
Master’s Thesis

Managing product variants
in a component-based system

Jacob Gradén D01 & Anna Ståhl
Department of Computer Science
Faculty of Engineering LTH
Lund University, 2009

ISSN 1650-2884
LU-CS-EX: 2009-33

Managing product variants
in a component-based system

Jacob Gradén, Anna Ståhl

Supervisor: Lars Bendix
Lund University

November 13, 2009

Abstract

Today’s markets are fast-paced, with many different customers and requirements
on products. More than ever before, it is necessary to be able to provide each
customer with a tailor-made product, corresponding to just that customer’s needs.
At the same time, maintaining different products is costly and strains resources.
By reusing code and producing tailored variants of the same basic product, the
customer’s requirements can be met while keeping costs under control.

Component-based systems are becoming a popular way of managing product vari-
ants and promoting code reuse. Component-based systems are based on stand-alone
components which can be combined in various ways to produce different product
variants – essentially using the same building blocks to construct different products.

However, the many different requirements and product variants introduce com-
plexity which needs to be managed while retaining flexibility, so that creating product
variants is facilitated. This means that not only components and products must be
managed, but also information pertaining to them, such as technical relationships
between components and business requirements on products.

This master thesis suggests a support tool to help in creating and managing the
different components and products, and outlines the capabilities such a tool should
have and the opportunities it would present.

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Purpose . 2
1.3 Business case . 2
1.4 Context . 2
1.5 Thesis structure . 2

2 Background 3
2.1 Causes of variation . 3
2.2 Static vs. dynamic configuration . 5
2.3 Monolithic vs. component-based systems 6

3 Analysis 11
3.1 Use cases . 12

3.1.1 Day-to-day usage . 13
3.1.2 Administration . 14
3.1.3 Advanced usage . 15

3.2 Components . 16
3.2.1 Properties . 17
3.2.2 Layers . 21
3.2.3 Relationships . 22
3.2.4 Feature dependencies . 25
3.2.5 Component suites . 26
3.2.6 Complex relationships . 27
3.2.7 Problems . 27

3.3 Configurations . 29
3.3.1 Properties . 30
3.3.2 Problems . 34

3.4 Repository . 36
3.4.1 Evolution . 39
3.4.2 Adding items . 41
3.4.3 Modifying metadata . 41

3.5 Status modes . 43
3.5.1 Component test status . 43
3.5.2 Configuration test status . 44
3.5.3 Other statuses . 46
3.5.4 Combining statuses . 48

3.6 Rules . 51

iii

4 Design 55
4.1 Application sketch . 57

5 Discussion 65
5.1 Traceability . 66
5.2 Package managers . 67
5.3 Versioning systems . 68
5.4 Future work . 68

6 Conclusions 71

iv

List of Figures

1 Variability pyramid . 4
2 Component . 8
3 Component creation process . 9
4 The composition process . 11
5 Anatomy of a configuration . 12
6 Customizing components . 18
7 The customer property . 18
8 Customer-market hierarchy . 20
9 Layers . 21
10 A relationship tree . 28
11 A simplified relationship tree . 28
12 Cyclic relationships . 28
13 Cyclic antidependencies . 29
14 Examples of configurations . 30
15 Suggesting components . 32
16 Desired and actual market . 33
17 Market suites . 34
18 Configuration status . 45
19 Calculating combined status using expressions 49
20 The composition process, revisited 55
21 General design proposal . 58
22 Component availability legend . 59
23 Handling suites . 59
24 Component selection . 59
25 Top-down approach, first step . 60
26 Top-down approach, second step . 60
27 Contents review proposal . 61
28 Administration . 62
29 Vertical traceability . 66
30 Traceability tree . 67

List of Tables

1 Configuration items . 36
2 Reading combined status from hierarchical mappings 50

v

1 Introduction

This section outlines why the thesis is interesting and the problems it tackles. The
purpose is also presented, as well as the thesis structure.

The world is moving from standardized mass-produced software controlled by the
producer, to tailor-made products with wide possibilities for end-users to select just
the features they want – or even change and update their products after delivery.
To perform well on such a market, companies must be able to supply many different
but similar products, and to do so quickly.

Traditionally, large software systems have been written as one entity, which has
grown over time. This is the monolithic approach. A more modern approach is
that of the component-based system (CBS), where smaller parts of the system are
developed separately and the system as a whole (the product) is constructed by
combining the parts. Different variants of the product can be achieved by choosing
from the available parts, which enables a high level of code reuse and cuts down on
the time needed to create a new variant.

Managing CBSs is however non-trivial. Not only must they support the same
functions as the monoliths do; they also introduce problems of their own.

1.1 Problem

At its core, the central problem is simply this: How can the variants of a component-
based system, and their constituent components, be managed efficiently? This is
however a large field, with many facets.

A component-based system can be very flexible. Components are meant to be
mainly independent, which means they can be combined freely to create any number
of variants. There may however be relationships between components – for example
when one component needs another to function properly, or when two components
are mutually exclusive.

The resulting combination of components (the configuration) may also impose
restrictions on possible combinations. For example, components may belong to dif-
ferent layers of the system – such as operating systems and applications – and one
restriction might be that at least one component from each system layer is required.
Components may also have properties, and another restriction might be that all
components in the configuration have the same value for a specific property.

There is a lot of complexity involved as well. The sheer number of components
in a large CBS makes it difficult to manage manually, and when components are
developed and exist in different versions over time, the amount of components be-
comes staggering. Add to that the possibility to create configurations, and variants

1

thereof, by combining components in different ways, and it is clear that complexity
will become a major hurdle.

1.2 Purpose

A great deal of flexibility can be achieved by working with a CBS, but it comes at the
cost of complexity. The ultimate purpose of this study is to allow for that flexibility
by helping to manage the complexity.

One way to manage such complexity is manual labor, which has obvious drawbacks
– lack of speed, exactness etcetera. A tool-supported approach would be preferable,
for example in the form of an application which helps with the task of combining
the different variants of the system from its constituent parts. This thesis aims to
present an analysis of the considerations that would apply to such a system. Benefits
and drawbacks are discussed, and a possible application design is suggested.

