the
one initial request come in, and this request is never completed but is expected to
run continuously for very long periods, unlike incoming server connections. So, our
approach to solving this will have to look different.

Before continuing any deeper into this thesis we would like to give a brief intro-
duction of the chapters in this thesis and what the reader can expect from them.

• To start off, we’ll give some background information on the company Axis,
whom we’ve worked with to make our thesis, the field of updating, and the
method which we used in working on this thesis.

• Then, we will analyse the problem domain and sort out the specific problems
that we attempt to solve in this thesis.
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• The section following shows our proposed solution to the problem and discusses
its implementation.

• After that we will present experimental results from our testing benchmarks
and discuss their implications.

• Thereafter we give a rundown of similar work for the interested reader, and
what possible future work that could result in from this thesis.

• Finally, we will conclude the thesis and our results.
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Chapter 2

Background

2.1 Introduction
We’ll first give a brief introduction to Axis Communications, which gives a back-
ground of the company and motivations for this thesis. We’ll then give some slightly
more in-depth perspective of traditional software updates in order to give a more
whole picture of the general field, before we go into some common terms of dynamic
software updating; the common name for seamlessly updating software. This won’t
be a full introduction to dynamic software introduction but rather just enough to
make it possible for the reader to fully appreciate the concepts discussed later in
this thesis. Finally, we’ll discuss and motivate our work method, the development
of the thesis over time and the changes we’ve had to make as more information on
the subject came to light.

2.2 Axis
The company Axis Communications was founded in 1984 and has since the beginning
been directed towards various network solutions. Originally their focus was toward
network printing where they became one of the top leaders in the market. They then
shifted focus towards cameras with their invention of the very first network camera in
1996[13]. Although revolutionising for its time, it could only be used for surveillance
with low frame rate requirements, as it was not capable of delivering more than three
frames per second. The company continued establishing itself as one of the major
players in the surveillance market, setting standards for connectivity in network
cameras as well as developing the first video encoder. Today Axis Communications
is the world leading company in the market of network cameras[13].

To keep its competitive edge in the market, Axis’ focus lies in innovating existing
technologies as well as developing in new up-and-coming areas of technology. As
such, keeping available software up to date for customers is a major concern within
the company. Since most of Axis work is directed towards its cameras and their
surrounding products, a lot of effort is put into developing these updates and to
keep the software up to and above industry standards.

Axis devotes most of its resources to develop software targeted towards UNIX
based systems. They put considerable effort into improving both the kernel side
and user space applications within these systems. The software development which

9



is done towards the kernel side is also shared upstream, meaning that the code is
uploaded in an open source project available for anyone.

Axis current update method requires the user to manually initiate the software
update, and it results in a restart of the system. Since this easily leads to software
becoming out of date for various reasons, a better solution is being searched for.
This search for better updating methods, which can avoid restarts when updating,
is what led to the development of this thesis.

2.3 Software updates
The ability to update or patch software can be said to be an essential part of pro-
gramming and indeed seems to have evolved concurrently with computer software.
Software updates were performed already back when programming was still done on
punched cards[17]. The possibility to continuously change a program on the fly is a
luxury which most other businesses don’t enjoy. For example If its discovered that
a house has been built with the wrong measurements it cannot simply be fixed with
an update to the house, most likely it would need to be torn down and rebuilt.

Why then are software updates needed, can’t the programmer take extra care
just as other businesses have to do? Joel Spolsky, CEO of Stack Exchange argues
that it’s very difficult to spot bugs in your own code and that it almost needs a
second pair of eyes to detect them[18]. Due to this obstacle software updates are
certainly justified, however bugs are not the only reason why one would like to
perform updates of software. The most common reasons for updating software are
to either solve bugs or that the programmer wants to add new features not present in
the old software[14]. Despite this, many users today have a strong aversion against
updating their software due to previous negative experiences[15] such as software
becoming unstable after an update or being unable to see the reason of installing
the updates i.e. why they would benefit them. Typically, these updates can include
interface changes or changing other functionality which the user in question didn’t
require[16]. The reason we outline these potential risks with updates is that an
aversion towards updates can cause safety risks if the patch is directed towards
fixing security issues. In an industry like Axis this could be potentially damaging
for the customer.

Updates today are most commonly distributed via internet and then the pro-
gram in question usually performs a check if any such update exists. The three
major operating systems available today, Windows, Apple and Linux all have sim-
ilar approaches where an update is distributed via an update application, either
manually or automatically, and usually at a fixed time interval if the user opts for
the automatic approach.

Hardware that is designed to run indefinitely requires very stable software in
order to function properly since software failure could result in a halt in production
or missing a person trespassing if the hardware in question is a camera. The issues
facing software of this kind is then as previously mentioned software that can become
unstable and the addition that a loss of state i.e. a restart of the system, can be very
costly. Due to this, new update methods are required which can minimise these type
of scenarios. One such method is to use a dynamic software updating technique,
which we’ll discuss next.
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2.4 Dynamic Software Updating
The term Dynamic Software Updating was first coined in a paper by M. Hicks, J.
T. Moore and S. Nettles [1]. Their paper developed a first initial framework for dy-
namically updating programs written in the c programming language, as a response
to the problem of having certain programs that needed to be run continuously but
also updated over time. This is the origin of dynamic software updating, namely
the typically contradictory needs of constant uptime and regular updates.

The principles behind dynamic updating are easy to understand, but much more
complex to implement. The core idea that dynamic software updating must achieve
is to perform an arbitrary program update, without resetting the running state of
the program. With state or running state, we mean data that is actively in use
by the application, and in memory. The state can be said to be a snapshot of the
currently used data at a specific moment in time.

We have briefly mentioned the necessity for low downtime when updating a
program. This is especially true for dynamic updating and can be said to be one
of the core issues it tries to solve. The downtime during an update should ideally
be zero or at least minimal enough to not be noticeable in the functionality of
the program. This boils down to an update being applied without the user of the
program being able to notice it.

An important property behind dynamic software updates is that frameworks are
language locked. This means that it is incredibly hard, perhaps even impossible,
to create a framework for one language, say c, that would then also be applicable
to another language, like Java. This is because the way in which state is saved
varies between languages, so a generic solution would require an understanding of
memory-saved state in order to restore it between versions. The key issue here
is that internal structures can change between versions, like adding a variable, so
a blind restoration of memory could corrupt the data, which is why a dynamic
software updating program needs to be aware of a programs internal structures.
A framework that understands the structure of c variables, would not trivially be
able to understand similar structures in Java, because of the inherent differences in
memory usage between the languages.

This language barrier has led development to instead pursue language-specific
solutions, which are integrated into the code by giving access to dynamic updating
libraries. The previous mentioned paper by Hicks, Moore and Nettles was developed
for c back in 2002. Hicks also developed a dynamic updating system for Java
together with L. Pina.[6] We then also have the Kitsune paper, which is also a
library developed for c.[2] All these use different methods of saving and restoring
the state of a program , which is one of the most important parts of dynamic
updating, namely how the state is transferred.

So to summarise the above points, the following things are important for the
success of dynamic updates.

• Which language is the software built in.

• Which state is being transferred between applications.

• How is the state transferred.

• How much time an update takes.
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2.5 Method

2.5.1 Questions

Our main goal of this thesis is to improve traditional software updates. Due to the
natural time limit of a thesis project, we need to set out with a clear boundary of
what we aim to accomplish. We are starting this thesis with two main questions
that we feel are directly relatable to our main goal and which addresses the main
issues with traditional software updates. To reiterate what we mentioned in the
introduction these are: loss of state, downtime or loss of time due to restarts and
security issues related to the restart. As stated before the last issue is directly related
to the two first issues. Therefore we have set out with the following questions.

• How do we avoid loss of state from runtime when updating?

• How do we avoid excessive downtime when updating?

2.5.2 Approach

To answer these questions we have chosen two main approaches. Firstly we will be
implementing one or more proof of concepts. Secondly we will conduct a literature
study.

2.5.3 Proof of concept

Our motivation for doing a proof of concept stems from the following two reasons.
Firstly, when implementing this we will most likely come across issues which will
help us understand why it is inherently hard to solve the questions we have posed.
Otherwise these kinds of updates would be more widely used. Secondly we want to
provide Axis Communications with possible frameworks, which they in turn could
use for their systems.

The proof of concept will mean looking deeper into the structure of the operat-
ing system, in this case the Linux kernel. This is primarily done to take advantage
of existing functionality. The kernel is very well documented and the documenta-
tion is accessible directly in the operating system through the manual pages. This
documentation will be our main resource when writing our proof of concept.

2.5.4 Literature study

We have also to chosen to conduct a literature study. We have done this since we
have found little or no studies in our initial preparation phase that are related to
our thesis. We find this somewhat strange, as we feel that the questions we have
posed must have been asked before. This leads us to believe that further research
might help us answer our questions. It could also help us avoid previous pitfalls.

We are aware that we might have to change direction in our thesis and alter
the questions we have posed should we come across similar research which have
answered the questions we have posed. We do not see this as a problem and will
continue our first line of approach along with a comparative study of the existing
programs in such a case.
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Chapter 3

Analysis

3.1 Introduction
Dynamic software updating (DSU) is a very broad and complex subject, with many
attempts to tackle it but without any major breakthroughs capable of making it
into a common practice for software development. To understand why, we need to
take a better look into the problem domain of DSU. The advantages of having a
working dynamic updating framework could potentially be very powerful for some
applications, so there has to be something in DSU that makes it too difficult to
implement into large scale programs. This analysis should allow us to identify the
common problems in DSU that likely keep it from becoming the default choice for
developers when designing the update process for their software. Hopefully, we’ll
be able to come up with some of the most important of these and can then work
to overcome them in this thesis as best as possible, or at the very least discuss the
ones we haven’t researched further.

In the first of the three sections of this chapter, we’ll be looking at what exactly
the state of a program is and why it’s important to dynamic software updating.
There are a lot of separate pieces that make up the state of a running program,
and identifying all of these is important in order to dynamically update, which we’ll
see why in this chapter. For the reader to understand the requirements needed for
DSU to function, they need to have a proper understanding of each of these parts
of the state. So, we’ll explain both what these pieces are and also why they are
important for the update process to function correctly. This chapter is then divided
into two further sections following the state section. First we’ll present the reader
with a more in depth introduction to the subject of DSU with an analysis of what a
working DSU solution would require to function properly. Next we continue on with
a problem section which features a more in depth analysis of the major problems
when trying to implement and utilise a DSU framework.

3.2 What is state?
When talking about state, we’re referring to everything that has happened from the
start of the program until the point in the program where an update is started. State
is a very important concept in dynamic software updating, because it’s the core of
what dynamic updating is about. In order to perform said dynamic update, the goal
is to continue execution after an update without breaking the chain of execution.
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This means that externally, it shouldn’t be noticeable that an update occurred, other
than by noticing the actual changes the update brought. The program shouldn’t
need to start again from the beginning, redoing any initial set-up or perhaps re-
establishing any connections a server had with some number of clients, because this
would likely both take too long and the client would likely notice the connection
being re-established. The code should therefore be able to continue executing from
the exact point where the update was started. The exception being of course if the
new version removes that point in the code, in which case the programmer would
have to define the new proper return point. Returning back to this point is the goal
of a dynamic updating technique. And the way it does this is by restoring its state.
The majority of the state is the data such as variables which were active in the old
version of the program, which would of course crash the updated program if it tried
to use a variable that hadn’t yet been initialised in the updated program. The state
also includes the actual line in the code where the program was executing, so that
it is able to return to that precise line again after the update.

There are three different types of data in the state that need to be transferred
when updating dynamically: variables, pointers and file descriptors. Variables
should be well known to any programmer, and these generally contain fairly ba-
sic data such as an integer or a character. Pointers on the other hand are somewhat
more complex, as they refer to a location in memory that the programmer wants to
keep track of, such as the start of an array of variables. This becomes more complex
to transfer, and we’ll see why later in this chapter. Finally, file descriptors are likely
the most difficult to understand of the three. A file descriptor can among other
things be a socket connection, so lets use that as an example. A file descriptor is
considered in program code to simply be an integer, and can be used as such, but
its not the actual value of the integer that is in any way interesting. It is instead
when this integer is passed to certain functions that utilise file descriptors that we
make use of its value, because the operating system uses this integer to identify the
corresponding file descriptor (the socket) with this integer. These file descriptors are
also connected to each specific program, so two different programs can use the same
integer and yet use two different file descriptors when passed into a function that
uses file descriptors. This is especially important, because it means that passing
the integer alone to the updated program won’t be enough to transfer the actual
file descriptor over an update, so other solutions are required. In fact, even if we
do transfer the file descriptor to another program, that program may already have
a file descriptor with that index (the value of the integer), so the transferred file
descriptor would then correspond with another integer value entirely, one chosen by
the operating system.

3.3 Solution Requirements for DSU
Now that we have a clear idea of what is included among the state of a program,
lets use this in our discussion of what is needed to implement DSU. There are a
few things that go beyond state, although state transfer is still the most important
requirement for DSU to function. One of these other important parts comes from
our additional requirement to perform the updates on embedded systems. This leads
to certain hardware limitations, so any DSU implementation has to be efficient in
certain aspects that are appropriate for the hardware system in question. For Axis’
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Figure 3.1: A DSU implementation where the state is transferred from an old version
of the program to a new version via some unspecified state transfer method.

cameras, the experience of the people there whom we spoke to pointed out memory
as one of the most limiting factors. Another requirement for DSU we would argue
is that it must be user-friendly for the developer to use in their code. If it’s too
complex to integrate, nobody will bother, so it actually becomes a requirement to
have a certain level of user-friendliness in order to see the DSU method be used.
Finally there needs to be a good way to ensure the correctness of an implementation
using the DSU method. Otherwise, the programmer runs a much greater risk of
accidentally adding a bug that ends up crashing the software, which could have very
severe consequences with certain systems. Now that we’ve quickly presented all of
these key requirements, lets discuss them in some more detail in order to clarify the
exact requirements and why they are actually so important for the implementation.

3.3.1 State Transfer

The key point of dynamic updating is that state must be retained over the update.
This means that there must be a system in place that is capable of moving any
state from one program to the other. The basic idea of how this works is shown
in figure 3.1, which shows how an old version of a program transfers its relevant
state to the newer version, using some unspecified state transfer technique. It shows
most of the relevant state, but for image simplicity some of it is left out. For most
of the variables, moving them means some sort of serialisation and deserialisation
should be implemented to transfer the state that’s available in the stack and heap,
and for example saving them to and restoring them from the disk. Additionally, a
system must be in place to save any file descriptors, without closing them along the
way. Finally, the program must be able to return to the same executing spot from
where the update was triggered. This could potentially be any single line throughout
the code which can make this part very problematic to restore. It’s however up to
the programmer to choose how it’s implemented, which can simplify the problem
significantly.
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3.3.2 Efficiency

Because of the additional requirement of the updates being performed on an embed-
ded system, we have the previously mentioned requirements of it being an efficient
program. Efficient in this case isn’t just about running quickly and taking little CPU
time, but also that it is memory efficient and that it adds very little to the file size
of the object file. All of these three could be the main limiting factor that makes it
unable to be applied to an embedded system. This means that any implementation
should try to be as limiting on all these factors as possible. Especially important
though is the memory, as the update simply doesn’t work if it runs out, at the same
time as memory is already quite restricted in the embedded system.

3.3.3 User-friendliness

An easily underrated aspect of a library is how user-friendly it is for the developer to
implement into their program. A library which is complicated to use is significantly
less likely to be introduced into a system because of the time it takes to understand
how it functions. It also applies to the aspect of how easy it is to use after under-
standing how it works. An easy to use program would take very little time to apply
to a pre-developed system, and it should be very clear what is happening in the
code where it’s added. Being user-friendly is especially important when the library
is to be added into a large system. If it ends up being too difficult to implement,
it’s much more likely to be passed on as too expensive of an addition relative to its
added value. So keeping it easy to both understand and use is an aspect that needs
to be accounted for.

3.3.4 Correctness

Finally, its important that a developer is able to ensure the integrity of their program
when adding dynamic updating. It should be easy to ensure that the program will
function as intended over updates. This is especially true in any updates where there
is a significant change in the way state is represented between program versions.
There then needs to be a clear way for the programmer to include any necessary
additions or changes to the internal state over these updates, so the updated program
can still function if a lot of new variables are added in the update. So we will be
accounting for how this is done, ensuring that state changes can be performed in an
easily understandable way.

3.4 Problems with Implementing DSU
There are a lot of inherent problems that are encountered when trying to develop a
DSU technique, and since we’ve been able to find many previous works relating to
this type of implementation, we want to here learn something of what issues they
encountered. So, we’ll start at looking at what previous works have concluded as
problematic with implementing DSU, as their research has valuable information for
how we conduct our thesis. Then we’ll add our own thoughts on what problems we
consider important.
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This chapter is spread into many smaller subsections, each relating to one specific
problem in implementing a DSU technique. Below is a list of the core issues we’ve
been able to identify in our thesis work. We’ve split each of these dots into a sub-
section below, where we further discuss their meaning and implication. Many of
these are also related to the program developer’s experience when they utilise a
DSU method, and we’ll touch more on which of these are related to the developer
experience in the corresponding sections.