1.3 Business case

Using CBSs allows for great flexibility in creating variants of a product, facilitates
parallel development and can reduce compilation times. Using a support tool for
managing CBSs keeps the time and costs down, simplifies communication between
departments, allows for statistical analysis of components and product variants, and
greatly reduces the risk of creating broken or nonsensical product variants.

1.4 Context

While the problems outlined above may occur in many different disciplines, this
study has limited the scope to software development. This is a large field, used by
a plethora of companies in all kinds of industries, and the results are applicable to
any of them who work with variants of software systems.

1.5 Thesis structure

The Background introduces concepts used in the rest of the thesis and which the
reader should have some familiarity with. The Analysis explains in more detail the
problems outlined above, and presents possible solutions. These solutions are utilized
in Design, together with supporting structures, to create a full picture of a system for
managing product variants in a component-based system. Limitations, future work
and a general discussion are found in Discussion, and the most important findings
from Analysis, Design and Discussion are presented in Conclusions.

2

2 Background

This section presents concepts necessary for understanding the rest of the thesis. It
can be safely skipped if all areas are familiar.

There are many challenges to overcome, and potential gains to benefit from, when
introducing tailor-made products to customers. On a technical level, there are dif-
ferent ways of managing the customization process, and on an organizational level,
there are questions regarding how to make the customization process quick and easy
enough to be valuable. These areas are briefly presented here, together with a gen-
eral background of neighboring subjects. First, though, it is important to understand
why variation occurs in the first place.

2.1 Causes of variation

Variation is the concept that a defined piece of software may look and function in
different ways depending on the situation. The archetypal example is that variation
in a software system is introduced by the producing company in order to allow for
both customization and code reuse at the same time. This is done by inserting
variation points into the software – places where variation may be introduced [12].
An example of a variation point is the background color of an application; another
may be which applications are part of an application suite.

Variation points need to be given specific values in order to be useful. When all
variation points have been given values, a variant is created [12]. Variants differ
from each other by having different values for the same variation points, or possibly
even different variation points. If the same source code is used to create two different
variants, they typically have the same variation points but different values for at
least one of the points; if most of the source code is the same, but one of the variants
has more source code than the other, there may be a difference not only in values
but also in variation points. It is also possible for two variants of the same program
to have no common source code at all, but this is inefficient.

Introducing variation provides the possibility to choose between several options
and allows for the development of customized products. This can be necessary for
different reasons: customer requirements, laws, technical reasons, etcetera. When
companies are customers, they are usually interested in what is visible to the end-
user – such as their brand-logo or the portfolio of applications included. Variation
could also be caused by legal demands – for example a law that forbids inclusion
of a specific language in products that will be sold in a certain country. Customer
requirements and legal demands are usually introduced on a high abstraction level,
whereas technical reasons are more specific – for example, a program can be built

3

for several different devices with different screen sizes.
Variability is the technical equivalence of variation. While variation encompasses

all kinds of changes, variability is sub-divided into specific forms. Customer require-
ments and legal demands are examples of external variability, as opposed to technical
reasons, which cause internal variability. Internal variability may be very important
to customers, but they are never aware of it. Screen size is a typical example of
this: the development team realizes that the same basic program can be created
in different variants and create the variation point screen size, which is never seen
by the customer, but is used during development. External variability, by contrast,
corresponds to variation points which the customer is aware of. Internal variability
often appears when refining external variability, for reasons such as maintenance,
scalability, portability and so on.

The variability pyramid in Figure 1 [12, p. 72] shows abstraction levels of the
development process and illustrates the amount of variability at each abstraction
level. External variability is most common on a high abstraction level, while internal
variability becomes more common further down on a more detailed level.

Figure 1: Variability pyramid

The variability described above is variability in space, which is when different
variants are intended to coexist at the same time. There is also variability in time,
which is a completely different matter. Variability in time implies that one variant
is meant to replace another; typically, only one (the latest) is ever used. In common
configuration management vocabulary, variability in space gives rise to variants,
whereas variability in time produces revisions [10]. There are instances when older
revisions are necessary, but as a general rule the latest revision is always the best –
all else being equal.

4

In order to actually use the possibilities of variation – supplying variants of prod-
ucts to customers – the variation points must be given specific values, so that variants
are created. This can be done in two different ways: static configuration or dynamic
configuration.

2.2 Static vs. dynamic configuration

Product variants can be created either before or after compilation, using several
different methods. Choosing a variant is a form of configuration, and doing so before
compilation is called static configuration, whereas choosing after compilation is called
dynamic configuration. Statically configured products cannot be changed, which is
the reason for the name, whereas dynamically configured products can.

Static configuration is done by selecting source code for compilation. This can be
done simply by compiling different files for different products or by using compiler
features such as conditional compilation, where directives in the source code inform
the compiler about which code to compile and which code to ignore.

This has the advantages that each variant becomes small, that it is very simple
to create new product variants – simply change the source code and recompile – and
that a great deal of flexibility can be achieved; but the drawbacks are that a lot of
work is required to define each variant (not to mention making sure that all other
variant still work) and that a full recompilation must be done for each variant. For
small systems with only a few variants, this is not a serious problem, but for large
systems with many variants, a lot of time and resources are required.

Dynamic configuration eases these pains. In a perfectly dynamic configuration,
each line of source code needs to be compiled only once, no matter how many variants
are created. The simplest way of achieving this is to move all decisions regarding
variants into the executing code itself; the program may for instance read a settings
file when it starts, and only then will the decision be made on which variant is
actually in use. This can be accomplished for example by changing from conditional
compilation (such as #ifdef) to ordinary control structures (if).

A drawback is that dynamically configured products potentially become very
large. If the specific variant to be used is determined when the program is started,
all variants must exist until then, and one of them must be chosen. If there are a lot
of variants, this could cost dearly in space requirements. Depending on the specific
technique used, dynamic configuration may also require a lot of manual labor, just
like static configuration.

A completely dynamic system also has the problem that the total amount of
choices may not always make sense in all combinations. Imagine for instance a
program which can have the background-color green or blue, and which can also
work either in graphical mode or text mode. It makes perfect sense to set a color

5

when the program is running in graphical mode, but not so much when it is in
text mode. If a naive method is used – simply looking at the settings one by one,
disregarding their interdependencies – the program may even crash.

The very best of both worlds is of course to cut down on compilation times and
manual labor, and still produce small programs in all the right variants and with no
incompatible choices. One of the most promising ways for doing so is component-
based systems, as opposed to the monolithic structures which are common to many
software systems today.

2.3 Monolithic vs. component-based systems

There are two extremes on how to design software systems: All parts of the system
can be fully interconnected with all others, or each part can be separated from the
others as much as possible. The former is the monolithic approach, and the latter is
that of a component-based system (CBS). Both have advantages and disadvantages.

Monolithic systems can require less design and architecture, because all parts are
allowed to affect each other. It can also be easier to make changes and implement
new functionality: instead of adding logging to one part, some other part can be
modified if it is easier to implement logging there. Since there are no boundaries, it
is also simple to add features which concern many different parts – simply add the
necessary code to each one of them. However, these advantages turn to disadvantages
as time passes.

Quick changes made to different parts of the system without a clear design scale
badly. If the logging feature later needs to be modified, all code pertaining to it
must first be found – and if it is spread out all over the system, this may not be
easy. As many different features are added in many different places, the system
risks deteriorating into a state where even simple modifications take a lot of time
and require extensive regression testing to make sure that everything else still works.
The basic problem with this is that a lot of work has to be performed which provides
no utility – while modifying code does provide utility, finding it and testing the
system afterwards does not.

Even in well-designed monolithic systems, there are still – by definition – con-
nections between different parts. This means that modifying just one part becomes
difficult, since it is likely that the changes will affect other parts as well, in ways
which are sometimes subtle and hard to catch with tests. Impact analysis is also
made very hard, since changes to one part may cause ripple effects in other, com-
pletely unexpected, areas of the source code. Additionally, when variation points
cannot be introduced, parts of the system – sometimes the entire system – must
be duplicated and changes made, in order to create variants. This introduces the
problem of double maintenance [2], which means that all changes which are made to

6

the common part of the two copies must be maintained for each copy.
On a final note on drawbacks with monoliths, there is the problem of size and

compilation times. If completely static configuration is used, the resulting product
may be kept just large enough for its purpose, but this requires compiling all source
code pertaining to each variant, which can easily take hundreds of hours for a complex
system with many variants. Also, even though each variant is not very large, the
combined size of variants can become a problem since all of them must be stored if
reproducibility is to be maintained1. If completely dynamic configuration is used,
compilation only has to be done once, but the resulting binaries will contain all
different variants and will therefore be quite large. Compromises are of course also
possible, but there will always be a trade-off between size and compilation times.

CBSs are built around the idea that different parts of the software should be
clearly separated into different components, in stark contrast to the monolithic idea.
This requires careful design and architectural decisions and therefore has a longer
start-up period and is generally harder than development on monolithic systems. It
also requires continual work on design and architecture, and from time to time new
parts must be created and old ones removed. Introducing new features may also
require more work than would be required in a monolithic system, for example in
the form of introducing a component which performs logging, and then calling that
component from all other components in the system which require that feature.

The primary advantage, however, is that even though more time is spent on
implementation seen feature-for-feature, the design is kept clear and it is easier to
locate where changes must be made. Theoretically, it is also possible to perform
regression testing on just the affected component or components once changes have
been made, though in reality more code must be tested. Even so, testing can be
made more efficient by focusing the test efforts on the components where faults can
primarily be expected to reside, and then performing more cursory tests on the rest of
the system. In other words, more time can be spent performing work which provides
utility, and less time spent on performing work which simply has to be done, but
provides little utility.

CBSs also have advantages in terms of size and compilation times, especially if
dynamic configuration is used. In that case, each component only has to be compiled
and stored once, which cuts down on both compilation times and storage required.
The specific product is then created by pointing to the actual binary components
which are part of it. If static configuration is used, there can still be savings because

1If everything is known about creating the binaries, this is not necessary, but that is very compli-
cated. Exact source code must be stored, as well as exact versions of compilers and other programs
used – and the programs must produce deterministic output, which is not always the case when
optimization is used. Compiler flags must also be known, and possibly environment data such as
the OS version it was compiled on – perhaps the entire computer must be stored.

7

not all components always need to be compiled in different variants. For instance,
even if a dozen product variants are created, they may all have the same values for all
variation points in the logging component. This means that that specific component
only has to be compiled and stored once. This would be impossible in a monolithic
system.

Even in a CBS, there are of course connections between components, as exem-
plified by the dependence on the logging component above. This is necessary and
allowed, but the general rule is that if components have no immediate connections,
it should be possible to combine them freely. This is very important because if that
property is lost, the system starts moving towards a monolithic system where differ-
ent parts can affect each other in undocumented ways. There are certainly situations
where two nominally unconnected components cannot work together, but it should
be avoided if possible and documented when the situation is unavoidable.

Whereas a monolithic system has only one level of variability (variation points in
the source code), a CBS has two: Variation points inside each component, and the
selection of components which make up the actual product. Product variants are
known as configurations in CBSs, and the fact that a configuration can consist of
different components can in essence be seen as an additional variation point where
the available components can be seen as the values to assign to that variation point.
This allows CBSs more freedom in creating product variants – the variation can
occur either on the level of selecting components, quite simply by including different
sets of components, or on the component level, as in monolithic systems.

Figure 2 and Figure 3 illustrate how components are created from the underly-
ing source code and added to the repository. This thesis is concerned mainly with
components which contain compiled binaries, but it is technically possible to create
components which contain uncompiled source code.