3.4.2 How to guarantee update correctness?

3.4.3 Which data do we serialise and what do we save directly by preserving the
memory space?

– Variables

– Pointers

– File Descriptors

3.4.4 How do we deal with program changes between versions that affect our live
data?

3.4.5 Do we detect updates manually or automatically?

3.4.6 What resource limitations are we likely to see from adding dynamic updating?

3.4.1 Problems derived in previous research

The most recent contributions to the research field of DSU are the library Ekiden[3]
and its continuation Kitsune[2]. Other previous notable contributions to the research
field include Ginseng[4], POLUS[10] and UpStare[5]. In a paper from 2012 by E.
K. Smith, M. Hicks and J. S. Foster [9] the authors present us with benchmarks
between these programs, split into three parts: steady-state overhead, which is the
overhead DSU introduces while running the program, compilation overhead, which
is the overhead for compiling the program, and finally how often the update can
be applied during execution. In their paper they report that Ekiden and Kitsune
introduce the least amount of steady-state overhead. Compilation overhead on the
other hand was harder to measure as most papers don’t report it. Perhaps the
most important result that the authors bring to light is that it’s very hard to reason
about the correctness of an update after it has been applied when updating by
DSU methods. The authors say that some methods are possibly easier than others
to reason about but that this is also purely anecdotal and based on subjective
experiences. This is a very important topic for this type of updating, and so we
later in this paper discuss what assistance there is for ensuring code correctness and
how a programmer could go about making safer code. This paper is also why we
choose to look at the steady-state overhead of the program, in order to ensure their
viability for embedded systems.

3.4.2 Update correctness

A very important part of ensuring a proper dynamic update system implementation
is the ability to serialise and deserialise data in a safe and reliable way. Any data
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corruption in this stage would cause the program to crash or execute incorrectly,
which could potentially be even worse. Imagine for example a bank system suddenly
giving you access to another person’s account. Ekiden[3] and Kitsune[2] solve this by
running a background library which keeps both versions of the program in memory as
shared libraries. The serialised state can then effectively be transferred between the
two versions as they are seen as a single program by the operating system. Other
DSU methods such as Ginseng[4] use something called lazy state transfer which
implies that the data used is always updated to the latest version when it’s being
accessed. Regardless of the way chosen to perform the transfer of state, serialisation
and deserialisation of the data is one of the major problems the programmer is faced
with when implementing a DSU technique, as a poor method here which can return
corrupt data to the updated version can have serious consequences.

3.4.3 Preserving data

Before looking at the serialisation of the data in the program, lets take a step back
and look at the bigger picture of this, namely the memory, to better understand
why saving the data directly from memory is so complex. Looking at the traditional
way of updating a program, everything in memory is lost when an update occurs.
This is because as soon as a program shuts down, its memory space is recovered by
the operating system and the data in it can be considered lost. However, when we
want to update dynamically, without losing state, we would like to keep this data
in memory, since reading from memory is much faster than having to save and read
the data from the disk whenever we update.

There are two separate parts of interest in memory, the heap and the stack, and
these have to be dealt with separately for a dynamic update. The stack is always
linear in that there are no gaps in the memory between variables. If the stack pointer
increased by 4 bytes, then we know that everything in those bytes is relevant to our
program. With the heap however, data could be placed anywhere within it. The
data isn’t necessarily ordered in any way, so a pointer to a location in the heap could
be pointing anywhere within that heap. This is problematic in that we can’t then
simply copy everything within the heap like we perhaps could do with the stack, as
we wouldn’t know what data was relevant, and we’d have to duplicate a lot of extra
unnecessary data from all the unused locations if we did actually copy it all. Any
pointers to the heap are also made incorrect upon release of the memory when the
program shuts down. Using those after that point causes undefined behaviour in c,
so when trying to save pointers, it’s important that whatever data is saved is the
actual relevant data that the pointers are used to access and not the actual pointers
themselves. The one exception being if your DSU technique in fact shares a memory
location between the two versions, as then all pointers will still be correct and no
data would have to be copied from the heap.

Variables

We predict that variables will cause less hindrance when performing the serialisation
due to the more complex nature of pointers and file descriptors. Variables often only
contain primary data such as an integer or a character, which are easier to handle
as one only needs to serialise the value of these variables and save them in an
appropriate location. There is no native serialisation in c, so that part has to be
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added, but the entirety of the task still ends up being simpler than for pointers and
file descriptors.

Pointers

When dealing with pointers we are instead dealing with an address to a type of
variables. This can complicate things much more than when only dealing with said
variables. If the memory region doesn’t change, as mentioned at the end of section
3.4.3, then we can actually just save the value of the pointer without consideration
of the data, since we know the location the pointers refer to will still be readable
after the update. However, not all DSU techniques will be able to use this special
case, so we also have to look at the case when the memory region changes between
the old and the updated program. In c, pointers are often used to refer to arrays or
even other pointers. This is problematic for data serialisation, as it’s not possible to
identify the size of an array simply from a pointer. This means that in order to save
the data which a pointer is pointing to, you would also need to know the length of
the data beforehand.

A similar problem arises when dealing with void pointers. Without knowing
how many bytes of data is to be saved from where the pointers are referring to,
the data cannot be safely saved. Saving too little would of course mean a loss of
data, and saving too much could result in crashes from reading outside of one’s
allocated memory. Clearly, this is a complex case which is difficult to solve. If
you don’t internally know the correct number of bytes to save, it would require
externally knowing the exact boundaries of the memory region. And even if we
were to copy all the data in the heap to the updated program, the pointers would
then be pointing to incorrect locations as the OS chooses what memory addresses
the program is assigned. This could therefore be implemented into the operating
system itself, but cannot be implemented into the actual program by a simple DSU
technique. The DSU libraries are therefore restricted in that they can only save
pointers either through the first case of using the same memory space and passing
pointers as variables, or by saving the relevant data via receiving the exact number
of bytes to serialise from a particular point in the heap.

File Descriptors

Finally, file descriptors. In c, a file descriptor is defined as a non-negative valued
integer. The actual value of this integer does not pertain any information other than
the value itself. Instead, the operating system has a list of indexes which, when this
integer is passed into a function which uses these file descriptors, the function will
use this index to identify the correct file descriptor to access. When creating a file
or opening a network socket the process in question gets a file descriptor associated
with it and the kernel keeps a reference to all processes associated with that file
descriptor. When the reference count reaches zero it means that no processes are
still associated with it any more and it can be safely closed. The reason this can
become a problem when updating is that some file descriptors need to be transferred
and kept open between processes. For example if the application is sending images
over a network, it will have a file descriptor associated with it. This file descriptor
needs to be transferred to the updated application if the connection is to be retained,
else the whole reason behind updating dynamically would have failed and we’d have
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to redo the initialisation process of the socket. Recall here that a dynamic update
has the goal of not needing to go over an initial setup again in order to return
to the last executed point in the old version of the program. When dealing with
serialisation, the problem of transferring these descriptors without closing them is
generally the hardest, as they don’t have any directly related data to them. Instead,
certain functions are used to pass file descriptors between processes.

However, there is one workaround here to avoid having to use the functions
capable of passing file descriptors in a system, as these are typically slow. Since
file descriptors are connected to a specific process via its process ID, as long as the
process ID of the running program doesn’t change, the file descriptors will still be
connected to the process and their corresponding indexes will be unchanged. The
process ID has to also always be active, if it closes down and you then happen to
get the same ID when starting the program back up again, it wouldn’t work since
during that period the socket would have closed. So, if the technique is able to
utilise this specific case, it is again possible to simplify the issue to simply passing
a variable (an integer in this case), since it will still refer to the same file descriptor
in the index table.

3.4.4 Program changes between versions

Now that we’ve presented the problems of passing already existent data, lets take it
one step further. A common part of an update is a change in the internal structure
of data, such as a variable being added or a struct being changed. These are
variables which haven’t existed in previous versions and won’t have any data to
restore upon updating, and yet their values may be required to run the new version
of the program. This means that the programmer needs to set up a way in which
this data gets an initial correct value based on where it’s being executed. There are a
number of ways which this could be done, depending on how complex the calculation
of the value is, but that’s not the most important part of this problem. The main
issue that is caused by this is instead that it becomes very difficult to update two or
more versions at once. Since each update would only track the difference from the
previous version of the program to the current one, updates would have to be applied
one at a time. Having an update track differences from multiple previous programs
would quickly make it bloated, which would likely reduce certain performance or size
requirements. Following from this, even if running multiple updates sequentially, this
means that a lot of potential dummy data could be getting added to the program
if it was considered too difficult to properly initialise some of the variable additions
and it was assumed they’d get their correct value at run time. This then comes back
to the previous problem of how to ensure that the update functions correctly.

3.4.5 Update detection and initialisation

Now lets look at how to identify a new update. This can be done two ways, either
manually or automatically. If it’s to be done automatically there needs to exist a
detection mechanism which is able to identify when there is an available update,
either locally or available online. Once identified, the program should be able to
initiate the update. In the other case, where an update is started manually, the user
would have to tell the program when an update is available and perhaps even where
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it is located. This is likely more efficient in terms of CPU time, since it means the
program doesn’t need to keep track of when an update is available, but it comes at
the cost of user convenience. In our opinion, the optimal mix would likely be an
automatic detection of updates with a user prompt before initialising it, or to skip
the prompt entirely as the update won’t disrupt the user’s usage of the program.
This ensures that updates are directly going out to the user, and hopefully if they’re
given the choice they then choose to apply the updates right away.

3.4.6 Resource usage

Lastly there is the issue of scarce resources when performing dynamic updates. For
most users this won’t be a problem, but when dealing with some type of systems
these types of updates might not be possible due to their hardware restrictions. Dy-
namic updating methods which load both versions of a program at once, that is both
the old and the updated version of the program are both running simultaneously,
requires double the ordinary memory usage to actually function. For an embed-
ded system this could be an especially limiting factor when choosing the update
method, as they are typically designed to have as little extra memory as possible to
cut down costs. Of course, if the updated program uses a mere fraction of the total
memory, perhaps because the operating system uses much more, then this could be
a non-issue for that particular system. There are also other limiting factors when
dealing with an embedded system, namely disk space and CPU time. Both of these
resources are typically quite limited, but are less likely to be an issue as dynamic
updating should generally add little overhead to both the file size and execution
time. There is however the famous dilemma of execution time versus memory usage
to take into account, where higher execution time requirements could lead to a lower
memory requirement and vice-versa. Perhaps certain solutions could utilise this to
lower the memory requirement on the hardware.
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Chapter 4

Proof of Concepts

4.1 Introduction
This chapter presents implementations where the main goal is to show that the
difficulties we’ve explained with dynamic software updating in the previous chapters
can be solved and as such this chapter can be seen as a proof of concept for possible
solutions. First and foremost this chapter is important to understand the later
results & discussion chapter in-depth, as you do need the background information
presented here to fully appreciate certain discussion parts. Should the reader wish
to implement any of the methods included in this chapter, the information presented
here is essential to understand in order to make a correct implementation and usage
of it.

In order to solve the problems identified in the requirements from the previous
chapter, we need to find a suitable solution which deals with all the key problems
mentioned previously. This same solution should then also try to minimise the other
smaller disadvantages that come with DSU, which we mentioned in the analysis
chapter. Unfortunately, no single solution is able to fully achieve all the requirements
that we have set out to solve. Improving upon one of the criteria often comes at
a price to the others. We have therefore decided to compare multiple solutions to
each other which can all achieve the core requirements of dynamic updating, while
providing different trade-offs.

We will first introduce the reader to the program that we chose to implement our
DSU methods on. After that we will continue on with the three different methods
that we have explored where two of them we have developed. First we’ll show
a typical implementation of a dynamic software updating library called Kitsune
and discuss its strengths and weaknesses, and then move to the two other options;
systemd and exec which we ourselves have developed and do the same for those two
methods.

4.2 The test program
In order to achieve a proof-of-concept, we first needed a system to try it out on.
Since we chose to focus on making a proof-of-concept rather than immediately try
to scale it into a live program, we wanted a program which includes as many of
the real complexities as possible while still being small enough to quickly and easily
work with. As a main part of Axis cameras is the ability to stream video from the
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Figure 4.1: The important parts of the structure of the client/server program from
a dynamic updating perspective. The server and client are connected via a socket,
which the server sends some data over and which the client then reads. This data
is dependent on the state of the server.

camera (server) to the user (client), we decided that we needed a system that ran
a live connection. We therefore decided to go for a generic and simple client/server
program to implement the updating system on. This not only has a live connection,
but also an added state where the server sends a letter of the alphabet each tick
(default one second). For a successful update, the next letter should follow the
alphabet after an update, instead of resetting to the letter ’A’. This system is much
easier to ensure update correctness with than it would be to send sequences of images
from a video, as those images are nearly identical and missing one or even a few
would be difficult to notice. Therefore, we chose the simple alphabet solution rather
than the technically more correct video streaming solution, which is actually used
in certain embedded systems such as security cameras.

All the implementations which we will be introducing the reader to further down
have been done on the client/server program. In essence the server initialises a
socket with a pertaining port and then listens on this port, ready to send data when
a client connects to the server. If we look at figure 4.1 we get a clearer picture of
what the server does. It shows how the server and client are connected via a socket,
that data flows from the server to the client, and that the data that is being sent
over it depends on some state (a simple char in our program) within the server.

The base test program is quite generic, and anyone within the field of computer
science should have come across a variation to it before. It was convenient to use
since it becomes easy to prove if a DSU implementation was successful or not. First
the socket will be accessed via a file descriptor. When an update is performed we
can confirm its success by validating that the connection was kept open during the
update, meaning that the client will not have to reopen a connection to the camera
(represented by our server). Secondly we continuously pass on a state from the server
which is updated after every send/read request. When an update is performed this
state should remain the same and the data transfer should continue from the point
of the last transferred data. The important part here is that the state could be
anything, a set of images, a string of characters or a set of files which are serialised
from the old version of the program and deserialised in the updated version. It’s then
very easy to verify if the state has been stored correctly as we are given an almost
instantaneous verification of it when the client reads from the updated application.
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4.3 Kitsune
Kitsune[2] is an updating library specifically built for C. C is a general purpose lan-
guage closely associated with the UNIX operating system and is generally considered
to be a ’low level’ programming language[21]. This means that a C programmer deals
with relatively primitive data compared to an object oriented language such as Java
which features more complex data structures and class hierarchies. The typical chal-
lenges facing a C programmer as opposed to a more high level language is how to
deal with garbage handling, heap memory transferring and pointers i.e. addresses.
The implementation of Kitsune does its best to overcome these issues for the pro-
grammer when it comes to the software updating process, such that they don’t need
to free used memory, work closely with the heap or track pointer locations in the
update process. We’ll discuss this some more in the usage section below.

There are multiple parts to Kitsune, the core being the library that is included
and used in your code. Other parts include a compiler command (which uses gcc
with some special flags which we discuss in the structure chapter), a driver program,
and a program to initialise manual updates. There is a lot of parts to explain how
to use it, so we’ll be splitting this sub-chapter into two sections. First we’ll take a
look at how it deals with the problems and requirements mentioned in the previous
chapter. Then we’ll discuss how to actually use and integrate it into a program.

4.3.1 Kitsune’s Structure

The general setup of Kitsune has a lot of advantages due to the usability of the
Kitsune library. The fact that a single line is able to restore all global variables is a
big convenience feature. This is an advantage that comes from Kitsune’s technique
of having a controlling program (driver) that owns the memory space for both
programs. This allows it to be directly aware of all global variables (as they are
directly visible to the driver). There is then also a small addition done to each
function to allow it to also transfer any relevant local variables. Again, this is a very
convenient way to do it, as all variables are in the same memory space already due
to the driver program owning it, and all the programmer has to do to restore them
is essentially mention them, and driver sorts out the rest.

Because of how Kitsune is able to automatically migrate certain variables, there
also needs to exist a step which can track the state in between this migration. Let’s
look at a quick example to demonstrate what we mean. Say that you have a global
variable number in the first version of the program. In the second version of the
program, this variable has been renamed to count. Now, if the migrate function is
run, it will notice that count didn’t exist in the first version, and thus cannot restore
it. So here we need to add a step that links number to count. This step is done
by the use of a Kitsune written tool called xfgen. It has two functions, the first
being to deal with above transforms and the second being to initialise any newly
introduced variables which didn’t exist in the old version of the program.

These transformation files are then used to generate a c file using Kitsune’s xfgen
tool. Following that, it’s compiled and combined into the shared library. The shared
library, as we recall, is the way in which we compile our original program. So we’ve
just combined the transformation code into our program. When the program later
updates and tries to migrate the code, it will then be aware of any state changes
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and additions that it needs to initialise during the migration.
There are two ways to initiate an update in dynamic updating. Either the

programmer starts it from within the code, i.e. “automatically”, or the user runs it
manually, as in some command that passes the update to the program. The DSU
library Kitsune has solved this by implementing both ways of starting the update
and essentially letting the programmer choose for himself which to use. For the
automatic update, the program must know beforehand where the updated version
is located, and it should be specified by the programmer when it should start this
update. In a typical scenario, this would likely be once the updated file exists,
alternatively is modified. A nuisance of this approach is that each version of the
program will have to manually specify in the code where the next updated file is,
and it cannot be the same file as was used to update to the current version of the
program, else it would always see that the file existed and get stuck in an update
loop updating to itself over and over.

For the manual version of updating, a shell file called DoUpd is used. Its function
is very simple. It takes the process ID of the initial program and the location of the
updated version of the program as parameters when ran. It then sends a signal to
the initial program, which tells the program that an update is now available, and it
also passes along the location of this updated program.

Kitsune makes use of other libraries to function. Most importantly, it uses
Cilly in its compilation step. This is a rather large library that makes the base
of Kitsune a fairly large program. It also complicates the compilation step for
cross compilation. Changing the default compiler in Kitsune still won’t change the
compiler for Cilly. Instead, Cilly by default always compiles for the native system,
and any cross compilation has to be done by manually setting all type byte sizes
(such as perhaps 4 bytes for an int). We weren’t able to successfully do a cross
compilation of Kitsune because of this use of Cilly.