Figure 2: Component

8

The binary in a component is quite simply the compiled source code file or files.
Technically, there could even be several binaries inside one component, for example if
the main executable of a component requires binary libraries. The metadata contains
properties and information regarding the component. Section section 3.2 explains
components in more detail.

Figure 3: Component creation process

The remainder of this thesis works from the assumption that the a component-
based system is used, primarily together with dynamic configuration; a CBS is a
necessity, but the type of configuration is not strictly required to be dynamic.

9

3 Analysis

This section presents an analysis of the challenges and benefits related to component
composition. Different alternatives for overcoming each challenge are explored to-
gether with their specific advantages and drawbacks, and the necessary requirements
for each benefit are laid out.

As established in section 2.3, a component-based system (CBS) solves many of the
problems inherent in a monolithic system. Component-based systems are however
not without problems – the most obvious being that the price of flexibility is com-
plexity, which must be handled. While this can be done manually, manual labor is
more error-prone and slower than an automated system. On the other hand, auto-
mated systems only go so far – some things must still be performed manually, such as
deciding what a configuration should look like and resolving any problems for which
there are no preexisting automation rules.

Figure 4: The composition process

A configuration consists of many different components, each of which has proper-
ties and may have relationships with other components, and in addition, the configu-
ration itself may have properties. From a technical perspective, the central challenge
with component-based systems is how to create configurations which are both com-
plete and consistent. Completeness means that all components which should be
present are in fact present, and consistency is the requirement that all components
are able to function together. There are also the questions of how to store com-

11

ponents, configurations and their properties, and how to ensure that testing and
quality assurance is possible and efficient. These issues are analyzed in the following
sections.

This section takes the challenges with CBSs as a starting point and analyzes
what would be required of a semi-automatic system designed to aid in the process
of composing complete and consistent configurations – a configurator, which would
work along the lines of Figure 4. The first step is to identify possible use cases.

3.1 Use cases

There are several strategies for creating a configuration. Different users might use
different strategies; one user might not care about which operating system (OS) is
used since the focus is on choosing specific applications, while another user might
start by choosing the latest OS version, since a new feature from that version is
required. A component-based system opens up for both these approaches, and more.

Figure 5 shows how a configuration can be created from components of differ-
ent types, and how those components can be connected. More details on this are
presented in section 3.2 and the following sections.

Figure 5: Anatomy of a configuration

The term producing company denotes the company which develops components
and releases configurations. The term user denotes somebody who uses the configura-
tor. This is typically an employee at the producing company where the configurator
is used. Customer refers to the company or person who buys the products from
the producing company. The end-user is the physical person who actually uses the
product.

12

3.1.1 Day-to-day usage

In daily work, the configurator is used to assemble components into configurations
and to work with those configurations. This can be done by a large number of
roles, spanning from configuration managers, quality assurance personnel, testers
and developers, to customer contacts and possibly even the customer or end-user
directly2.

Bottom-up configuration creation The user creates a configuration by selecting
components from the most fundamental to the most specific. The OS is selected first,
then the service layer. Next, applications are selected, and finally, customizations
are added for a specific customer and market or markets.

The choice of OS limits the available service layers; the choice of OS and service
layer together limit available applications; and the choice of OS, service layer and
applications limit the available markets and customers.

Top-down configuration creation The user creates a configuration by selecting
components from the most specific to the most fundamental. Customizations for
customer and markets are selected first, then applications. Finally, a service layer
and an OS are chosen which support the required applications.

The choice of markets and customer limits available applications; the choice of
markets, customer and applications together limit available service layers; and the
choice of markets, customer, applications and service layer limit possible selections
of OS.

Mixed-mode configuration creation The user creates a configuration by select-
ing components and settings in any order. The OS may be selected first, to explore
which applications are available for a new version of that specific OS; or the target
may be a specific customer on a specific market, and applications, service layer and
OS may be of secondary importance.

Selecting a component for inclusion may mean that other components must or
must not be selected. A certain application may require a specific version of a ser-
vice layer; or selecting a specific market may disqualify certain applications because
they lack support for it. The choice of all earlier components determines the list of
available components for the next choice.

Saving, loading and changing configurations Once a configuration has been
created, it should be possible to save it, so that the creator or other persons can

2BMW’s tool Build Your Own (http://www.bmwusa.com/byo) is an example of a configurator
geared towards customers.

13

http://www.bmwusa.com/byo

use it later on. It should naturally also be possible to load a saved configuration.
Additionally, when a configuration is loaded, it may need to be changed – new
versions of components may become available, or changes may be required for some
other reasons.

Just like a component, a configuration may exist in several versions. Once a
configuration is changed and saved, a new version must be created – that is, changing
and saving a configuration must not replace the original, but rather create a new
version of it.

Configuration verification The user creates a new configuration or loads an
existing to verify that it contains all components which are needed (completeness),
that all components can be used together (consistency), that each component has
been verified in isolation and that the entire configuration as a whole has been tested.
This is primarily useful after a problem has been resolved (see that use case, below),
to verify that the configuration is in fact usable.

Configuration inspection The user creates a new configuration or loads an ex-
isting, and inspects its properties to gain information regarding it. Properties may
include things as simple as which components are part of the configuration, or may
be more advanced notions such as which licenses are used by any of the constituent
component. Inspection can take the form of pre-defined standard queries or custom
queries used on a case-by-case basis, and may answer questions such as What hap-
pens if component X is added to configuration Y or Who is impacted by changes to
component Z.

3.1.2 Administration

While daily usage mainly focuses on fetching components from a list (the repository)
and combining them, administrative usage focuses on maintaining the repository3.
This is sometimes carried out by configuration managers – when users request changes
to the repository – and sometimes by other users, directly, through the configurator.

Creating a new component A new component is required, which will have to be
approved, implemented, and tested. The source code and binary data may or may
not be present when the component is added to the configurator system; if they are
not, the component must not be used until they have been added.