A second important mention used by Kitsune is OCaml, which is another pro-
gramming language that was also used for parts of Kitsune. This becomes prob-
lematic because with a recent OCaml update, it broke Kitsune’s functionality. This
means that one must use the old version of OCaml that was used in the creation of
Kitsune in order to compile it properly.

When using dynamic updates, you add an extra layer of complexity that can
cause faults in the code on an update. For dynamic updates, a common problem
would be the potential for data corruption. Kitsune doesn’t add any specific tools
to combat this, with any type of sanity checks or similar, so checking the validity
of any transferred data is on the programmer to do. This has to be done for each
specific variable, making it a boring and slightly time-consuming process, but also
a fairly easy one if the checks are added at the same time as a variable is added
or changed by a programmer. This ensures that the sanity check is valid for the
variables most up-to-date correct values.

There is also no version checking, meaning that Kitsune cannot recognise version
1.1 from 1.4 which could cause issues. Big gaps between the versions could mean
that there exists no compatibility between them which would crash the program after
it has been updated. Most likely this would be due to data that the new version
requires which the older application version has no knowledge about. However, a
big advantage with Kitsune is how simple the update code actually is. While it may
not add tools to help guarantee the correctness, its simplicity makes it much easier
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to get an overview of the update. This allows a programmer to easily check the code
to convince themselves that the update is being done correctly, without introducing
faults from the update process itself.

4.3.2 Usage

In order to use Kitsune in your own program, the first step is to integrate its functions
into the code of your program. There are three parts of the code additions that need
to be added: variable restoration which is a state transfer i.e. a serialisation and
deserialisation of certain variables when doing an update. Update points which are
points in the software code where the program itself checks for updates and finally
return paths which are points where the software will return to after an update. This
is needed to correctly do a proper state transfer otherwise if the updated software
would start from the beginning again it could potentially reinitialise variables that
already have a value from the state transfer and thus making the whole process
futile.

For the variable restoration, Kitsune provides a function to restore all global
variables in one go. Past that, any local variables that need to be restored are
recovered one at a time by passing them to Kitsune with one of their functions.
A convenient feature of these functions is that on initial start-up when there is no
state to restore, these functions do nothing. This means that they don’t need to be
placed within an if-case, but can be called right after defining each variable that we
need to pass between updates.

Secondly update points need to be added. An update point is a certain place
in a program which is defined by the programmer as a good place to perform an
update. If we recall from earlier we mentioned how we always needed to be able
to return to the place of execution after an update. This is very problematic when
an update can occur at any time, because we need to be able to jump back to any
line in the entire program. With the use of update points, we can limit this to only
being required to restore to certain convenient places in the code. This can also
limit how much state restoration is needed for an update. To choose where these
update points are to be placed, an initial thought might be that placing them in as
many places as possible might be optimal. While this does mean that the program
is more likely to update in a shorter time frame, we are talking about milliseconds
for most programs. This adds little extra value over a basic but more thoughtful
implementation.

Recall first here that the programs where these updates are to be used are going
to be programs which are run continuously, not programs which are quickly run
through and shut down. These programs do still have a lot of code that is only run
once, and is generally run through very quickly, so it’s unlikely that a new update
will have become available while executing this specific part of the code. Instead,
a better place to put update points are within repeated loops where the code is
run frequently throughout execution of the program. This means that the update
point will be frequently called and it’s very likely that when an update becomes
available, we’ll be executing that certain section of code. An example of this in a
server program would be to place update points between each client connection and
each transmission with a client. These sections of code will always be repeatedly
executed as long as the server is live.
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The final code addition will be to add paths to return to the correct update
point after we’ve performed an update. Kitsune provides functions to identify which
update point the program was at when it updated. It also adds functions that check
whether the program is currently recovering from an update, i.e. have we returned to
the point where the update started from yet? The combinations of these two allows
the programmer to use if-cases which call proper functions or use gotos to return to
the correct point. In cases where the update was multiple steps of functions down
in the program, it’s important to retrace the same path back to the update point so
that the variables can be restored in all relevant functions along the way. Once the
same update point has been called as initially updated the program, the update is
considered completed and normal execution should resume from that point.

Once all the code additions are completed, the next step is to compile the pro-
gram. Kitsune provides the shell script ktcc which should be used to compile the
program. Using this compilation tool, the program will be compiled into a shared
library (.so) instead of a runnable program. This is because Kitsune also provides a
program that is to actually be run, called driver. The shared library that should
be run (i.e. your program) should be passed to the driver program as an argument,
and any arguments that should be passed to the shared library are also passed to
the driver program. It will then call the main function in this shared library with
the corresponding correct arguments.

To update the running program, there are two ways to do it. We’ll delve into
these a bit more in-depth later in this chapter. The first option is to manually make
the program aware of an available update. This update should have been compiled to
a shared library just as the initial program. Kitsune then provides a program called
doupd which is also run with the updated version of the program as an argument.
The next time the initial shared library then passes an update point, the update
will be initialised. The second option is to have the program be aware of name of
the next updated version, and use a function call that mimics the same signalling
behaviour as doupd, saying that an update is available. The program will then once
again update the next time it reaches an update point. The communication between
driver and doupd is shown in figure 4.2.

If there have been any variable changes between the versions, Kitsune deals with
this by the use of their own language. You then add a .xf file that is included as part
of the compilation step. In this file, all variable changes are to be included. This can
be something as simple as a variable being renamed, but can also be an entirely new
variable that needs to get an initial value, with this value then also being specified
in the .xf file. This is a very convenient way to view all variable changes in one
place, but also requires the programmer to edit a file externally from their actual
program and learn a new syntax, albeit a fairly simple one. The advantage of this
system is arguable but likely beneficial for more experienced developers in order to
keep the actual program code somewhat cleaner.

4.4 systemd
Systemd is a suite that provides service and system process manager to a Linux
system[11]. It was developed with the goal of unifying basic Linux services among
all the various distributions. One of these newly developed services ends up being
especially useful for dynamic updating. To understand what this functionality does,
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Figure 4.2: Shows the update process of Kitsune as four steps, and how the two
programs ’Driver’ and ’DoUpd’ function relative to the software to update. In step
1, driver is only aware of the old version of the program. DoUpd is then in step 2
started with an updated program, and signals driver that an updated version is now
available. In step 3, driver starts the new version and passes the state from the old
version to the new version. Finally step 4 shows how the old version has been shut
down and driver is now only running the new version of the program.
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we first need some more background information into systemd. Systemd is directly
started by the kernel when the operating system starts and then initiates the first
process, called process ID 1 (PID 1 for short). PID 1 is also known as the init
process. It acts as an initialisation for other processes which cannot be initiated
since there doesn’t exist a parent process for them to be forked from. Systemd has
a lot of other responsibilities in the system but for the scope of this thesis only
this part of systemd is relevant to dynamic updating. The reason for this will be
explored in the structure sub-section of this chapter, along with an in-depth look at
specifics of dynamic updating with the use of systemd. In the second sub-section
we’ll explain how to use the code we’ve written, and motivate why we chose to
implement it as we did.

4.4.1 Structure

As the most complex part of state to save, coming up with an efficient way to pass
file descriptors was our goal in using systemd. Recall that in c, a file descriptor is
stored in code simply as an int, but it is used to access the actual process-specific
file descriptor. There already existed a native way to pass file descriptors before
systemd, namely by using something called a Unix domain socket. The Unix domain
sockets are a set of sockets which are used for interprocess communication[19]. A
problem that arises in this type of implementation is that you need two programs
running at the same time, both the one with the receiving end of the socket and the
one on the sender side, which currently has access to the actual file descriptor. This
is the problem we attempt to solve by instead using systemd functions.

In a newly added function to the systemd family of functions was the ability to
pass file descriptors to PID 1, a function that was added to allow for file descriptors to
stay live even if the program temporarily shuts down. The reason the file descriptors
stay live is that PID 1 is never shut down. The process is guaranteed to stay active,
and therefore we can use this process to hold file descriptors during a program shut
down. While the goal for this functionality was to preserve file descriptors during
program shut down or crashes, it ends up being very useful for dynamically updating
a program as well. What it allows us to do is to pass the file descriptors to PID
1 at the initial phases of a started update, then restore them from the updated
program. It’s worth to note here that file descriptors can only be restored to the
same program on the file system, which is tracked by the file name and location of
the program. To circumvent this for an update, we therefore replace the original
binary file with the updated one in order for this update to function. To pass these
file descriptors between the processes we make use of two systemd commands called
sd_pid_notify_with_fds and sd_listen_fds.

The first command is used to pass PID 1 of a file descriptor while the latter is used
to retrieve it after an update has been performed. The process is straightforward but
does require some caution, especially if you want to pass multiple file descriptors.
There is no system in place to distinguish between passed file descriptors other than
the order in which they were passed, therefore the programmer has to take great
care when retrieving them, otherwise the update can fail due to trying to use a file
descriptor in an incorrect context. An example of this could be trying to send data
over a file descriptor which is reading a local file instead of the intended socket. This
is not as hard as it might seem, it just comes down to preserving the order in which
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Figure 4.3: Figure showing a schematic over how a systemd update process is carried
out. The file descriptor is transferred to PID 1 from the old version and retrieved by
the new version of the application. The shared memory is mapped, serialised and
transferred by the old version and then mapped to the new versions memory and
retrieved for deserialisation.

the descriptors were saved when restoring them.
Secondly we need to serialise the rest of the state, namely variables and pointers.

Our solution doesn’t directly save anything off the heap, because of the earlier
mentioned problems in trying to save data from the heap. Instead, pointers are
indirectly saved by saving the data which they are pointing to. We’ll discuss how
this is done by the programmer in sub-section 4.4.2. To serialise state which is
not dependent on any type of file descriptor we utilise the memory and virtual
mappings to achieve our goal. There are two essential system commands we use
when serialising data when an update is performed. Firstly shm_open is used to
create and or open a shared memory object. Secondly mmap is used to map a virtual
address space to the shared memory object. If we look at figure 4.3, we get a clearer
view of what happens.

The shared memory object function is essentially that of a file stored on disk,
but since we can directly map it to memory the read and write performance is
greatly improved. The actual serialisation is done by a using a write command to
the shared memory object. Our serialisation technique is functional but does not
feature any kind of automatic analysis as the Kitsune library does. This means that
the programmer needs to do the work of ensuring correct state transfer. We’ll discuss
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our suggestions for how to do this safely in the usage sub-section, 4.4.2. Essentially
this means that the programmer using this type of method has to be aware of the
size of the different objects they wish to save as failure in doing so would result in
loss of state and possible segmentation faults. This means that they need to ensure
enough memory is allocated when creating the shared memory object that is to hold
the serialised state.

Lastly to ensure that the software is restored to the proper update point we’ve
added functionality in the state saving process to check for an existing shared mem-
ory object. This is to be used in the serialisation as well as in the deserialisation of an
update. The application enters the serialisation point by looking at the modification
time of the binary it’s currently running. An initial time is saved when the program
is launched and if it detects that the binary has been modified it serialises the state
and then the running application kills itself. We utilise systemd here, which restarts
the binary with very little overhead. For the restart to actually start up the updated
version, the binary file which it restarts has to have been updated during program
execution. This replacement of the binary can either be done manually, or could be
done by some updating system such as a package manager.

4.4.2 Usage

The overall structure of this method using systemd is less programmer friendly than
the previously discussed library Kitsune. The reason for this is that the programmer
implementing this method has to tread carefully when performing the required steps
as there exists no automated tools which can determine the size of data that is to be
serialised. This has to instead be taken into consideration when creating the shared
memory objects and mallocing memory space for them, as well as when reading
them for deserialisation. Since this could potentially be quite error prone if done
value-by-value with the programmer manually setting and restoring the location of
each variable, we suggest a somewhat more robust approach for the programmer to
use. By creating a struct for all the saved state, it becomes much easier to reserve
the correct amount of memory required. It also becomes easier to restore the state,
with each variable being possible to refer to by name rather than memory location.
Finally, it’s also easier to add variables to the saved memory, since the programmer
won’t have to manually change all memory locations placed after the variable (all
of which are moved by the size of the variable).

The same is true for when migrating the file descriptors, which we previously
mentioned that the programmer has to retrieve in the right order to have correct
program execution and potentially to avoid program crashes. Update correctness
ties in with the state transfer here as well, there exists no way of knowing if an update
is going to behave properly until the update is done. Of course the programmer can
check the code extra carefully, but since the program additions are in the actual
update, the only way to test them is to actually perform the update. Therefore, the
best way to test the update beforehand is to try to run it locally before pushing it
out onto a live environment. An advantage of this method of updating is also that
it has no special dependencies other than an up-to-date version of systemd (r228),
so if it works locally, there shouldn’t be anything system dependent that can affect
the update correctness.

The update points of this method is not vastly different from Kitsune which
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we previously introduced. The same logic applies in that the update points should
be placed in a loop in the main program to check continuously for update points.
The update process in itself is automatised in all respects except that the person
in question must replace the binary file they wish to update, the rest is handled
by a combination of the application itself and the background service. The binary
file replacement could however also be handled by a package manager, which would
allow for dynamic updating by even some of the least technical home users.

When the program is launched after an update, there’s also the important part
of returning the code execution to the correct point (where the update occurred),
as this too is part of our definition of state. As with Kitsune, the idea is to first go
through a series of checkpoints to reach this point. This checkpoint starts with a
check for an existing shared memory object. If such an object does exist, we jump to
a specific area of the program which features our deserialisation point. Exactly how
this point is implemented depends on what state the programmer has intended to
save. The overall structure will look like this: the shared memory object is mapped
to the virtual address space of the updated application. Then the serialised data
is retrieved and deserialised i.e. data is put into structs to restore the state. As
mentioned previously, this is the part that will differ depending on the program’s
implementation and what state was serialised. The program will then return to
its intended running state. This can be done by either placing the deserialisation
point at a point where this is possible to continue naturally or by using a label. We
recommend the first as labels can make the code harder to read. If an update wasn’t
detected, the program continues its normal execution.

Now that we’ve presented how an update works, lets discuss how variable changes
are handled in this program. A variable change is when a variable is e.g. renamed or
added over an update. This becomes something the programmer must handle, but
is not too complex. Picture the case, a programmer has decided to add a variable
to version 2 of the program server. Let’s call it server2 to easily refer to it, and
the initial version as server1. From server1, the programmer will have a struct of
saved state. The newly introduced variable won’t be available in this struct, so in
the step where the data is retrieved from the struct, the new variable should also
be initialised. When server2 is then to be updated again, we’ll need a new struct
that includes the new variable, in order to save it. This means that server2 would
hold two different structs, both the old struct to restore the previous state, and
an updated struct in order to save the new variable as well. For the next version
thereafter, server3, it would then remove the old struct and both restore and save
state using the newest struct. Figure 4.4 shows all three versions of server and
which struct they use to restore and then save the state for an update.

4.5 exec
Here we introduce the third and last update method we have been working on built
on the system command exec[20]. As you will notice, this last section is a lot shorter
than the two methods we previously introduced. This is because both Kitsune and
the systemd method are new to the unfamiliar reader and therefore require a proper
introduction. The systemd method and the exec method we are introducing here
share a lot of similarities in their implementation and the main difference lies in how
the update points are handled and how file descriptors are saved. While they are
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Figure 4.4: Two structs used in the program server over the course of two updates,
from server1 to server3. For each version of the program, it shows which structs
it uses to restore and save state during an update. Struct 1 is the original struct,
and struct 2 is the updated one which includes the added variables.
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done using a kill command and restarted with a background service in systemd, exec
takes care of all this as we will see below. Again, the section starts with introducing
how the technique works, then it goes into a sub-section explaining how the usage
differs to that of systemd.

4.5.1 Structure

Exec is a family of system commands specifically designed to replace a currently
running process with a new process from a different running image[20]. The com-
mand has some interesting design features which coincides with features that we are
interested in when designing a dynamic update method. The exec command does
not preserve any of the variables when executing the new binary, but we already
presented a way to transfer data between programs in the systemd section 4.4.1,
which we reuse here. There is however some information that is transferred between
the two running methods when exec is called. The most interesting to this thesis is
the ability to transfer the file descriptors between methods. This is shown in figure
4.5, where the file descriptors are now shared between the versions of the program.
The command also transfers some other data that could ease the programmer’s ex-
perience while updating but is not necessary for the method to work. These include
transfer of signals, process id and parent id to mention a few of them.

As we do not rely on systemd any more for the restart, the whole update method
is done differently. To detect an update we instead continuously look at the time
at which the currently executing binary was last modified on the file system. If
the binary is determined to have been modified the update process is initiated with
creating a shared memory object and serialising the state that we wish to transfer.
After this has been done the exec command is executed and the old version of
the application is replaced by the running binary of the updated application. The
updated application initiates with checking for any shared memory objects, if these
are detected the state that has been saved in them is deserialised and put into the
proper structures of the updated application. This is a full cycle of an update using
the exec method. It does save the programmer some work and possibly trouble by
not having to worry about the transfer of file descriptors and the order of them.
There is also no need any more for using background services, as exec does not need
them, which does save some work.

4.5.2 Usage

The usage is essentially the same as for systemd, as variable restoration is done the
same way. The only difference is that file descriptors can be considered ordinary
variables in this way of updating. There is thus no need to pass file descriptors
between the programs, simply saving the ints which are used to access the file
descriptors is enough. There is also a minor difference at the start of an update,
where instead of killing the running program you simply start the updated one
directly.
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Figure 4.5: Figure showing the update process of the exec method. File descriptors
are transferred automatically when the exec function is called while the shared
memory has to be created and mapped to the old version where data is serialised
and stored. The new version then maps the shared memory and deserialises the
data.
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Chapter 5

Results & Discussion

5.1 Introduction
We want to be able to compare the different methods we have presented you with in
the proof-of-concept section to provide context to the reader what different trade-
offs with each of the methods we have developed and tested. We chose a benchmark
to outline the main differences in terms of performance. This chapter should provide
the reader with an immersed view of the different strengths and weaknesses for the
methods which we have explored in this thesis. The reader should not take the
results presented here as a final conclusion of what methods are the best as there
are other factors than just performance to take into consideration when using these
methods.

There are two main reasons that we chose performance as a main benchmark
for our results. Firstly it has to do with the difficulty to quantify other results such
as code complexity and difficulty to implement among other things are that these
are more subjective areas which are highly tied to personal opinions. The ability
to reproduce results is very important when performing research as it strengthens
the conclusion of the research project. Secondly this research project was conducted
in collaboration with Axis communications where a lot of their software is run on
embedded systems, therefore it was important to present benchmarking tests since
resources as explained in earlier chapters are often a lot more scarce on embedded
hardware.

Despite the complexity to implement a method being quite opinion based, we
have done what we can to quantify it, since how easy the code is to actually imple-
ment is one of the most important aspects of implementing dynamic updating, so
we wanted to include something comparable regarding that aspect. We’ve done this
by adding a section regarding code additions which compares the different methods
in terms of line of code to implement for the same program which can serve as some
pointer of hardness to implement. We will also compare difference in binary sizes
and difference in toolchain sizes. A toolchain can be said to be the amount of un-
derlying dependencies and programs needed to compile and run a binary file. For
example the toolchain of a simple C program which outputs “Hello World” would
simply be a functioning C compiler such as the popular gcc. We also discuss our
own opinions on which option is the easiest to use as a programmer.

This chapter will be divided into six different subchapters. We will begin with an
introduction to the design of the setup which will introduce the reader to the system
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we have used, which tests we have done and the motivation behind choosing these.
We will then continue with update time results which is a presentation how long
the different methods takes to perform a full update which will be presented with
figures and possible reasons for why these results were achieved. After that follows
a presentation and explanation of the memory usage of the different methods when
performing an update, much similar to the update time section the reader will also
be presented with graphs and a discussion of what reasons the methods have for
performing differently. We then continue with the sub-chapters code additions and
file sizes which will compare the number of lines required to implement the different
methods and the needed dependencies and sizes required for the sizes. Finally, the
chapter is concluded with a discussion of the conclusions we can draw from the
results we have presented in this chapter.

5.2 Design of test setup
We performed our test on UNIX based system with the Debian distribution. The
computer in question has an Intel i7-2600 CPU with 16 gigabyte ram memory. We
chose to perform our tests on a PC as opposed to benchmarking on an embedded
system as the main goal was to acquire whether the methods had any performance
differences and if they had which were they. These test could have been carried out
on an embedded system as well, but it added extra complexities for the compilation
step when using Kitsune. And since the goal was to gain an understanding of
performance differences, the methods should not behave differently relative to each
other when run on a different system, even though the actual running time may be
faster. In terms of memory usage there should be no difference. Therefore, we chose
to use a pc as it was faster to implement the proof-of-concept there, since building
the programs for embedded systems requires more time due to them having more
extensive tool chains.

The program which we updated to test all this is our basic server/client imple-
mentation presented in the proof-of-concept chapter. Each of the three methods
have been separately implemented on the server such that it is capable of dynami-
cally updating using these corresponding methods.

The update times were timed by simply inserting a function call which reported
the time before the update and after the update had finished and then taking the
differences of these two times to get the time it took for the program to restore itself
to the same execution point. These times were clocked 20 times. We did this for
two reasons; firstly we wanted to be able to get a mean value of the update time.
Secondly we wanted to measure enough times to see if these times were representative
or if the update times was irregular. If they were irregular the tests might not be
good enough or there might be other factors at play. This first test which measures
the update times can be seen as most representative in terms of performance test
as factors such as the CPU clock and cache will be a big factor here.

The second test that we performed was a memory usage test. This test is also
an essential performance test and as the thesis was done in collaboration with Axis
we felt that this test was one if not the most essential for them as excessive memory
usage can cause problems on an embedded system or even not possible to run due
to too high memory usage. The memory usage was measured with a tool called
Valgrind which is a collection of profiling and debugging tool. We made use of the
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Kitsune systemd exec
Mean 0.460 0.419 0.104

Std. Dev. 0.0557 0.0692 0.0127
CV 0.121 0.165 0.122

Table 5.1: The mean, standard deviation and coefficient of variation for the update
time of each of the updated programs with their respective methods. The mean and
std. dev. are both measured in milliseconds, whereas the cv has no unit.

Valgrind tool massif which is a heap profiler by default but has the capabilities to
also measure stack memory usage if the user chooses to enable it. The test were
carried out a multitude of times on all three methods, similar to the update time
measurements, but showed exactly the same behaviour on each run.

Code additions are measured by taking the difference in lines of code from the
original implementation of the program to the different methods. File sizes are also
self-explanatory, we simply measure the number of bytes that the different files and
libraries consist of.

5.3 Update time results
Below we present the graphs for the update times of the three different methods
starting with Kitsune, then systemd and finally the exec method. We also present
the reader with a combined graph of the methods to give a weighted impression of
how they look compared to each other. We have calculated the mean of the values,
the standard deviation of them, and finally the coefficient of variation (CV). As our
measured values are simply a sample, not an entire population (there isn’t any way
to measure the entire population in our case), we have used Bessel’s correction in
calculating the standard deviation. The CV is calculated as std. dev.

mean , and can be
used to compare the variation between different data sets since the value of the CV
isn’t affected by the actual values themselves, only their variation relative to each
other. For all of these calculated values, lower is better.

As can be seen from table 5.1, systemd displays the largest relative variance of the
methods. Meanwhile, exec and Kitsune have a significantly smaller relative variance,
with Kitsune being just slightly more stable than exec. The variance we see is most
likely due to a combination of the operating system and memory accesses. With
operating system noise we mean that depending on amount of processes running
applications can show a variety in execution time due to the time slices they are
given and possible cache misses caused by context switching. This problem can be
minimised by shutting down as many other programs as possible, but the operating
system itself and any programs it starts and controls will still leave some of this
noise. Another explanation was that the test data was collected in a continuous
series, there were no pauses between the data collection of the tests and caching in
the memory might have influenced some tests.

Even so figure 5.4 gives us a very clear picture of what is going on, the exec
method is not only faster in all aspects compared to the other two it also displays
an essentially equal stability to Kitsune, without any greatly diverging measurements
as Kitsune has. In Kitsune’s case when the update process occurs the two versions of
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Figure 5.1: Shows Kitsune update times on the vertical axis and the number of
updates on the horizontal axis

the program are run simultaneously with positionally independent memory meaning
that they essentially share the same physical memory. We suspect that Kitsune’s
way of mapping these from the old version of the program to the new brings some
overhead to the update process which is what we are seeing. In systemd’s case we
are confident that the transfer of file descriptors is causing the wide ranges of update
times that we are seeing. We draw this conclusion from the fact that exec makes
use of the same type of state transfer when performing an update but passes file
descriptors through inheritance while systemd sends and retrieves them through an
external process.

Systemd and Kitsune both also display a single highly divergent measurement.
Systemd 0.15ms which is way below the average update time and Kitsunes at 0.65ms
which is way above the average update time, it’s hard to determine exactly what
caused these spikes as they do not seem to be a natural occurrence. That is there
is no other spikes that show this extreme behaviour out of the 20 tests that were
measured. Since they both are one time occurrences we do not credit them to say
something about the actual process and is most likely the product of system noise
present.

Overall the conclusions we can draw from these tests is that the exec method is
on average 0.3-3.5ms faster than both the other update methods with the bonus of
it also having the smallest amount of span of oscillations of all the methods, ranging
only at it’s worst at 0.04ms compared to the 0.2ms ranges we see in Kitsune and
the 0.3ms ranges in Systemd. This suggests to us that the exec method is not only
the fastest of the three, but along with Kitsune it’s also the most stable and reliable
as we see from the measurement of the coefficient of variation.
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Figure 5.2: Shows Systemd update times on the vertical axis and the number of
updates on the horizontal axis

Figure 5.3: Shows Exec update times on the vertical axis and the number of updates
on the horizontal axis

40



Figure 5.4: Shows all combined update times on the vertical axis and the number
of updates on the horizontal axis

5.4 Memory results
For measuring the memory usage, we measured both heap and stack memory usage
and combined them into one graph. We don’t actually care about the specific places
where memory is used, but only if our total memory usage is higher than we have
available. Therefore, combining them into one graph only simplifies the readings.
For the memory usage we present three different graphs. These show the memory
usage of a program from the start of its execution, during the update taking place,
and then until exiting the program. There is however an exception for the systemd
updating system. Since the updated program and original program have different
process IDs, we had to run the memory collecting tool on each of them separately.
The interesting data is however only on the initial version, as that is the one to
actually save its state in the shared memory, the secondary program merely restores
that data and doesn’t allocate any extra memory above what the initial program
did. As such, we’ll only be showing the memory usage of the non-updated version
of the server for systemd. The other two options, Kitsune and exec, both include
the actual update and the updated program shut down in their graphs.

The graphs are plotted with memory usage on the vertical axis and instructions
executed over time on the horizontal axis. This means that the time it takes for us
to start the update after starting the program won’t have as significant of an effect
on the graph, but rather only the initial code execution will. The memory usage
is measured in kilobytes, with the peaks varying between 1 KB to 60 KB for the
different programs. The graph visualisation program cannot differentiate between
measuring only the heap versus measuring both stack and heap memory, so the label
on the y-axis is partially incorrect. The memory usage of the server using Kitsune to
update is plotted in figure 5.5, the systemd version in figure 5.6 and the exec version
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Figure 5.5: The memory usage of our two server programs which dynamically up-
dates with the use of Kitsune. The update occurs roughly halfway through the
graph, where we see the memory usage increase from 5 KB to 62 kB.

in figure 5.7. For Kitsune, it’s clear that the update occurs just roughly half-way
through the graph. For systemd, the update starts at the end of the graph, due to
the reasons mentioned just above. We only see the first half of that update in the
graph, namely the part in which state is saved before program shut down. Finally,
for exec the update again occurs towards the end, but here we see the entire update
process including after the restoration of state in the updated version. The peak
for exec is significantly smaller than for the other implementations but it is still the
same server update that is occurring.

For Kitsune, the memory usage is especially interesting because it doesn’t actu-
ally decrease again after the update has occurred. This could hint at there being
potentially memory leaks that occur in the update process. It could also be that the
driver program doesn’t release the memory of the old version of the program until
the updated version itself gets updated (meaning that two updates have to take
place before the memory is released). This could just be a solution to improve the
execution time when performing multiple updates, such that when a second update
arrives, there is already memory available to use to transfer the state to the newer
version. Regardless of the reason to it though, the memory usage is not that large
for a modern computer system but could pose potential problems on systems with
less memory. Since this is a very small scale program it’s troubling that it adds so
much extra overhead to such a small program, especially if it was to be run on an
embedded system. It’s fully possible that the overhead is constant, and won’t grow
in size as the scale of the program grows. But we equally can’t rule out that it won’t
keep growing along with the size of the program and/or size of the state that’s being
saved. As such, Kitsune is potentially quite worrying in terms of its memory usage,
at least when looking at embedded systems.

When looking at the systemd graph, there’s a few points worth discussing. But
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Figure 5.6: The memory usage of the non-updated version of the server, which
dynamically updates with the use of systemd. The update occurs at the end of the
graph at the secondary peak, where we see the memory usage increase from 2 KB
to 16.4 kB.

Figure 5.7: The memory usage of our two server programs which dynamically up-
dates with the use of exec. The update occurs at the end of the graph, in which the
memory usage peaks to 3 KB memory usage from its previous usage of 1.5 kB.
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especially interesting is the first of the two peaks in terms of memory usage. Clearly
there is something causing a roughly equally large memory increase as actually sav-
ing the state into shared memory (the second peak). Since the program is nearly
identical to the exec version, besides then of course the usage of systemd to save
file descriptors, this would mean that the memory peak could be coming from the
functions in which the file descriptors are passed to PID 1. This is somewhat wor-
rying, as we’ve already seen that this process is relatively slow. If it on top of that
also requires a significant amount of memory in order to pass these file descriptors,
it could make the entire process much slower in a memory restricted environment.
We also see a large increase in memory usage at the end of the program’s lifetime.
Similarly to Kitsune, we don’t know how this scales into a bigger scale, but it could
be troublesome. However, the memory usage does decrease back down to the lower
memory level when the updated program starts (not shown as the relevant section
of this graph is simply the restore section and only varies between 1.5-4 kB, much
lower than the original program).

Exec has a very low memory usage overall. This graph also shows the entire
update process, including the second running program. However, because of the
properties of exec in which the memory sections of the programs overlap (remember
it’s similar to a fork() command), so less memory is used in the transfer of the
state. This also means that it’s not nearly as obvious that an update even occurs,
because the update peak is still smaller than the initial start-up of the program.
This start-up peak can be seen in all the programs, but is relatively larger for exec
because of it using so much less memory to update. The exec version of the program
never goes above 4 kB.

To quickly compare the three, it’s obvious that exec is the best option in terms of
memory use. It uses the least amount of memory for the update and it also has the
smallest comparative peak versus its normal execution memory usage. The update
only doubles that memory usage, whereas for Kitsune and exec it goes up by about
ten times their normal memory usage. This is likely a lot due to general overhead
of the specific implementation, combined with certain functions we use requiring a
lot of memory usage to run. This suggests that exec might be the option that is
most likely to scale well into larger programs, however since we haven’t properly
investigated if Kitsune’s or systemd’s memory overhead is constant independent of
the program size, so we can’t definitively say which will be the best suited for larger
applications rather.

5.5 Code additions
Our test setup consists of 78 lines of code. This is much less than any of the actually
used programs in Axis cameras, but it makes this current case the worst case for
code additions. There is going to be some static overhead for each program, and
then additions depending on the amount of variables to save. In a small program
like this, that static overhead will have a much larger impact than it would in a
large-scale program, and so the total code additions can be perceived to be much
worse than they would be in a more realistic program. This will serve as a base
comparison towards our three other methods, where an increased amount of lines of
code, that is the larger the difference is between our test program in amount of lines
of code the more complex the method will be considered. There are of course other
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things that can be considered to add complexity to a program as well, and we will
try to point these out. If we start with the method that needs the lowest amount of
lines of code needed, Kitsune comes in at first place having 96 lines of code to get a
functional test program. A total addition of 18 lines of code. Exec needs 118 lines
of code for a functioning implementation and systemd 126 lines of code. Percentage
wise this is a 23% increase for Kitsune, 51% for Exec and 61% for systemd. The
paper which presents Kitsune states that the amount of code needed to implement
Kitsune is generally related to the amount of heap resident state and initialisation
rather than the overall code size[2]. As we have only implemented our methods
on one test program we can only give a qualified guess whether this holds true for
systemd and exec as we would need further research to confirm this. If we look to
see what the main difference between exec and systemd this gives us some points
on what would produce more lines of code. The main difference in systemd and
exec is the transfer of file descriptors which needs to be taken care of manually in
systemds case while exec transfers them automatically. Therefore, a program which
holds many file descriptors open such as writing or reading to several files or servers
would further complicate an implementation of the systemd method and create more
lines of code, while exec would not be affected by such a thing. Secondly the thing
which does produce more code in both exec and systemds is the actual update points
which complicate things the most. While Kitsune can handle this kind of transfer
in simple one line function calls both our own developed methods currently have
no possibility of doing so and require more extensive checking. Kitsune handles an
update point in the following manner Kitsune_update(“name”) both our methods
require more extensive checking at update points and as such produces more code.
Much of this error checking is directly implemented into Kitsune’s own library, and
we could do the same to help the programmer implementing our methods to avoid
much of this tedious work. This turns into a relevant section for future work, which
would likely improve the current number of needed code additions.

It’s very hard to conclude that more lines of code automatically produces more
complex code as it is somewhat subjective. What could be argued is that more
lines of code would require more time to write and therefore the methods we have
developed are then more complex as they require more work to make fully functional.
From our own experience, it is somewhat easier to write and read Kitsune’s code as
it can be more easily integrated into the existing code without significant changes.
The additions of if-cases for exec and systemd, which can switch the entire layout of
the code, are harder to follow and therefore also somewhat harder to write. There
are also more things to keep in mind, with variable initialisation and placement in
memory, that their code complexity simply is just a bit more than Kitsune. After
having worked with them for about two months though, we don’t believe that any
option is especially hard to work with, and even though Kitsune is somewhat easier
it doesn’t make systemd and exec unviable choices.

5.6 File sizes
Next we’ll be looking at various file sizes. We’ll be comparing two different types
of files. First we’ll look at the file sizes that are needed to compile the program,
i.e. the file size of the source code. This problem can be avoided completely by
cross-compiling. In order to add some extra flexibility to the program, being able
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Base program Kitsune systemd exec
Source code N/A 31 600 6 7
Binary 16 142 27 28

Table 5.2: The file sizes, in KB, of the source code required to compile the program
with each library, as well as the binary file that’s produced when the libraries are
compiled into the binary by being statically linked. The source code for the base
program is N/A because it will be the same for all four implementations and is
therefore considered to be 0, and we’re interested in the additional usage that’s
added on top of that.

to compile it locally on a hardware restricted system could be beneficial. Secondly,
and somewhat more importantly, we’ll be looking at the file sizes of the binaries. All
the dynamic updating techniques we’ve tested are statically linked into the binary,
so the file size should reflect which updating method is being used. While this is
unlikely to be the biggest problem in an embedded system, with disk space being
relatively cheap today, it is still relevant and could still be a limiting factor.