3Somebody must also set up process guidelines and directives for how the repository may be
used, but this relates more to the organizational process than to the configurator itself.

14

Changing component status When the status of a component changes, for ex-
ample as a result of testing, this should be reflected in the configurator. This may
also occur when a component should no longer be used and is deprecated, or when
components are changed for any other reasons.

Problem resolution The user creates a configuration, selecting components which
are desired but currently mutually exclusive. This results in a configuration which
contains all needed components but which will not work properly – complete but
inconsistent. The configuration is saved and sent to development for analysis and
implementation.

Development personnel open the configuration and perform the necessary tasks
to make sure the components can in fact work together. The versions of components
in the configuration will need to be updated. This results in a properly working
configuration. The configuration is saved and the original creator is notified.

3.1.3 Advanced usage

Once the basics are provided for, a few more use cases can be envisioned.

Notifications For large systems, the configurator may have many different users.
When one of them changes something – creates a new version of a component, for
example – other users may wish to be notified – for example owners of configurations
which include earlier versions of that same component. This is however case-specific,
since owners of old configurations no longer in use probably have little interest in
notifications regarding them.

Statistics Among the more intriguing possibilities with a CBS is the prospect of
statistical analysis. The owner of a component may for example be interested in
finding out if that component is used at all anymore, to determine if it should be
deprecated or not. Quality assurance may be interested in identifying components
which are commonly used together, to make sure that they are tested more carefully
as a group. Marketing operatives could make use of the knowledge that customers
who select one specific component normally select a certain other component as well,
and suggest this other component to a new customer who requests the first one.

Quality aid When defects are located in a component and subsequently fixed, a
user may wish to identify configurations which might also suffer from that defect
– starting with a component and working towards affected configurations. When
components need to interact with each other, support can also be provided in the
form of indicating which other components, apart from the faulty, that may need

15

scrutiny – if the defect affects the internal workings of a component upon which
other components rely, it is possible that their behavior needs to be changed too, as
a result of repairing the original defect.

Requirements fulfillment If complete traceability is available, such as being
able to find requirements affecting a certain component, the user should be able
to start not with components but with requirements. If a specific requirement is
selected, components which implement that requirement should be indicated to the
user. For example, the requirement “Bluetooth capability” could be selected, which
would disqualify all operating systems without that functionality; or the requirement
“customer-specific application Alpha-Acme” could be selected, which would be satis-
fied only by the actual component for the application Alpha-Acme (though possibly
by more than one version of that component).

The advantage to this, compared with no link to requirements, is that the person
responsible for creating configurations needs no information about which components
implement specific requirements, since that is known by the system. By providing
this layer of abstraction, the administrative burden of creating configurations which
adhere to customer demands, or are in other ways related to requirements, is reduced.

3.2 Components

Component-based systems are built from individual, stand-alone components which
interact using well-known interfaces. An analogy is that of meals in a restaurant:
There are distinct components (ingredients) which need each other to work properly,
and from the same set of components, many different configurations (dishes) can be
built. There are also relationships between components (fish should be served with
one wine and red meat with another; fish and red meat should not be served together,
etcetera). In a software system, a typical component could be an application or the
operating system (which is in itself commonly created from sub-components).

Components are developed over time, and changes cause components to come in
new revisions or new variants (see section 2.1). Revisions and variants are collectively
called versions. They create possibilities, but also complexity. In this thesis, it is
implicitly assumed that components (and for that matter configurations) can always
occur in different versions. For reasons of brevity, this will be described explicitly
only when it is of specific interest – but the issue will be present whenever components
or configurations are used.

Components have properties, can belong to different layers in a configuration, may
need other components to work properly (relationships) and can be combined into
suites of several components. The following sections analyze this in depth, starting
with component properties.

16

3.2.1 Properties

Depending on the actual situation, components may have any number of properties.
Among the more intuitive are its name, the date it was created, the date it was last
modified and who is responsible for the component – and there can of course be
more, depending on the specific situation. For the purposes of creating complete and
consistent configurations, however, only those properties which affect the consistency
are really interesting. Completeness is not affected by properties, but by relationships
(section 3.2.3).

There are many properties which could affect consistency, but they can mostly
be handled in the same basic way. Two examples are presented here: customer and
market, which illustrate slightly different cases.

The terms customization, customer and market are used widely in this thesis.
A customization is a component which provides settings, images or other data, and
allows for customizing the appearance and behavior of another component. Cus-
tomizations come in two basic variants: Customizations for a specific customer, and
customizations for a specific market. These can also be combined, so it is possible to
have one customization which provides the necessary information for one customer
on, say, five markets at the same time.

A customization may be specific for one customer, or it may be customer-generic;
and it may be specific for one or many markets, or it may be market-generic. Generic
settings are defined by the producing company and can be seen as sensible defaults,
suitable for all customers or markets. Customizing a component means assigning
values to one or more variation points.

Customer When configurations are created for a specific customer, that customer
may want to tweak the product – for example if the configuration is then re-sold
to an end-user, to highlight the customer’s brand. This can be handled either by
introducing components which are created specifically for a customer, or by having
generic components whose appearance or behavior can be modified using special
customization components. This is illustrated in Figure 6, where the component
to the left is created specifically for one customer, and the component to the right
is generic and uses one of the three customization components to receive the right
settings. It is obvious that the amount of code reuse can be high when customizations
are used.

The first approach is costlier, but allows for more flexibility for the customer. The
second allows for more code reuse and is therefore faster and cheaper, but provides
fewer opportunities for the customer to customize the component, since no new
variation points can be introduced into the component – only new values can be
introduced. There is also a middle road, where components specific for a customer

17

Figure 6: Customizing components

are created, but customization components are still used. This requires a large initial
investment for each customer, but once that is done, code can be reused and smaller
changes made through the customization component.