The comparisons of the file sizes for both the necessary source code and the
produced binaries are presented in table 5.2. Since all methods produce two binary
files, an initial version of the server and an updated version, we’ll simply present the
initial version’s binary. The code change between the files is simply the removal of
a single duplicate line, so the file size between versions is negligible.

It’s quickly obvious that Kitsune is a lot larger of a library than our systemd
and exec implementations, especially in terms of the source code. However, it’s
worth noting once again that the file size of the source code is easy to circumvent
by instead cross-compiling the software from a system without the same hardware
restrictions, should disk space end up being an issue. Also, for the binary Kitsune
adds a lot more to the file size of the program than the others. Most likely though,
it won’t add more overhead into larger programs, as the majority of the code is now
already available in this basic binary. In other words, when saving a larger state,
the appropriate function calls to do so are already included in the file size of this
binary. Thus, the addition in terms of binary file size will only be the addition of
calling these functions an extra time, thus meaning that adding Kitsune to a larger
program is unlikely to produce significantly more overhead than systemd or exec.
Instead, it’s most likely that the file size difference will stay at about 120 KB, which
is a very small difference for the disk space of modern systems, even for embedded
systems.

5.7 Combined Evaluation
The most important aspect for dynamically updating software in an embedded sys-
tem is the memory aspect. Since most solutions focus on duplicating the state for
at least some period of time, this makes the total memory use become a very large
factor, as we saw from our results. Our small scale tests are worst-case scenarios as
mentioned previously. Additions to a codebase this small will produce significantly
larger overhead than with a larger codebase, but it clearly shows the effects they
can have on memory usage. The secondary most important aspect is the ease of
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use for the programmer, which is closely related to the code additions. If dynamic
updating is too difficult or too time-consuming to add, then it’s not likely to see any
common use, even where it could be beneficial. All the update times are relatively
low, and in most scenarios selecting a good update point, which provides minimal
end user interruption during the update, will likely end up being the most important
aspect for the execution times. Finally, for the file sizes, cross-compiling for embed-
ded systems is already a common practice, so source code file sizes won’t be a large
hindrance. And similarly to the execution time, the binary file sizes end up being
so small that they don’t provide any especially large advantage to any method.

So, with exec method being the best choice when it comes to memory usage.
Also, it’s the best in the more minor aspects such as execution time, it does seem to
be the overall preferred choice. The other option would be to select Kitsune, due to
its strength in usability, with low code additions required and well-developed state
change system in place. However, there are other usability aspects to Kitsune outside
of the code that make it less usable. The library uses other external libraries, one of
which it requires running an outdated version to function correctly. Another of these
external libraries is difficult to cross-compile together with Kitsune. It’s in no means
impossible to fix these issues, but they require a lot of extra maintenance work which
exec simply does not have. Exec does lack in being simple to use to transfer variables
between versions, however its other advantages relative to Kitsune’s disadvantages
does still place exec as the choice we consider to be the best for most scenarios
within Axis, and embedded systems as a whole. Generally we feel that even though
state transfer is somewhat more complicated to do with exec than Kitsune, it is
worth it due to Kitsune’s large amount of dependencies which are much harder to
get properly working.
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Chapter 6

Related work

6.1 Introduction
This chapter serves as an evaluation and review of previous work done in the field of
DSU or closely relatable to this thesis. The goal is to present the reader with a short
but comprehensive background on what previous work has been done in the field,
as well as make the reader aware of any significant differences with these different
projects to what we’ve presented in this paper. It should give a brief insight into
the type of work currently being developed in the field and a look into what other
options there are and could be for dynamically updating programs.

6.2 Ginseng
Ginseng can be said to be one of the predecessors to many of the DSU research
projects which exist today. Ginseng was developed in 2005 by I.Neamtiu, M.Hicks,
G Stoyle and M.Oriol. The research project set out to develop a DSU method
which could accomplish the following three things: Firstly the method should be
easy to implement and easy to verify that it’s been correctly implemented. Secondly
it should be easy to change data structures in a program between updates i.e. the
DSU method should not hinder the programmer from updating their software as they
best see fit. Lastly it should not require a massive overhaul of the application to
make it functional with a dynamic software update. Looking over the structure that
is required to fully implement ginseng into a program it’s very easy to see that a lot
of things are still in an experimental stage compared to later projects. The program
code is much more rudimentary and does in fact require a significant overhaul from
the original code in order to make it work with ginseng. From the examples they have
supplied in the paper more or less all code needs to be changed or re-factorised for
the analysis tool to function properly. The Kitsune paper does several comparisons
to ginseng[2]. Not surprisingly Kitsune excels in nearly all instances, but without
ginseng the well needed lessons for developing a better DSU method would probably
not have been available. As such ginseng can be seen as an early effort to try to
make the whole process of dynamic updating easier for all parties dealing with it,
a stepping stone in the field. Despite its more elementary implementation than its
successors it brings a lot to the table. The library includes an established way of
rewriting the code and provides us with automatic update points. An analysis tool
which provides static analysis which is supposed to help the programmer avoid bad
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update points, and it does so with very little overhead. The most impressive part
about ginseng is its analysis tool which today still, guarantees correct updates due
to its ability to perform static analysis. Gingeng is one of the few DSU tools which
can guarantee this[7]. Ginseng compared to our methods exec and systemd can be
seen as superior in many ways. However just like Kitsune it suffers from the added
cost of having a larger toolchain and more dependencies.

6.3 Kitsune
What differs Kitsune from previous tools such as Ginseng and UpStare, both which
are mentioned in the paper, is that updating with Kitsune is not only easier but
the process is highly customisable and more user-friendly than previous tools. It
also adds extremely little overhead to the update process compared to any other
tool that is currently available[2]. To achieve this they have developed a framework
which is to be integrated with the existing application that the programmer wants
to update. This allows the programmer to migrate local and global variables and to
set update points where the updated application takes over. The researchers have
also developed a new tool which they call xfgen which allows for new variables and
data structures to be initiated beforehand, or changed in case the previous version
now has outdated and incorrect values.

There exists similar research and developed tools before Kitsune which in many
ways, achieve much the same thing as the authors of this research paper have accom-
plished. The authors are however very much aware of both the issues and opportuni-
ties that this presents. As such they take valuable lessons on what previous research
has done well and what could be improved in order to develop Kitsune. Kitsune thus
brings some interesting improvements to the field of DSU. For example compared to
the previous mentioned program Ginseng along with some older programs, Kitsune
solves one of the security issues that these suffer from. By transferring the complete
state of the application instead of updating individual functions it strictly prohibits
code injection and can also deal with compiler inlining, thus making it both more
secure and faster than most predecessors. There exists tools which handles things
similarly but adds more overhead, often by using more memory than Kitsune does.
The authors are however very clear about Kitsune not being perfect and that it
suffers from some issues, mainly when dealing with transfer of objects and pointers
using xfgen. Other notable contributions lie in their test suite where they update
and evaluate performance and overhead of several programs many of which have
never been tested with a DSU tool before. The most notable being the application
TOR which is a project for communicating anonymously over the internet, which
has a code base of over 76 thousand lines of code.

6.4 Rubah
Rubah[8] is a Java continuation of Kitsune. The authors present Rubah as the first
efficient dynamic software system which also is portable. Portable in this case means
that Rubah can be used with any underlying JVM (Java virtual machine) compared
to previous DSU systems for Java. As Rubah is a continuation of Kitsune, much
of the framework and methodology used in the Kitsune project is implemented in
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a similar manner for Rubah. Rubah does however employ newer algorithms and
a somewhat different strategy for implementation than Kitsune employs. Much of
this is due to the change from C to Java, as Java is not only a much more type-safe
language than C, but it is also object oriented and therefore different strategies can
be applied when performing an analysis for a state transfer.

One of the key changes in using Rubah over Kitsune is how variables are restored.
In Kitsune, each variable is restored individually, and any variable changes are
specified in an external file for each. For Rubah on the other hand, it is possible to
restore entire objects. This means there are often significantly fewer lines of code
needed to restore the variables, since each object can hold multiple variables. To deal
with any changes to the variables within an object between updates, the programmer
can write their own object transfer functions, that specify how an object is to be
transformed when it is changed during an update. An advantage of using Rubah
though is that a variable which is added into an object will by default be created
with its default value, without requiring code to manually initialise it. This means
that the programmer needs to write yet less code, and decreases the likelihood of
an error in the update process. Rubah also adds the ability to wait with updating
objects once the program is updated, and first transfer their state from the old
program once the object is used in the new program. However, they concluded that
this was generally a slower process, because the compiler wasn’t able to optimise
the code as well when using this technique.

The most important addition for Rubah though is their ability to run tests
during an update. A large problem with Kitsune is its inability to ensure that the
transferred state is correct. Any faults in this state could cause the program to
run in any possible unpredictable way, so it’s especially important that this doesn’t
occur. For Rubah, the programmer can add test cases which are run during the
update process, thus checking that the transferred state is still correct for the new
program. This makes the updating process much safer, as it’s significantly less likely
to include bugs when the programmer utilises this technique.

6.5 Multi-version Execution
This next paper was written with a quite significantly different goal in mind than
was the aim of our thesis. Their goal is namely to avoid program crashes. Their
proposed solution to this problem does however happen to also become very relevant
to dynamic updating. We’ll motivate what applications their solution has after we
first present their paper.

In modern day software, new updates often result in the introduction of new
bugs into the code, bugs which weren’t identified during development. This is prob-
lematic, since it makes users running functional software to become less prone to
updating it. Much fewer people are willing to take the risk of updating when it
means they might be getting dysfunctional software. This also means that critical
security or functional updates to the program go missed, since many users won’t
ever update to the versions that solves these bugs.

The paper “Safe software updates via multi-version execution”[12] investigates
the possibility to run two different versions of a program simultaneously, in order
to avoid crashes. The way this is done is by monitoring both programs, and when
one crashes it will be restored to a previous state and then instead call the same
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function on the secondary program, and passing the output from that function back
to the program that originally crashed. There are three different steps that have
been implemented in this paper. First at compilation, an analysis is done of the
programs in order to properly link their execution. Secondly, a monitor is put in
place that monitors all external behaviour (input to and output from the program).
When this monitor identifies any differences between the two running programs, the
third part takes over. This has to choose how to deal with the differences, or recover
from a potential crash. The general solution is to have the old or crashed version
instead run the newer version’s function, then ensure that the two programs are
again in an equal state.

In the feasibility study of the paper, the authors looked into the amount of
changes to LoC per program revision, as well as the corresponding number of changes
to external functionality. However, in the comparison of changes to the external
functionality, they also perform a post-processing step in which they ignore many
parameters and return values from the programs functions, because they are pointers
to memory and thus can’t be directly compared. With pointers being such a crucial
part of programming languages, it’s fair to assume that properly comparing the
values that these pointers refer to would change the result of the feasibility study. It
is also mentioned that the program can in fact handle this situation, so a reasonable
solution would be to utilise the functionality of the program to complete this section
of the study.

There is still a lot of functionality missing in the current implementation, that
is mentioned as something to be added later. One of the most significant of these
is the ability to restore a program after the two programs diverge. A diverge is any
point during the program execution when the two programs give different output.
This causes a shut down of the version with the worst output, which is by default
the older one unless the new version has crashed. Presumably, a diverge between
programs of different versions is a common enough occurrence that including it in
the implementation for the writing of the paper should have been done. Without
the ability to restore the program, the dual setup of running two programs at once
will only be able to stop a single crash, and only when the programs never diverge
before the point of the crash, thus greatly reducing its value as a safe updating tool.

So, lets look at the relevance of this paper to dynamic updating. In multi-version
execution two different versions of the same program are run in parallel, choosing
the “best” output (typically, the newest version’s output) of each function call as
the actual output from the function. This becomes very applicable to be used as
a dynamic updating tool. Whenever a new version of a program is released, the
older of the two programs could be replaced and the newest could then be restored
in accordance with the above (not yet implemented) functionality at an appropriate
point. Not only would this allow for seamless updates, but it also adds the added
benefit which the paper itself focuses on, namely avoiding program crashes.
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Chapter 7

Future Work

7.1 Introduction
In the making of this thesis, we came across a lot of divergent ideas that would
have been interesting to pursue and which would have added value to our work, but
that we simply didn’t have the time to pursue further. Our implementations do
also still have weaknesses which we have covered and are not suitable to be used in
production. In this chapter we’ll therefore present some of the most important and
interesting further work and research that we see as possible continuations to our
thesis.

7.2 A full-scale program implementation
The first step to further developing our program would be to actually try these
methods in a full scale program, that is significantly larger than our proof-of-concept
implementation. Running similar tests to the ones we’ve used here would be our
suggestion, to ensure that the methods do scale the way we’ve predicted in this
paper. We’d also like to see our proof-of-concept made into an external library to
be universally available, but this should be a trivial task as our code was developed
with such a goal in mind. This could then be further used to develop this idea into
a functional product to be used for adding dynamic updates to programs.

7.3 Improved state saving
One of the things we felt Kitsune did very well in their library, was to create a
generalised way of saving and initialising states. Their trade-off in this case is
that they require heavy analysis using C intermediate language when compiling
and running positionally independent code, which requires more memory. Our two
methods which we have developed are more elementary in a sense, they require more
work to properly function but in turn are faster and require less resources. As it
stands now, to be able to serialise data properly, the programmer implementing our
methods must make use of their own created data structures to save the desired
state.

An automated state saving function would thus save the programmer a lot of
work and the ease of use would greatly improve. What we would like to have
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developed is a function which takes a data structure and determines the size of the
data, serialises it and stores it for future updates. Likewise, the deserialisation would
function in a similar way, restoring the serialised data into the proper structure
for the updated application. The future work, would here lie in researching the
possibilities for making such a functionality work and what kind of alternatives that
would be available, mostly could it be done in a better way than Kitsune is doing
it at the moment, i.e. with a smaller library and less memory usage.

Another section of restoring state is the ability to return to the point in the code
from which the update occurred. The current way of doing so involved a lot of if-
cases and jumping between methods to restore all active variables, for both Kitsune
and our implementations. It would therefore likely be very beneficial for the code
clarity to have a more well-developed method of returning to an execution point.

7.4 Improved error checking
An important part of dynamic updating is the ability to ensure that any transferred
data is correct. Either because the variable could have been misplaced in the data,
causing it to be read from the wrong location, or because of a change in the program
which makes the old value of the variable incorrect in the current execution point.
In the current setup, the programmer would have to manually do a sanity check
on each individual variable after restoring them. This is quite a gruesome process
which means that many are likely to avoid it. Adding an overall system to deal
with these sanity checks, that is simpler to write, use and update than the current
manual version could lead to more safely written programs.

7.5 Cross compiling Kitsune
We spent quite some time trying to cross-compile a program which we had imple-
mented dynamic updating on with Kitsune. However, we needed to cross-compile
it to a different processor architecture in order to run it on the embedded system
we had available to us. This turned out to be problematic, because Kitsune uses
multiple other libraries to function. The main issue was in its use of CIL [22], which
was complex (but should be possible) to cross-compile together with Kitsune. To
make Kitsune viable for embedded systems, developing a way to cross-compile it is
essentially a necessity.
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Chapter 8

Conclusion

Typical software updates today are slow and cause a loss of state due to the restart
required when updating the software. In this thesis we have outlined and developed
a proof of concept for two updating methods using systemd and exec and compared
them to an existing research project in dynamic software updating called Kitsune.
In doing so we have demonstrated that there exists multiple options available to
the programmer when developing a dynamically updatable program which have
different dependencies and are suitable for projects depending on hardware needs.
The update methods we have developed are less dependent on existing libraries but
do in return require more work than existing methods to get a working update. Exec
is the simplest method of them since it only requires a working Linux environment.
The systemd implementation is similar in code size and implementation but requires
more work for transferring file descriptors and newer updates of systemd to properly
function.

The method which introduces the least downtime of the three has been shown to
be exec, and similarly we have also shown that it uses the least memory to perform
the update. Kitsune however is still the superior option in user-friendliness and
requires the least amount of changes in an existing code base to function properly.
However, since Kitsune is dependent on quite large libraries to be properly installed,
some of them quite old, if it is to be used for implementations today it would need
a significant amount of development time to function correctly. Since Kitsune has a
large dependency library it is also not suitable for environments where memory, disk
space or CPU time is an issue. Thus, it would be a lot more difficult to use Kitsune
for embedded systems. This makes exec would the best choice, since it is also
significantly better than systemd with both memory usage and update time. Since
the thesis was done in collaboration with Axis, we would like to make the following
recommendation: We recommend using the exec method for dynamically updating
software, since it introduces minimum downtime and has the lowest memory usage
of all the options we’ve studied.