If a customer-specific component is created, which may be used only by that
customer, it should obviously have the customer property set appropriately – the
component Alice, for example, could have the customer property set to Acme. The
generic component Bob, however, has an empty customer property, signaling that
it is generic. If Acme want to customize Bob, this is done by adding both Bob
and a customization component, say Charlie, to the configuration. Charlie contains
customizations to Bob specific for Acme, and therefore has the customer property
set to Acme, but Bob still has an empty customer property. Figure 7 illustrates this.

Figure 7: The customer property

A component can have only zero or one values for customer – it is either generic,
or targeted for just one customer. This is in contrast to the market property, which
can have zero, one or many values.

18

Market Products may be customized not only for a specific customer, but also
for a specific market. A market can be a city, country, continent, or any other form
of area, and can often be created from several sub-markets. Markets are created
when certain areas require specific settings – for example a specific communication
protocol or settings requested by the end-users. The main difference is that while it
is hard to imagine a product made for two different customers at the same time, a
product can very well be made for two different markets.

Sometimes, the market is defined entirely by the producing company; sometimes
by the customer. Those markets need not be the same – Generic: Europe and
Acme: Europe could differ in the included countries, for example. There can also be
inheritance relationships: the Europe market may require high-level settings which
are common for the entire EU area, while the France and Germany markets require
lower-level settings which are specific for those areas.

Inheritance can be modeled either internally in the components, in which case it
is not visible in the configurator, or between components, in which case it is visible in
the form of relationships. In the latter case, components having France as market will
indicate that they also need an additional component which has Europe as market
and supplies the common settings.

Inheritance is the main reason why a component can have several values for the
market property, such as Europe and France. Another reason is end-user choice,
where a typical value could be France, or Germany, which would allow end-users
to choose the settings they prefer. However, if only France and Germany are se-
lected, then the common settings for Europe will not be present. To rectify that, the
complete value should be Europe and France, or Europe and Germany.

Another issue is that of overlapping markets. Including the Scandinavia mar-
ket, for example, may or may not be the same as including the Sweden, Denmark
and Norway markets, which may easily lead to confusion when configurations are
created. If a number of markets do add up to a common market, there should be
some mechanism to identify this and suggest to the user that Sweden, Denmark and
Norway could be replaced by the Scandinavia market.

In order for this to be feasible, it must be possible to inspect settings for all
concerned markets, and to know when settings must be exactly identical and when
to compose them. The name of a region is an example of a setting which must be
exactly identical; whereas a flag corresponding to that region could be composed, so
that Sweden, Denmark and Norway supplies one icon each, and Scandinavia supplies
all three of them.

It should be noted that a market is not the same as a language – a customization
for a specific market may state that some languages should be included, and that
other languages must not be included, but markets and languages are not equal.

19

Customers and markets As mentioned above, markets can be defined either by
the producing company or by the customer. While not a strict hierarchy, this implies
that the customer property is on a higher level than the market property – for a given
customer (or no customer at all), there is a well-defined set of markets.

The opposite view – that markets are on a higher level than customers – could be
taken, but since the generic market Europe is not necessarily the same as the Europe
market for Acme, this could lead to subtle problems and great irritation among
customers. It is also the customer who decide what should exist on a market, not
the other way around. Figure 8 exemplifies the hierarchy of component properties
with respect to customers and markets.

Figure 8: Customer-market hierarchy

It should be noted that even though the generic customer (no customer) is chosen
for the component, it is still possible to choose a market for which to customize
the component. One of these markets is the generic market (called Gen), which is
equivalent to no market customization. If no customer and no market is chosen, the
component should simply use its default values. If customer and/or market is set,
the appropriate customizations from those should be used. It should also be noted
that the generic market Denmark is not necessarily the same as Acme’s Denmark –
for instance, Greenland may or may not be supported in one of them.

A hierarchical structure does pose one major problem, namely what to do if there
are conflicting settings on the customer and market levels. Should the customer
settings be used, to ensure that a product is always consistent for a customer no
matter which area it is targeted for; or should the market settings be used, to ensure
that a product is specifically customized to the greatest possible degree?

The decision could be left to the user, in which case the configurator should
provide support to identify the ramifications of each choice; or the situation could be
identified as an error and combinations of customer and market which are in conflict
could be prohibited from being used. The first alternative offers more direct user
control but requires more knowledge from the user, while the second alternative is
safer but risks causing delays when customization components need to be updated
to work with other customizations.

20

3.2.2 Layers

Different components serve different purposes; some components interact with hard-
ware while others provide GUI features and are of more interest to end-users. A
common approach is to create an architecture where components belong to different
layers, such as the one presented in Figure 9. The solid arrows denote an actual re-
quirement – an application may, but does not have to, require that a certain service
layer is present – whereas dashed arrows indicate that a customization is made for a
component. The customization will work, although fulfill no purpose, even without
the component it is made for.

Figure 9: Layers

The operating system is at the lowest layer, mainly with the purpose of talk-
ing to hardware devices. The service layer provides a set of services, libraries and
APIs and serves as a connector between applications and operating system. Appli-
cations are at the third layer, providing features for end-users. Each layer may have
customizations4, making them the top layer.

Layers have different characteristics, such as how many components can be used
at the same time in a layer. There can typically only be one operating system in a
configuration at a time, and the same goes for the service layer. There can however
be many applications, and possibly even several customizations for each application
– one customization for each market the application can be used on, for example.

While not a technical requirement, the most intuitively logical design is that
components on one layer may be allowed to require that other components are present
on the same or lower layers, but not on higher ones. It makes little sense for an
operating system to demand that an application is present – if such a situation occurs,
the application should either be part of the operating system, or there should be an
external requirement from the configuration, which says that the application needs
to be included.

4From a configurator perspective, there are no technical reasons why components on a certain
layer may or may not have customizations, but from an architectural standpoint it might make
little sense to allow customizations of the service layer, for example.

21

Other architectural concerns may also apply – it may for instance be desirable
that components may have relationships only with components on the same level
or the level directly below, to preserve maximum modularity. The examples in this
thesis implicitly assume that relationships between components are from higher to
lower layers, or inside the same layer; however, this is not a technical necessity.