We’d suggest that the next step be to preferably improve some of the problems
we discussed in the future work chapter, rather than straight going into making
it a fully functional library. From there it would be to actually use it in some
of their software to ensure that the method scales appropriately for the hardware
restrictions, before implementing it into all relevant software.
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Appendix A

Appendix

A.1 systemd implementation

#i f n d e f STATE_H
#de f i n e STATE_H

/∗∗
∗ Checks the cu r r en t l y execut ing f i l e ’ s l a s t modi f i ed time , and s e t s i t as the
∗ de f au l t time to compare to when running i s_ f i l e_mod i f i ed ( ) ;
∗/

void i n i t ( ) ;

/∗∗
∗ Checks i f the cu r r en t l y execut ing f i l e has been modi f i ed s i n c e i n i t
∗ was c a l l e d .
∗
∗ r e turn : 1 i f the f i l e has been modif ied , 0 o the rw i se
∗/

i n t i s_ f i l e_mod i f i ed ( ) ;

/∗∗
∗ Saves n number o f bytes from s t a t e in to a shared memory . The returned fd
∗ i s then passed along to PID 1 .
∗
∗ s t a t e : A po in t e r to the s t a t e to be saved .
∗ n : The number o f bytes to be saved .
∗
∗ r e turn : Returns 0 on succes s , e l s e r e tu rn s a non−zero value .
∗/

i n t save_state ( const void ∗ s ta te , const i n t n , const char∗ memarea ) ;

/∗∗
∗ Restores the s t a t e which was p r ev i ou s l y saved in to shared memory . Only works
∗ i f c a l l e d by the same binary that i n i t i a l l y saved the s t a t e . The s t a t e i s
∗ saved in to s .
∗
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∗ s : The po in t e r to a l o c a t i o n in memory to save the s t a t e to .
∗ l en : The number o f bytes to r e s t o r e in to s .
∗
∗ r e turn : Returns 1 on succes s , 0 i f the re i s no s t a t e to be re s to r ed , and −1 otherw i s e .
∗/

i n t r e s t o r e_s ta t e ( void ∗s , i n t len , const char∗ memarea ) ;

/∗∗
∗ Saves a socke t by pas s ing i t to PID 1 . Can take at most 10 so cke t s at once ,
∗ de f ined by the s e t t i n g s in the . s e r v i c e f i l e that runs the program .
∗
∗ fd : The fd to pass to PID 1 .
∗
∗ r e turn : Returns 1 on succes s , −1 on f a i l u r e .
∗/

/∗
∗ Executes the update funct ion , takes path and then a maximum of 32 arguments as argv
∗
∗ Last argument should be NULL to l e t the func t i on know that no more arguments are a v a i l a b l e
∗
∗ path : the updated f i l e which should be executed
∗
∗ r e turn : −1 on f a i l u r e o the rwi s e a nonnegat ive i n t e g e r .
∗/
i n t exec_update ( const char∗ path , char∗ arg1 , . . . ) ;

/∗∗
∗ Saves a socke t by pas s ing i t to PID 1 . Can take at most 10 so cke t s at once ,
∗ de f ined by the s e t t i n g s in the . s e r v i c e f i l e that runs the program .
∗
∗ fd : The fd to pass to PID 1 .
∗
∗ r e turn : Returns 1 on succes s , −1 on f a i l u r e .
∗/

i n t save_socket ( i n t fd ) ;

/∗∗
∗ Ret r i eve s the socke t from PID 1 that was passed v ia save_socket . The passed
∗ s o cke t s w i l l be ordered from 0−9 s t a r t i n g from id 0 .
∗
∗ id : The id o f the socke t to be returned .
∗
∗ r e turn : Returns the fd cor re spond ing to the id passed in . I f the r e was no fd
∗ cor re spond ing to the id , −1 w i l l be returned in s t ead .
∗/
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i n t r e t r i e v e_socke t ( i n t id ) ;
#end i f
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#inc lude <s td i o . h>
#inc lude <stdarg . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <sy s l o g . h>
#inc lude <s t r i n g . h>
#inc lude <sys / s t a t . h>
#inc lude <systemd/sd−daemon . h>
#inc lude <sys /mman. h>
#inc lude <f c n t l . h>
#inc lude " s t a t e . h"

#de f i n e MAXARGS 32

s t a t i c char ∗path = NULL;
s t a t i c s t r u c t t imespec orig_mod_time ;

s t a t i c char ∗ get_path ( ) {
i f ( path ) {

// p r i n t f (" This i s path : %s \n" , path ) ;
// s y s l o g (5 , "This i s path : %s " , path ) ;
r e turn strdup ( path ) ;

}
s i ze_t max_path_len = 100 ;
char ∗ r e t = c a l l o c ( s i z e o f ( char ) ,max_path_len ) ;
r e ad l i nk ("/ proc / s e l f / exe " , ret , max_path_len ) ;
path = strdup ( r e t ) ;
// p r i n t f (" This i s p_ret : %s \n" , r e t ) ;
// s y s l o g (5 , "This i s p_ret : %s " , r e t ) ;
r e turn r e t ;

}

void i n i t ( ) {
char ∗ fp = get_path ( ) ;
s t r u c t s t a t o r i g_stat ;
s t a t ( fp , &or ig_stat ) ;
orig_mod_time = or ig_stat . st_mtim ;
f r e e ( fp ) ;

}

s t a t i c char ∗ get_statepath ( ) {
s i ze_t max_path_len = 100 ;
char ∗ r e t = mal loc ( s i z e o f ( char ) ∗ ( s t r l e n ("/tmp/") + max_path_len ) ) ;
r e t [ 0 ] = ’ \ 0 ’ ;
r e t = s t r c a t ( ret , "/tmp/" ) ;
char ∗buf = r e t + s t r l e n ( r e t ) ;
char ∗tmp = get_path ( ) ;
s t r cpy ( buf , tmp ) ;
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f r e e (tmp ) ;
f o r ( i n t i = 0 ; i < s t r l e n ( buf ) ; ++i ) {

i f ( buf [ i ] == ’/ ’ ) {
buf [ i ] = ’ . ’ ;

}
}
// p r i n t f (" This i s r e t : %s \n" , r e t ) ;
// s y s l o g (5 , "This i s r e t : %s " , r e t ) ;
r e turn r e t ;

}

i n t i s_ f i l e_mod i f i ed ( ) {
s t r u c t s t a t curr_stat ;
char ∗ fp = get_path ( ) ;
s t a t ( fp , &curr_stat ) ;
s t r u c t t imespec curr = curr_stat . st_mtim ;
f r e e ( fp ) ;
// p r i n t (" osec : %ld − c s e c : %ld \nonsec : %ld − cnsec : %ld \n" , o r i g . tv_sec , cur r . tv_sec , o r i g . tv_nsec , cur r . tv_nsec ) ;
r e turn curr . tv_sec != orig_mod_time . tv_sec

| | cur r . tv_nsec != orig_mod_time . tv_nsec ;
}

/∗Saves s t a t e in to memory , on suc e s s r e tu rn s a non−negat ive i n t e g e r o the rw i se r e tu rn s −1∗/
i n t save_state ( const void ∗ s ta te , const i n t len , const char∗ memarea )
{

/∗Open a shared memory ob j e c t ∗/
i n t fd = shm_open(memarea , O_RDWR | O_CREAT | O_TRUNC, 0666) ;
i f ( fd < 0 ) {

sy s l o g (5 , "shm_open c a l l f a i l e d \n " ) ;
r e turn −1;

}

/∗Truncate the shared memory ob j e c t ∗/
i f ( f t r unca t e ( fd , l en ) == −1) {

sy s l o g (5 , " f t r unca t e c a l l f a i l e d \n " ) ;
r e turn −1;

}

/∗Write to s t a t e in to the shared memory ob j e c t ∗/
i n t wb = wr i t e ( fd , s ta te , l en ) ;
i f (wb != len ) {

sy s l o g (5 , " Fa i l ed to wr i t e %d bytes , wrote %d in s t ead \n" , len , wb ) ;
r e turn −1;

}

/∗Map the shared memory ob j e c t ∗/
void ∗ptr = mmap(0 , len , PROT_WRITE | PROT_READ, MAP_SHARED, fd , 0 ) ;
i f ( ! ptr ) {
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s y s l o g (5 , "mmap c a l l f a i l e d \n " ) ;
r e turn −1;

}

i f ( c l o s e ( fd ) < 0) {
sy s l o g (5 , " c l o s e fd f a i l e d \n " ) ;

}

re turn 0 ;
}
/∗ Restore s t a t e from memory ∗/
i n t r e s t o r e_s ta t e ( void ∗s , const i n t len , const char∗ memarea ) {

/∗ Open up the shared memory area ∗/
//shm_unlink (memarea ) ;
i n t fd = shm_open(memarea , O_RDONLY, 0666 ) ;
i f ( fd < 0 ) {

sy s l o g (5 , "shm_open c a l l f a i l e d , g iven area does not e x i s t \n " ) ;
r e turn 0 ;

}

void ∗ptr = mmap(0 , len , PROT_READ, MAP_SHARED, fd , 0 ) ;
i f ( ! ptr ) {

s y s l o g (5 , "mmap c a l l f a i l e d \n " ) ;
r e turn −1;

}
/∗ Read the s t a t e from shared memory ∗/
i n t rb ;
i f ( rb = read ( fd , s , l en ) != l en ) {

sy s l o g (5 , " Fa i l ed to wr i t e %d bytes , wrote %d in s t ead \n" , len , rb ) ;
r e turn −1;

}

i f ( c l o s e ( fd ) < 0)
s y s l o g (5 , "Close f a i l e d \n " ) ;

i f ( shm_unlink (memarea ) < 0 )
sy s l o g (5 , "shm_unlink f a i l e d \n " ) ;

r e turn 1 ;
}

i n t exec_update ( const char ∗path , char∗ arg1 , . . . ) {
i n t nargs = 0 ;
va_l i s t ap ;
char ∗argv [MAXARGS+1] ;

va_start ( ap , arg1 ) ;
whi l e ( arg1 != 0 && nargs < MAXARGS) {
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argv [ nargs++] = arg1 ;
arg1 = va_arg ( ap , char ∗ ) ;

}
argv [ nargs ] = ( char ∗) 0 ;
va_end( ap ) ;

r e turn execv ( path , argv ) ;
}

i n t save_socket ( i n t fd )
{

s t a t i c i n t count = 0 ;
sd_pid_notify (0 ,0 , "READY=1");
s y s l o g (5 , " fd i s %d" , fd ) ;
i n t e r r = sd_pid_notify_with_fds (0 , 0 , "FDSTORE=1\n" , &fd , 1 ) ;
i f ( e r r < 1) re turn e r r ; //TODO doesn ’ t correspond to . h f i l e
r e turn 1 ;

}

i n t r e t r i e v e_socke t ( i n t id )
{

i n t n = sd_l i s ten_fds ( 0 ) ;
i f (n < id )

re turn −1;
r e turn SD_LISTEN_FDS_START + id ;

}
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#inc lude <time . h>
#inc lude <ne t i n e t / in . h>
#inc lude <sy s l o g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>
#inc lude <s i g n a l . h>

#inc lude " s t a t e . h"

#de f i n e on_error ( . . . ) { f p r i n t f ( s tde r r , __VA_ARGS__) ; f f l u s h ( s t d e r r ) ; s y s l o g (5 , __VA_ARGS__) ; e x i t ( 1 ) ; }
#de f i n e p r i n t ( . . . ) { p r i n t f (__VA_ARGS__) ; f f l u s h ( stdout ) ; s y s l o g (5 , __VA_ARGS__) ; }

s t r u c t s t a t e {
char re sponse ;
s t r u c t t imespec last_sent_time ;

} ;

s t a t i c char re sponse [ ] = { ’A’ } ;

/∗
∗ I n i t i a t e s a socke t on the passed port .
∗
∗ port : The port to i n i t i a t e the socke t
∗
∗ r e turn : Returns the fd o f the socke t
∗/

i n t i n i t_ l i s t en_so ck e t ( i n t port ) {
i n t r , n , opt_val = 1 ;
s t r u c t sockaddr_in s e r v e r ;
i n t server_fd , e r r ;

server_fd = socket (AF_INET, SOCK_STREAM, 0 ) ;
i f ( server_fd < 0) on_error ("Could not c r e a t e socke t \n " ) ;

s e r v e r . s in_fami ly = AF_INET;
s e r v e r . s in_port = htons ( port ) ;
s e r v e r . sin_addr . s_addr = hton l (INADDR_ANY) ;
s e t sockopt ( server_fd , SOL_SOCKET, SO_REUSEADDR, &opt_val , s i z e o f ( i n t ) ) ;

e r r = bind ( server_fd , ( s t r u c t sockaddr ∗) &server , s i z e o f ( s e r v e r ) ) ;
i f ( e r r < 0) on_error ("Could not bind socket \n " ) ;
e r r = l i s t e n ( server_fd , 128 ) ;
r e turn server_fd ;

}
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i n t main ( i n t argc , char ∗argv [ ] ) {
s t r u c t s t a t e s ;
s t r u c t sockaddr_in c l i e n t ;
i n t server_fd = 0 , c l i en t_ fd = 0 , e r r ;
socklen_t c l i e n t_ l en = s i z e o f ( c l i e n t ) ;
s t r u c t t imespec last_sent_time ;
s t r u c t t imespec s ta te_star t , state_end ;

i n i t ( ) ; // Ca l l s t a t e . c ’ s i n i t ( ) funct ion , in order to l a t e r i d e n t i f y when
// an update i s a v a i l a b l e .

switch ( r e s t o r e_s ta t e (&s , s i z e o f ( s ) , "mem")) {
d e f au l t :

p r i n t (" Fa i l ed to r e s t o r e an e x i s t i n g s tate , running d e f au l t i n i t i a l i s a t i o n \n " ) ;
case 0 :

i f ( argc == 1) {
server_fd = in i t_ l i s t en_so ck e t ( 5000 ) ;

} e l s e i f ( argc == 2) {
server_fd = in i t_ l i s t en_so ck e t ( a t o i ( argv [ 1 ] ) ) ;

} e l s e {
on_error ("Usage : s e r v e r [ port ] " ) ;

}
break ;

case 1 :
// p r i n t (" Restor ing s t a t e \n " ) ;
r e sponse [ 0 ] = s . r e sponse ;
last_sent_time = s . last_sent_time ;
c l i en t_ fd = re t r i e v e_socke t ( 0 ) ;
server_fd = server_fd + 1 ;
// p r i n t (" After r e s t o r e − server_fd : %d , c l i en t_ fd : %d\n" , server_fd , c l i en t_ fd ) ;
goto r e s t o r e ;

}
i f ( server_fd < 0) on_error (" Fa i l ed to open server_fd with errno %s " , s t r e r r o r ( er rno ) ) ;
whi l e (1 ) {

c l i en t_ fd = accept ( server_fd , ( s t r u c t sockaddr ∗) &c l i e n t , &c l i en t_ l en ) ;
i f ( c l i en t_ fd == −1) on_error (" Fa i l ed to open c l i en t_ fd with errno %s\n" , s t r e r r o r ( er rno ) ) ;
// p r i n t (" Accepted a c l i e n t connect ion " ) ;
whi l e (1 ) {

c lock_gett ime (CLOCK_MONOTONIC, &last_sent_time ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
i f (++response [ 0 ] > ’Z ’ )

re sponse [ 0 ] = ’A’ ;
i f ( e r r < 0) {

p r i n t (" Send f a i l e d , c l o s i n g socke t \n " ) ;
r e sponse [ 0 ] = ’A’ ;
break ;
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}
s t r u c t t imespec rem ;

rem . tv_sec = 0 ;
rem . tv_nsec = 1000000000 − last_sent_time . tv_nsec ;
i f ( i s_ f i l e_mod i f i ed ( ) ) {

c lock_gett ime (CLOCK_MONOTONIC, &s ta t e_s ta r t ) ;
// p r i n t (" F i l e i s modif ied , sav ing s t a t e and c l o s i n g s e rv e r 1 " ) ;
s . r e sponse = response [ 0 ] ;
s . last_sent_time = last_sent_time ;
i f ( save_state(&s , s i z e o f ( s t r u c t s t a t e ) , "mem") == −1)

on_error (" Fa i l ed to save s t a t e \n " ) ;
// p r i n t (" State saved " ) ;
i f ( ( e r r = save_socket ( server_fd ) ) < 1)

on_error (" Fa i l ed to save server_fd , returned : %s \n" , s t r e r r o r (− e r r ) ) ;
i f ( ( e r r = save_socket ( c l i en t_ fd ) ) < 1)

on_error (" Fa i l ed to save c l i ent_fd , returned : %s \n" , s t r e r r o r (− e r r ) ) ;
// p r i n t (" Sockets saved s u c c e s s f u l l y \n " ) ;
c lock_gett ime (CLOCK_MONOTONIC, &state_end ) ;
p r i n t (" Save s t a t e took : %ld s , %ld ns \n" , state_end . tv_sec−s t a t e_s ta r t . tv_sec , state_end . tv_nsec−s t a t e_s ta r t . tv_nsec ) ;
r a i s e (SIGKILL ) ; // e x i t k i l l s the socket , whereas s i g k i l l does not

}
nanos leep(&rem , NULL) ;

}
c l o s e ( c l i en t_ fd ) ;
p r i n t (" Closed socke t connect ion with c l i e n t " ) ;

}
}

#inc lude <time . h>
#inc lude <ne t i n e t / in . h>
#inc lude <sy s l o g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>
#inc lude <s i g n a l . h>

#inc lude " s t a t e . h"

#de f i n e on_error ( . . . ) { f p r i n t f ( s tde r r , __VA_ARGS__) ; f f l u s h ( s t d e r r ) ; s y s l o g (5 , __VA_ARGS__) ; e x i t ( 1 ) ; }
#de f i n e p r i n t ( . . . ) { p r i n t f (__VA_ARGS__) ; f f l u s h ( stdout ) ; s y s l o g (5 , __VA_ARGS__) ; }

s t r u c t s t a t e {
char re sponse ;
s t r u c t t imespec last_sent_time ;

} ;
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s t a t i c char re sponse [ ] = { ’A’ } ;

/∗
∗ I n i t i a t e s a socke t on the passed port .
∗
∗ port : The port to i n i t i a t e the socke t
∗
∗ r e turn : Returns the fd o f the socke t
∗/

i n t i n i t_ l i s t en_so ck e t ( i n t port ) {
i n t r , n , opt_val = 1 ;
s t r u c t sockaddr_in s e r v e r ;
i n t server_fd , e r r ;

server_fd = socket (AF_INET, SOCK_STREAM, 0 ) ;
i f ( server_fd < 0) on_error ("Could not c r e a t e socke t \n " ) ;

s e r v e r . s in_fami ly = AF_INET;
s e r v e r . s in_port = htons ( port ) ;
s e r v e r . sin_addr . s_addr = hton l (INADDR_ANY) ;
s e t sockopt ( server_fd , SOL_SOCKET, SO_REUSEADDR, &opt_val , s i z e o f ( i n t ) ) ;

e r r = bind ( server_fd , ( s t r u c t sockaddr ∗) &server , s i z e o f ( s e r v e r ) ) ;
i f ( e r r < 0) on_error ("Could not bind socket \n " ) ;
e r r = l i s t e n ( server_fd , 128 ) ;
r e turn server_fd ;

}

i n t main ( i n t argc , char ∗argv [ ] ) {
s t r u c t s t a t e s ;
s t r u c t sockaddr_in c l i e n t ;
i n t server_fd = 0 , c l i en t_ fd = 0 , e r r ;
socklen_t c l i e n t_ l en = s i z e o f ( c l i e n t ) ;
s t r u c t t imespec last_sent_time ;
s t r u c t t imespec s ta te_star t , state_end ;
i n i t ( ) ; // Ca l l s t a t e . c ’ s i n i t ( ) funct ion , in order to l a t e r i d e n t i f y when
// an update i s a v a i l a b l e .

c lock_gett ime (CLOCK_MONOTONIC, &s ta t e_s ta r t ) ;
switch ( r e s t o r e_s ta t e (&s , s i z e o f ( s ) , "mem")) {

d e f au l t :
p r i n t (" Fa i l ed to r e s t o r e an e x i s t i n g s tate , running d e f au l t i n i t i a l i s a t i o n \n " ) ;

case 0 :
i f ( argc == 1) {

server_fd = in i t_ l i s t en_so ck e t ( 5000 ) ;
} e l s e i f ( argc == 2) {

server_fd = in i t_ l i s t en_so ck e t ( a t o i ( argv [ 1 ] ) ) ;
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} e l s e {
on_error ("Usage : s e r v e r [ port ] " ) ;

}
break ;

case 1 :
p r i n t (" Restor ing s t a t e \n " ) ;
r e sponse [ 0 ] = s . r e sponse ;
last_sent_time = s . last_sent_time ;
c l i en t_ fd = re t r i e v e_socke t ( 0 ) ;
server_fd = server_fd + 1 ;
c lock_gett ime (CLOCK_MONOTONIC, &state_end ) ;
p r i n t (" Restore s t a t e took : %ld s & %ld ns \n" , state_end . tv_sec − s t a t e_s ta r t . tv_sec , state_end . tv_nsec − s t a t e_s ta r t . tv_nsec ) ;
// p r i n t (" After r e s t o r e − server_fd : %d , c l i en t_ fd : %d\n" , server_fd , c l i en t_ fd ) ;
goto r e s t o r e ;

}
i f ( server_fd < 0) on_error (" Fa i l ed to open server_fd with errno %s " , s t r e r r o r ( er rno ) ) ;
whi l e (1 ) {

c l i en t_ fd = accept ( server_fd , ( s t r u c t sockaddr ∗) &c l i e n t , &c l i en t_ l en ) ;
i f ( c l i en t_ fd == −1) on_error (" Fa i l ed to open c l i en t_ fd with errno %s\n" , s t r e r r o r ( er rno ) ) ;
// p r i n t (" Accepted a c l i e n t connect ion " ) ;
whi l e (1 ) {

c lock_gett ime (CLOCK_MONOTONIC, &last_sent_time ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
i f (++response [ 0 ] > ’Z ’ )

re sponse [ 0 ] = ’A’ ;
i f ( e r r < 0) {

p r i n t (" Send f a i l e d , c l o s i n g socke t \n " ) ;
r e sponse [ 0 ] = ’A’ ;
break ;

}
s t r u c t t imespec rem ;

r e s t o r e :
rem . tv_sec = 0 ;
rem . tv_nsec = 1000000000 − last_sent_time . tv_nsec ;
i f ( i s_ f i l e_mod i f i ed ( ) ) {

// p r i n t (" F i l e i s modif ied , sav ing s t a t e and c l o s i n g s e rv e r 1 " ) ;
s . r e sponse = response [ 0 ] ;
s . last_sent_time = last_sent_time ;
i f ( save_state(&s , s i z e o f ( s t r u c t s t a t e ) , "mem") == −1)

on_error (" Fa i l ed to save s t a t e \n " ) ;
p r i n t (" State saved " ) ;
i f ( ( e r r = save_socket ( server_fd ) ) < 1)

on_error (" Fa i l ed to save server_fd , returned : %s \n" , s t r e r r o r (− e r r ) ) ;
i f ( ( e r r = save_socket ( c l i en t_ fd ) ) < 1)

on_error (" Fa i l ed to save c l i ent_fd , returned : %s \n" , s t r e r r o r (− e r r ) ) ;
// p r i n t (" Sockets saved s u c c e s s f u l l y \n " ) ;
r a i s e (SIGKILL ) ; // e x i t k i l l s the socket , whereas s i g k i l l does not

}
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nanos leep(&rem , NULL) ;
}
c l o s e ( c l i en t_ fd ) ;
p r i n t (" Closed socke t connect ion with c l i e n t " ) ;

}
re turn 0 ;

}
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A.2 Kitsune implementation

#inc lude <time . h>
#inc lude <ne t i n e t / in . h>
#inc lude <sy s l o g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>
#inc lude <s t r i n g . h>
#inc lude <k i t sune . h>

#de f i n e on_error ( . . . ) { f p r i n t f ( s tde r r , __VA_ARGS__) ; f f l u s h ( s t d e r r ) ; s y s l o g (5 , __VA_ARGS__) ; e x i t ( 1 ) ; }
#de f i n e p r i n t ( . . . ) { p r i n t f (__VA_ARGS__) ; f f l u s h ( stdout ) ; s y s l o g (5 , __VA_ARGS__) ; }

s t a t i c char re sponse [ ] = { ’A’ } ;

/∗
∗ I n i t i a t e s a socke t on the passed port .
∗
∗ port : The port to i n i t i a t e the socke t
∗
∗ r e turn : Returns the fd o f the socke t
∗/

i n t i n i t_ l i s t en_so ck e t ( i n t port ) {
i n t r , n , opt_val = 1 ;
s t r u c t sockaddr_in s e r v e r ;
i n t server_fd , e r r ;

server_fd = socket (AF_INET, SOCK_STREAM, 0 ) ;
i f ( server_fd < 0) on_error ("Could not c r e a t e socke t \n " ) ;

s e r v e r . s in_fami ly = AF_INET;
s e r v e r . s in_port = htons ( port ) ;
s e r v e r . sin_addr . s_addr = hton l (INADDR_ANY) ;
s e t sockopt ( server_fd , SOL_SOCKET, SO_REUSEADDR, &opt_val , s i z e o f ( i n t ) ) ;

e r r = bind ( server_fd , ( s t r u c t sockaddr ∗) &server , s i z e o f ( s e r v e r ) ) ;
i f ( e r r < 0) on_error ("Could not bind socket \n " ) ;
e r r = l i s t e n ( server_fd , 128 ) ;
r e turn server_fd ;

}

i n t main ( i n t argc , char ∗argv [ ] ) E_NOTELOCALS {
s t r u c t sockaddr_in c l i e n t ;
i n t server_fd = 0 , c l i en t_ fd = 0 , e r r ;
socklen_t c l i e n t_ l en = s i z e o f ( c l i e n t ) ;
s t r u c t t imespec last_sent_time ;
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kitsune_do_automigrate ( ) ;
MIGRATE_LOCAL( server_fd ) ;
MIGRATE_LOCAL( c l i en t_ fd ) ;
MIGRATE_LOCAL( last_sent_time ) ;

i f ( ! k itsune_is_updating ( ) ) {
i f ( argc == 1) {

server_fd = in i t_ l i s t en_so ck e t ( 5000 ) ;
} e l s e i f ( argc == 2) {

server_fd = in i t_ l i s t en_so ck e t ( a t o i ( argv [ 1 ] ) ) ;
} e l s e {

on_error ("Usage : s e r v e r [ port ] " ) ;
}

} e l s e i f ( kitsune_is_updating_from (" send ") ) {
goto r e s t o r e ;

}
i f ( server_fd < 0) on_error (" Fa i l ed to open server_fd with errno %s " , s t r e r r o r ( er rno ) ) ;
whi l e (1 ) {

c l i en t_ fd = accept ( server_fd , ( s t r u c t sockaddr ∗) &c l i e n t , &c l i en t_ l en ) ;
i f ( c l i en t_ fd == −1) on_error (" Fa i l ed to open c l i en t_ fd with errno %s\n" , s t r e r r o r ( er rno ) ) ;
p r i n t (" Accepted a c l i e n t connect ion " ) ;
whi l e (1 ) {

c lock_gett ime (CLOCK_MONOTONIC, &last_sent_time ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
i f (++response [ 0 ] > ’Z ’ )

re sponse [ 0 ] = ’A’ ;
i f ( e r r < 0) {

p r i n t (" Send f a i l e d , c l o s i n g socke t \n " ) ;
r e sponse [ 0 ] = ’A’ ;
break ;

}
s t r u c t t imespec rem ;
s t r u c t t imespec before_update ;

r e s t o r e :
c lock_gett ime (CLOCK_MONOTONIC, &before_update ) ;
rem . tv_sec = 0 ;

rem . tv_nsec = 1000000000 − last_sent_time . tv_nsec ;
s y s l o g (5 , "The time be f o r e update i s : %ld s & %ld ns \n" ,

before_update . tv_sec ,
before_update . tv_nsec ) ;

kitsune_update (" send " ) ;
nanos leep(&rem , NULL) ;

}
c l o s e ( c l i en t_ fd ) ;
p r i n t (" Closed socke t connect ion with c l i e n t " ) ;
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}
return 0 ;

}
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#inc lude <time . h>
#inc lude <ne t i n e t / in . h>
#inc lude <sy s l o g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>
#inc lude <s t r i n g . h>
#inc lude <k i t sune . h>

#de f i n e on_error ( . . . ) { f p r i n t f ( s tde r r , __VA_ARGS__) ; f f l u s h ( s t d e r r ) ; s y s l o g (5 , __VA_ARGS__) ; e x i t ( 1 ) ; }
#de f i n e p r i n t ( . . . ) { p r i n t f (__VA_ARGS__) ; f f l u s h ( stdout ) ; s y s l o g (5 , __VA_ARGS__) ; }

s t a t i c char re sponse [ ] = { ’A’ } ;

/∗
∗ I n i t i a t e s a socke t on the passed port .
∗
∗ port : The port to i n i t i a t e the socke t
∗
∗ r e turn : Returns the fd o f the socke t
∗/

i n t i n i t_ l i s t en_so ck e t ( i n t port ) {
i n t r , n , opt_val = 1 ;
s t r u c t sockaddr_in s e r v e r ;
i n t server_fd , e r r ;

server_fd = socket (AF_INET, SOCK_STREAM, 0 ) ;
i f ( server_fd < 0) on_error ("Could not c r e a t e socke t \n " ) ;

s e r v e r . s in_fami ly = AF_INET;
s e r v e r . s in_port = htons ( port ) ;
s e r v e r . sin_addr . s_addr = hton l (INADDR_ANY) ;
s e t sockopt ( server_fd , SOL_SOCKET, SO_REUSEADDR, &opt_val , s i z e o f ( i n t ) ) ;

e r r = bind ( server_fd , ( s t r u c t sockaddr ∗) &server , s i z e o f ( s e r v e r ) ) ;
i f ( e r r < 0) on_error ("Could not bind socket \n " ) ;
e r r = l i s t e n ( server_fd , 128 ) ;
r e turn server_fd ;

}

i n t main ( i n t argc , char ∗argv [ ] ) E_NOTELOCALS {
s t r u c t sockaddr_in c l i e n t ;
i n t server_fd = 0 , c l i en t_ fd = 0 , e r r ;
socklen_t c l i e n t_ l en = s i z e o f ( c l i e n t ) ;
s t r u c t t imespec last_sent_time ;

kitsune_do_automigrate ( ) ;
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MIGRATE_LOCAL( server_fd ) ;
MIGRATE_LOCAL( c l i en t_ fd ) ;
MIGRATE_LOCAL( last_sent_time ) ;

i f ( ! k itsune_is_updating ( ) ) {
i f ( argc == 1) {

server_fd = in i t_ l i s t en_so ck e t ( 5000 ) ;
} e l s e i f ( argc == 2) {

server_fd = in i t_ l i s t en_so ck e t ( a t o i ( argv [ 1 ] ) ) ;
} e l s e {

on_error ("Usage : s e r v e r [ port ] " ) ;
}

} e l s e i f ( kitsune_is_updating_from (" send ") ) {
goto r e s t o r e ;

}
i f ( server_fd < 0) on_error (" Fa i l ed to open server_fd with errno %s " , s t r e r r o r ( er rno ) ) ;
whi l e (1 ) {

c l i en t_ fd = accept ( server_fd , ( s t r u c t sockaddr ∗) &c l i e n t , &c l i en t_ l en ) ;
i f ( c l i en t_ fd == −1) on_error (" Fa i l ed to open c l i en t_ fd with errno %s\n" , s t r e r r o r ( er rno ) ) ;
p r i n t (" Accepted a c l i e n t connect ion " ) ;
whi l e (1 ) {

c lock_gett ime (CLOCK_MONOTONIC, &last_sent_time ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
i f (++response [ 0 ] > ’Z ’ )

re sponse [ 0 ] = ’A’ ;
i f ( e r r < 0) {

p r i n t (" Send f a i l e d , c l o s i n g socke t \n " ) ;
r e sponse [ 0 ] = ’A’ ;
break ;

}
s t r u c t t imespec rem ;
s t r u c t t imespec before_update ;

r e s t o r e :
rem . tv_sec = 0 ;
kitsune_update (" send " ) ;
rem . tv_nsec = 1000000000 − last_sent_time . tv_nsec ;
c lock_gett ime (CLOCK_MONOTONIC, &before_update ) ;
s y s l o g (5 , "The time a f t e r update i s : %ld s & %ld ns \n" ,

before_update . tv_sec ,
before_update . tv_nsec ) ;

nanos leep(&rem , NULL) ;
}
c l o s e ( c l i en t_ fd ) ;
p r i n t (" Closed socke t connect ion with c l i e n t " ) ;

}
re turn 0 ;

}
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A.3 Exec implementation

#i f n d e f STATE_H
#de f i n e STATE_H

/∗∗
∗ Checks the cu r r en t l y execut ing f i l e ’ s l a s t modi f i ed time , and s e t s i t as the
∗ de f au l t time to compare to when running i s_ f i l e_mod i f i ed ( ) ;
∗/

void i n i t ( ) ;

/∗∗
∗ Checks i f the cu r r en t l y execut ing f i l e has been modi f i ed s i n c e i n i t
∗ was c a l l e d .
∗
∗ r e turn : 1 i f the f i l e has been modif ied , 0 o the rw i se
∗/

i n t i s_ f i l e_mod i f i ed ( ) ;

/∗∗
∗ Saves n number o f bytes from s t a t e in to a shared memory . The returned fd
∗ i s then passed along to PID 1 .
∗
∗ s t a t e : A po in t e r to the s t a t e to be saved .
∗ n : The number o f bytes to be saved .
∗
∗ r e turn : Returns 0 on succes s , e l s e r e tu rn s a non−zero value .
∗/

i n t save_state ( const void ∗ s ta te , const i n t n , const char∗ memarea ) ;

/∗∗
∗ Restores the s t a t e which was p r ev i ou s l y saved in to shared memory . Only works
∗ i f c a l l e d by the same binary that i n i t i a l l y saved the s t a t e . The s t a t e i s
∗ saved in to s .
∗
∗ s : The po in t e r to a l o c a t i o n in memory to save the s t a t e to .
∗ l en : The number o f bytes to r e s t o r e in to s .
∗
∗ r e turn : Returns 1 on succes s , 0 i f the re i s no s t a t e to be re s to r ed , and −1 otherw i s e .
∗/

i n t r e s t o r e_s ta t e ( void ∗s , i n t len , const char∗ memarea ) ;

/∗∗
∗ Saves a socke t by pas s ing i t to PID 1 . Can take at most 10 so cke t s at once ,
∗ de f ined by the s e t t i n g s in the . s e r v i c e f i l e that runs the program .
∗
∗ fd : The fd to pass to PID 1 .
∗
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∗ r e turn : Returns 1 on succes s , −1 on f a i l u r e .
∗/

/∗
∗ Executes the update funct ion , takes path and then a maximum of 32 arguments as argv
∗
∗ Last argument should be NULL to l e t the func t i on know that no more arguments are a v a i l a b l e
∗
∗ path : the updated f i l e which should be executed
∗
∗ r e turn : −1 on f a i l u r e othe rwi s e a nonnegat ive i n t e g e r .
∗/
i n t exec_update ( const char∗ path , char∗ arg1 , . . . ) ;

#end i f
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#inc lude <s td i o . h>
#inc lude <stdarg . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <sy s l o g . h>
#inc lude <s t r i n g . h>
#inc lude <sys / s t a t . h>
#inc lude <systemd/sd−daemon . h>
#inc lude <sys /mman. h>
#inc lude <f c n t l . h>
#inc lude " s t a t e . h"