3.2.3 Relationships

In their most general form, relationships are connections between two components
which say something about how they affect each other. Relationships can have at
least three different causes: technical, business-related or legal reasons. Different
organizations with different needs may add more relationship types, or not need all
of them.

For the purposes of this thesis, the term relationship will refer strictly to the
technical relationships – for example that component Alice will be technically unable
to work properly unless component Bob is present. Business-related and legal rela-
tionships are called rules and are considered in section 3.6. Technical relationships
always relate to components or versions thereof, whereas rules can be more general
and relate to components, properties of components, other rules or relationships,
etcetera. It also makes sense to manage the technical relationships in close connec-
tion to the components they relate to, whereas rules are handled on a higher level of
abstraction and are bound less tightly to components.

When the configurator reads relationships between components, they must be
tied to specific versions of components, such as Alice 1.4.3.7, in order for the system
to know exactly which items and versions thereof which are affected. To facilitate
understanding for users and ease the administrative burden, it is however better to
allow for the creation of more general relationships, such as Alice ≥ 1.4.0.0, or simply
Alice. It is then up to the configurator to translate this to all the specific versions of
the component: Alice ≥ 1.4.0.0 will be translated to Alice 1.4.0.0, Alice 1.4.0.1, and
so on. If only specific relationships, such as Alice 1.4.3.7, were allowed, new specific
relationships would have to be added every time a new version of Alice or Bob were
added, since older versions of Alice may work together with the new version of Bob,
and vice versa.

This can be applied to both ends of a relationships, meaning that a relationship
between Alice and Bob is just as valid as one between Alice 1.4.3.7 and Bob 4.1.1.2,
which is just as valid as one between Alice and Bob > 4.1.1.2, and so on. This
provides a very high degree of flexibility with little added complexity for the user –
the complexity is hidden inside the configurator, where the translation must be made
from the general to all the specific versions.

In the remainder of this thesis, the type of relationship is specified only when

22

needed – most properties of relationships apply regardless of whether Alice, Alice ≥
1.4.0.0 or Alice 1.4.3.7 is considered.

Relationships can be specified with one of two basic premises: Either two compo-
nents are allowed to be combined unless there is a relationship between them stating
the opposite; or two components may be combined only if it is explicitly permit-
ted. While neither is fool-proof, the second approach has better odds of guarding
against poor combinations. The cost is however that if most components can be
freely combined, which is often the case, this leads to a great amount of relation-
ships. Taking versions of components into consideration, the relationship web moves
towards a combinatorial explosion, which is distinctly undesirable. The premise that
all combinations are allowed also encourages separation of components and leads to
a greater number of possible configurations.

There are a number of possible technical relationships between components. The
following are the most common, and also the most important. Please note that there
can also be connections between components in the form of rules, as specified in
section 3.6; examples are recommends and suggests. The difference between them
and the technical relationships here are that the technical relationships are strict –
they must be observed – whereas the others are not. Also note that if the underlying
principle is that everything is prohibited unless allowed, an additional relationship
is necessary, namely allows. This thesis assumes that components may be combined
unless explicitly forbidden, and therefore does not list allows.

Requires If component Alice requires component Bob, then Alice cannot work
without Bob. Bob may however work with or without Alice – the relationship is
one-way only. Alice should never be used without Bob. Requires is commonly found
when Bob is a library component of some sort which Alice uses, or when Bob is some
other kind of supporting component.

Conflicts If Alice cannot work together with Bob, they are in conflict. This rela-
tionship is two-way: If Alice conflicts with Bob, then Bob also conflicts with Alice.
Alice and Bob should never be used together. Components most commonly conflict
with each other when they perform the same function or use the same resource –
operating systems are the prime example, or two applications which must use a single
sound system at the same time for the same reason, but in different ways.

Replaces If Alice provides everything that Bob does, then Alice may replace Bob.
This is a somewhat complex relationship, since it means that Alice and Bob are on
some level compatible, and may indicate that either one could be used – if Charlie
requires Bob, and Alice replaces Bob, then Charlie would probably be satisfied with

23

Alice instead. The inverse is not true, however – the relationship is one-way – so if
Charlie requires Alice, and Alice replaces Bob, Charlie would probably not be able
to settle for Bob.

Replaces is commonly found when a component is deprecated and should no
longer be used, but a new component is provided which can be used instead of the
old one. This is somewhat similar to the concept of revisions, where a new revision of
a component generally replaces and older. In a sense, the replacing component can
be thought of as a new revision of the replaced one – except that for some reason,
an entirely new component was developed, rather than just creating a new revision.

It should be noted that even though Alice replaces Bob, Alice and Bob may still
work together. To specify that only Alice should be used, replaces and conflicts could
be used together. Typically, though, Alice should be used instead of Bob.

Breaks As a special case of conflicts, Alice may break Bob. This means that Alice
and Bob may be used together, but Bob will not be able to function. This is akin to
a one-way version of conflicts. Typically, however, Alice should not be used together
with Bob either.

Pre-requires If Alice pre-requires Bob, then Bob must be present and working
before the addition of Alice can start. If all components are combined at the same
time, then pre-requires and requires are equivalent.

Pre-requires is typically used to solve the problem of dynamic changes to a con-
figuration – that is, when a configuration has already been created and later needs to
be modified. It is for example useful if Bob is the scripting language in which Alice
is written – in that case, running Alice is utterly impossible without Bob. To ensure
that Alice can in fact be installed, Bob must first be installed. If an error occurs in
installing Bob, then the installation of Alice should not even be attempted.

Some relationships can be found automatically, while others need to be added man-
ually. Requires and pre-requires are among the easier to find, since they are often
explicit, for example in the form of include statements and file extensions, respec-
tively. It is however not trivial, since knowledge of the source language is required,
and because there may be many mechanisms in the same language for expressing
that Alice needs Bob. Indeed, it is not always possible: A component may require
another component for implicit reasons which are never stated in the source code.