#de f i n e MAXARGS 32

s t a t i c char ∗path = NULL;
s t a t i c s t r u c t t imespec orig_mod_time ;

s t a t i c char ∗ get_path ( ) {
i f ( path ) {

// p r i n t f (" This i s path : %s \n" , path ) ;
// s y s l o g (5 , "This i s path : %s " , path ) ;
r e turn strdup ( path ) ;

}
s i ze_t max_path_len = 100 ;
char ∗ r e t = c a l l o c ( s i z e o f ( char ) ,max_path_len ) ;
r e ad l i nk ("/ proc / s e l f / exe " , ret , max_path_len ) ;
path = strdup ( r e t ) ;
// p r i n t f (" This i s p_ret : %s \n" , r e t ) ;
// s y s l o g (5 , "This i s p_ret : %s " , r e t ) ;
r e turn r e t ;

}

void i n i t ( ) {
char ∗ fp = get_path ( ) ;
s t r u c t s t a t o r i g_stat ;
s t a t ( fp , &or ig_stat ) ;
orig_mod_time = or ig_stat . st_mtim ;
f r e e ( fp ) ;

}

s t a t i c char ∗ get_statepath ( ) {
s i ze_t max_path_len = 100 ;
char ∗ r e t = mal loc ( s i z e o f ( char ) ∗ ( s t r l e n ("/tmp/") + max_path_len ) ) ;
r e t [ 0 ] = ’ \ 0 ’ ;
r e t = s t r c a t ( ret , "/tmp/" ) ;
char ∗buf = r e t + s t r l e n ( r e t ) ;
char ∗tmp = get_path ( ) ;
s t r cpy ( buf , tmp ) ;
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f r e e (tmp ) ;
f o r ( i n t i = 0 ; i < s t r l e n ( buf ) ; ++i ) {

i f ( buf [ i ] == ’/ ’ ) {
buf [ i ] = ’ . ’ ;

}
}
// p r i n t f (" This i s r e t : %s \n" , r e t ) ;
// s y s l o g (5 , "This i s r e t : %s " , r e t ) ;
r e turn r e t ;

}

i n t i s_ f i l e_mod i f i ed ( ) {
s t r u c t s t a t curr_stat ;
char ∗ fp = get_path ( ) ;
s t a t ( fp , &curr_stat ) ;
s t r u c t t imespec curr = curr_stat . st_mtim ;
f r e e ( fp ) ;
// p r i n t (" osec : %ld − c s e c : %ld \nonsec : %ld − cnsec : %ld \n" , o r i g . tv_sec , cur r . tv_sec , o r i g . tv_nsec , cur r . tv_nsec ) ;
r e turn curr . tv_sec != orig_mod_time . tv_sec

| | cur r . tv_nsec != orig_mod_time . tv_nsec ;
}

/∗Saves s t a t e in to memory , on suc e s s r e tu rn s a non−negat ive i n t e g e r o the rw i se r e tu rn s −1∗/
i n t save_state ( const void ∗ s ta te , const i n t len , const char∗ memarea )
{

/∗Open a shared memory ob j e c t ∗/
i n t fd = shm_open(memarea , O_RDWR | O_CREAT | O_TRUNC, 0666) ;
i f ( fd < 0 ) {

sy s l o g (5 , "shm_open c a l l f a i l e d \n " ) ;
r e turn −1;

}

/∗Truncate the shared memory ob j e c t ∗/
i f ( f t r unca t e ( fd , l en ) == −1) {

sy s l o g (5 , " f t r unca t e c a l l f a i l e d \n " ) ;
r e turn −1;

}

/∗Write to s t a t e in to the shared memory ob j e c t ∗/
i n t wb = wr i t e ( fd , s ta te , l en ) ;
i f (wb != len ) {

sy s l o g (5 , " Fa i l ed to wr i t e %d bytes , wrote %d in s t ead \n" , len , wb ) ;
r e turn −1;

}

/∗Map the shared memory ob j e c t ∗/
void ∗ptr = mmap(0 , len , PROT_WRITE | PROT_READ, MAP_SHARED, fd , 0 ) ;
i f ( ! ptr ) {
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s y s l o g (5 , "mmap c a l l f a i l e d \n " ) ;
r e turn −1;

}

i f ( c l o s e ( fd ) < 0) {
sy s l o g (5 , " c l o s e fd f a i l e d \n " ) ;

}

re turn 0 ;
}
/∗ Restore s t a t e from memory ∗/
i n t r e s t o r e_s ta t e ( void ∗s , const i n t len , const char∗ memarea ) {

/∗ Open up the shared memory area ∗/
//shm_unlink (memarea ) ;
i n t fd = shm_open(memarea , O_RDONLY, 0666 ) ;
i f ( fd < 0 ) {

sy s l o g (5 , "shm_open c a l l f a i l e d , g iven area does not e x i s t \n " ) ;
r e turn 0 ;

}

void ∗ptr = mmap(0 , len , PROT_READ, MAP_SHARED, fd , 0 ) ;
i f ( ! ptr ) {

s y s l o g (5 , "mmap c a l l f a i l e d \n " ) ;
r e turn −1;

}
/∗ Read the s t a t e from shared memory ∗/
i n t rb ;
i f ( rb = read ( fd , s , l en ) != l en ) {

sy s l o g (5 , " Fa i l ed to wr i t e %d bytes , wrote %d in s t ead \n" , len , rb ) ;
r e turn −1;

}

i f ( c l o s e ( fd ) < 0)
s y s l o g (5 , "Close f a i l e d \n " ) ;

i f ( shm_unlink (memarea ) < 0 )
sy s l o g (5 , "shm_unlink f a i l e d \n " ) ;

r e turn 1 ;
}

i n t exec_update ( const char ∗path , char∗ arg1 , . . . ) {
i n t nargs = 0 ;
va_l i s t ap ;
char ∗argv [MAXARGS+1] ;

va_start ( ap , arg1 ) ;
whi l e ( arg1 != 0 && nargs < MAXARGS) {
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argv [ nargs++] = arg1 ;
arg1 = va_arg ( ap , char ∗ ) ;

}
argv [ nargs ] = ( char ∗) 0 ;
va_end( ap ) ;

r e turn execv ( path , argv ) ;
}
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#inc lude <time . h>
#inc lude <ne t i n e t / in . h>
#inc lude <sy s l o g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>
#inc lude <s i g n a l . h>

#inc lude " s t a t e . h"

#de f i n e on_error ( . . . ) { f p r i n t f ( s tde r r , __VA_ARGS__) ; f f l u s h ( s t d e r r ) ; s y s l o g (5 , __VA_ARGS__) ; e x i t ( 1 ) ; }
#de f i n e p r i n t ( . . . ) { p r i n t f (__VA_ARGS__) ; f f l u s h ( stdout ) ; s y s l o g (5 , __VA_ARGS__) ; }

s t r u c t s t a t e {
char re sponse ;
s t r u c t t imespec last_sent_time ;

} ;

s t a t i c char re sponse [ ] = { ’A’ } ;

/∗
∗ I n i t i a t e s a socke t on the passed port .
∗
∗ port : The port to i n i t i a t e the socke t
∗
∗ r e turn : Returns the fd o f the socke t
∗/

i n t i n i t_ l i s t en_so ck e t ( i n t port ) {
i n t r , n , opt_val = 1 ;
s t r u c t sockaddr_in s e r v e r ;
i n t server_fd , e r r ;

server_fd = socket (AF_INET, SOCK_STREAM, 0 ) ;
i f ( server_fd < 0) on_error ("Could not c r e a t e socke t \n " ) ;

s e r v e r . s in_fami ly = AF_INET;
s e r v e r . s in_port = htons ( port ) ;
s e r v e r . sin_addr . s_addr = hton l (INADDR_ANY) ;
s e t sockopt ( server_fd , SOL_SOCKET, SO_REUSEADDR, &opt_val , s i z e o f ( i n t ) ) ;

e r r = bind ( server_fd , ( s t r u c t sockaddr ∗) &server , s i z e o f ( s e r v e r ) ) ;
i f ( e r r < 0) on_error ("Could not bind socket \n " ) ;
e r r = l i s t e n ( server_fd , 128 ) ;
r e turn server_fd ;

}
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i n t main ( i n t argc , char ∗argv [ ] ) {
s t r u c t s t a t e s ;
s t r u c t sockaddr_in c l i e n t ;
i n t server_fd = 0 , c l i en t_ fd = 0 , e r r ;
socklen_t c l i e n t_ l en = s i z e o f ( c l i e n t ) ;
s t r u c t t imespec last_sent_time ;

i n i t ( ) ; // Ca l l s t a t e . c ’ s i n i t ( ) funct ion , in order to l a t e r i d e n t i f y when
// an update i s a v a i l a b l e .

switch ( r e s t o r e_s ta t e (&s , s i z e o f ( s ) , "mem")) {
d e f au l t :

p r i n t (" Fa i l ed to r e s t o r e an e x i s t i n g s tate , running d e f au l t i n i t i a l i s a t i o n \n " ) ;
break ;

case 0 :
server_fd = in i t_ l i s t en_so ck e t ( 5000 ) ;
break ;

case 1 :
r e sponse [ 0 ] = s . r e sponse ;
last_sent_time = s . last_sent_time ;
server_fd = s t r t o l ( argv [ 0 ] , NULL, 2 0 ) ;
c l i en t_ fd = s t r t o l ( argv [ 1 ] , NULL, 2 0 ) ;
goto r e s t o r e ;

}
i f ( server_fd < 0) on_error (" Fa i l ed to open server_fd with errno %s " , s t r e r r o r ( er rno ) ) ;
whi l e (1 ) {

c l i en t_ fd = accept ( server_fd , ( s t r u c t sockaddr ∗) &c l i e n t , &c l i en t_ l en ) ;
i f ( c l i en t_ fd == −1) on_error (" Fa i l ed to open c l i en t_ fd with errno %s\n" , s t r e r r o r ( er rno ) ) ;
whi l e (1 ) {

c lock_gett ime (CLOCK_MONOTONIC, &last_sent_time ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
i f (++response [ 0 ] > ’Z ’ )

re sponse [ 0 ] = ’A’ ;
i f ( e r r < 0) {

p r i n t (" Send f a i l e d , c l o s i n g socke t \n " ) ;
r e sponse [ 0 ] = ’A’ ;
break ;

}
s t r u c t t imespec rem ;

r e s t o r e :
rem . tv_sec = 0 ;
rem . tv_nsec = 1000000000 − last_sent_time . tv_nsec ;
s t r u c t t imespec f i le_mod_start , file_mod_end ;
i f ( i s_ f i l e_mod i f i ed ( ) ) {

c lock_gett ime (CLOCK_MONOTONIC, &fi le_mod_start ) ;
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s . r e sponse = response [ 0 ] ;
s . last_sent_time = last_sent_time ;
i f ( save_state(&s , s i z e o f ( s t r u c t s t a t e ) , "mem") == −1)

on_error (" Fa i l ed to save s t a t e \n " ) ;
char arg1 [ 2 0 ] , arg2 [ 2 0 ] ;
s p r i n t f ( arg1 , "%d" , server_fd ) ;
s p r i n t f ( arg2 , "%d" , c l i en t_ fd ) ;

c lock_gett ime (CLOCK_MONOTONIC, &file_mod_end ) ;
p r i n t f (" Save s t a t e took : %ld s & %ld ns \n" , file_mod_end . tv_sec−f i le_mod_start . tv_sec , file_mod_end . tv_nsec−f i le_mod_start . tv_nsec ) ;
i n t exec = exec_update ("/home/ gustavek /Exjobb/memfd/main " , arg1 , arg2 , ( char ∗) NULL) ;
i f ( exec = −1)

e x i t ( 0 ) ;

}
nanos leep(&rem , NULL) ;

}
c l o s e ( c l i en t_ fd ) ;
p r i n t (" Closed socke t connect ion with c l i e n t " ) ;

}
re turn 0 ;

}
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#inc lude <time . h>
#inc lude <ne t i n e t / in . h>
#inc lude <sy s l o g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>
#inc lude <s i g n a l . h>

#inc lude " s t a t e . h"

#de f i n e on_error ( . . . ) { f p r i n t f ( s tde r r , __VA_ARGS__) ; f f l u s h ( s t d e r r ) ; s y s l o g (5 , __VA_ARGS__) ; e x i t ( 1 ) ; }
#de f i n e p r i n t ( . . . ) { p r i n t f (__VA_ARGS__) ; f f l u s h ( stdout ) ; s y s l o g (5 , __VA_ARGS__) ; }

s t r u c t s t a t e {
char re sponse ;
s t r u c t t imespec last_sent_time ;

} ;

s t a t i c char re sponse [ ] = { ’A’ } ;

/∗
∗ I n i t i a t e s a socke t on the passed port .
∗
∗ port : The port to i n i t i a t e the socke t
∗
∗ r e turn : Returns the fd o f the socke t
∗/

i n t i n i t_ l i s t en_so ck e t ( i n t port ) {
i n t r , n , opt_val = 1 ;
s t r u c t sockaddr_in s e r v e r ;
i n t server_fd , e r r ;

server_fd = socket (AF_INET, SOCK_STREAM, 0 ) ;
i f ( server_fd < 0) on_error ("Could not c r e a t e socke t \n " ) ;

s e r v e r . s in_fami ly = AF_INET;
s e r v e r . s in_port = htons ( port ) ;
s e r v e r . sin_addr . s_addr = hton l (INADDR_ANY) ;
s e t sockopt ( server_fd , SOL_SOCKET, SO_REUSEADDR, &opt_val , s i z e o f ( i n t ) ) ;

e r r = bind ( server_fd , ( s t r u c t sockaddr ∗) &server , s i z e o f ( s e r v e r ) ) ;
i f ( e r r < 0) on_error ("Could not bind socket \n " ) ;
e r r = l i s t e n ( server_fd , 128 ) ;
r e turn server_fd ;

}

84



i n t main ( i n t argc , char ∗argv [ ] ) {
s t r u c t s t a t e s ;
s t r u c t sockaddr_in c l i e n t ;
i n t server_fd = 0 , c l i en t_ fd = 0 , e r r ;
socklen_t c l i e n t_ l en = s i z e o f ( c l i e n t ) ;
s t r u c t t imespec last_sent_time ;
s t r u c t t imespec f i le_mod_start , file_mod_end ;
i n i t ( ) ; // Ca l l s t a t e . c ’ s i n i t ( ) funct ion , in order to l a t e r i d e n t i f y when
// an update i s a v a i l a b l e .
c lock_gett ime (CLOCK_MONOTONIC, &fi le_mod_start ) ;
switch ( r e s t o r e_s ta t e (&s , s i z e o f ( s ) , "mem")) {

d e f au l t :
p r i n t (" Fa i l ed to r e s t o r e an e x i s t i n g s tate , running d e f au l t i n i t i a l i s a t i o n \n " ) ;
break ;

case 0 :
server_fd = in i t_ l i s t en_so ck e t ( 5000 ) ;
break ;

case 1 :
c lock_gett ime (CLOCK_MONOTONIC, &file_mod_end ) ;
p r i n t f (" Restore s t a t e took : %ld s & %ld ns \n" ,

file_mod_end . tv_sec−f i le_mod_start . tv_sec ,
file_mod_end . tv_nsec−f i le_mod_start . tv_nsec ) ;

r e sponse [ 0 ] = s . r e sponse ;
last_sent_time = s . last_sent_time ;
server_fd = s t r t o l ( argv [ 0 ] , NULL, 2 0 ) ;
c l i en t_ fd = s t r t o l ( argv [ 1 ] , NULL, 2 0 ) ;
goto r e s t o r e ;

}
i f ( server_fd < 0) on_error (" Fa i l ed to open server_fd with errno %s " , s t r e r r o r ( er rno ) ) ;
whi l e (1 ) {

c l i en t_ fd = accept ( server_fd , ( s t r u c t sockaddr ∗) &c l i e n t , &c l i en t_ l en ) ;
i f ( c l i en t_ fd == −1) on_error (" Fa i l ed to open c l i en t_ fd with errno %s\n" , s t r e r r o r ( er rno ) ) ;
whi l e (1 ) {

c lock_gett ime (CLOCK_MONOTONIC, &last_sent_time ) ;
e r r = send ( c l i ent_fd , response , 1 , 0 ) ;
i f (++response [ 0 ] > ’Z ’ )

re sponse [ 0 ] = ’A’ ;
i f ( e r r < 0) {

p r i n t (" Send f a i l e d , c l o s i n g socke t \n " ) ;
r e sponse [ 0 ] = ’A’ ;
break ;

}
s t r u c t t imespec rem ;

r e s t o r e :
rem . tv_sec = 0 ;
rem . tv_nsec = 1000000000 − last_sent_time . tv_nsec ;
i f ( i s_ f i l e_mod i f i ed ( ) ) {
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s . r e sponse = response [ 0 ] ;
s . last_sent_time = last_sent_time ;
i f ( save_state(&s , s i z e o f ( s t r u c t s t a t e ) , "mem") == −1)

on_error (" Fa i l ed to save s t a t e \n " ) ;
char arg1 [ 2 0 ] , arg2 [ 2 0 ] ;
s p r i n t f ( arg1 , "%d" , server_fd ) ;
s p r i n t f ( arg2 , "%d" , c l i en t_ fd ) ;
p r i n t f ("%s , %s \n" , arg1 , arg2 ) ;
i n t exec = exec_update ("/home/ gustavek /Exjobb/memfd/main " , arg1 , arg2 , ( char ∗) NULL) ;
i f ( exec = −1)

e x i t ( 0 ) ;

}
nanos leep(&rem , NULL) ;

}
c l o s e ( c l i en t_ fd ) ;
p r i n t (" Closed socke t connect ion with c l i e n t " ) ;

}
re turn 0 ;

}
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