Most of the excluding relationships must be found manually, for example through
testing. Conflicts and breaks are prime examples of this. Code reviews may be useful
for catching this, or simply trying to test, only to have the tests fail. Replaces must
typically also be found manually, but this relationship is often a desired effect of

24

redesign, and is thus known even before development on the new component starts.
Either way, when such relationships are found it must be easy to update the affected
components.

Relationships are a good example of why it is necessary to make information
explicitly available. The knowledge about relationships between components is typi-
cally found among developers, but needs to be used for example by account managers
or other users from the marketing side in order to create configurations.

If the relationships are not specified explicitly, marketing must communicate di-
rectly with development when they need to know them, which takes a lot of time
and creates unnecessary work for both parties. If on the other hand the relationships
are made explicit, development only need to perform the work of documenting them
once, and they can then be used by any user of the configurator. It can also be a
great help to developers themselves during technical tasks, such as impact analysis,
to see directly which other parts of the system are affected by a planned change.

3.2.4 Feature dependencies

The relationships above are direct, in that a component explicitly has a relationship
with another specific component. There are also indirect relationships, namely fea-
ture dependencies. These are of the type that Alice requires the feature Friend. Bob
and Charlie both supply the feature Friend, and Alice will then be able to use either
Bob or Charlie to function properly.

Two important characteristics of feature dependencies are that they allow Alice
to choose one of several supplying components, and that a direct relationship is
transformed into an indirect one. This means that Alice’s dependency on Friend
needs not be updated if a new supplier is added; all that has to be done is to specify
that the new component, say Dave, provides Friend, and Alice will be able to rely
on Bob, Charlie or Dave.

Additionally, there is no need for Alice to have relationships with specific versions
of the other components – so long as they supply the Friend feature, they are us-
able. For the same reason, components can be freely updated with new revisions or
variants, or deprecated, and no relationships need to be updated. This means that
feature dependencies are very useful in limiting complexity.

To complicate the situation, features can be thought of as interfaces5, and inter-
faces can change. Two obvious ways of managing this are to use new names (some
Friends may become BestFriends), or to use versions on features (Friend 1.0 may
become Friend 2.0). To avoid unnecessary clutter, versioning is the better approach.

5Actually, a component which implements an interface can be regarded as providing the feature
of that interface. In other words, feature dependencies can be used directly when a component
requires a specific interface, provided by another component, in order to work.

25

Typically, only one component should be selected to fulfill a feature dependency,
since the components may otherwise interfere with each other. This can vary, how-
ever, and it may be possible to select two, more, or all components, depending on the
system architecture. A feature may for example be a web browser; several browsers
can be installed, allowing the user to choose between them.

3.2.5 Component suites

Sometimes, components are strongly connected and commonly used together as entire
component suites. This is a powerful way of simplifying administration: instead of
having to select several different components, one single suite can be selected. The
Internet suite, for example, could be made up of the components Web browser,
Youtube player and MSN client.

A clever way of providing component suites (also called virtual packages) is to
create a new component – the suite itself – which has no code and provides no
functionality. Instead, the suite has relationships with its constituent components.
Selecting the suite means the configurator will automatically select all required com-
ponents referred to by the suite.

This is not as straightforward as it might seem. Component suites are in essence
configurations of their own, which means that they may themselves exist in different
versions, and that they have all the power and challenges from that world. The
components in a suite may for example be specified using feature relationships, in
which case the actual constituent components to be used must be decided upon,
possibly by interacting with the user; or there may be components in the suite which
require other components, outside the suite. This brings complexity, which can either
be restricted or handled.

Restricting complexity makes for an easier but less powerful system – component
suites can for instance be required to use specific relationships rather than feature
dependencies6, which would mean that no further user interaction is necessary once
a suite has been selected for inclusion. Handling complexity means, in practice,
applying the same logic on a suite as on the configuration itself. Since suites can also
be components in other suites, the mechanism to handle them must be general.

A final problem is that of supporting the user. If a set of components are selected
which can be replaced by a component suite, the composition system should be able
to detect that and ask the user whether to keep the components as separate entities
or to replace them with the suite. This allows for a clearer understanding of what
actually goes into a configuration.

6Instead of saying that Alice is part of a suite, a specific relationship would point to Alice 1.4.4.3
or similar; and instead of saying that a component providing Friend is part of a suite, one of the
components known to provide Friend would be required.

26

3.2.6 Complex relationships

Relationships do not necessarily have to be between just two components. Alice may
for example require Bob or Charlie, where either one of the two is enough. This is
called disjunction, and is very similar to feature dependencies. Alice may also require
Bob and Charlie, where both are needed. This is conjunction, which corresponds to
component suites. Relationship management systems are normally based primarily
on conjunction, meaning that if a component has several relationships, all of them
must be fulfilled, not just one.

There is no reason why relationships cannot be even more powerful, stating for
example that exactly two components out of three possible must be installed. This
is however beyond the scope of this thesis, and the gain appears small compared to
the cost of implementing it. It should also be noted that all such requirements can
be transformed into the longer but easier form Alice and Bob, or Alice and Charlie,
or Bob and Charlie, and so on.

Relationship trees arise when components have many levels of relationships, such
as in Figure 10, and can be quite complex. Introducing support for arbitrarily large
trees is therefore non-trivial, and if it is not commonly used, costs may very well
outweigh benefits – most trees can be modeled with feature dependencies and com-
ponent suites, at the cost of introducing more such than may be necessary or indeed
appropriate. Basic support for conjunction and disjunction is necessary, however, for
example to be able to define suites and feature dependencies in the first place.

One compromise between the need for flexibility and the cost of complexity is
to allow just conjunction for relationships, and then use feature dependencies for
disjunction, as in Figure 11. This can be expected to work well because in many cases
where disjunction is used, the relationship is actually a form of feature dependency,
and there is no need to use component suites in relationships since this can be
expressed with ordinary conjunction. This also reflects the nature of both feature
dependencies, which refer to the technical back-end, and component suites, which
refer more to the customer-centric front-end.

3.2.7 Problems

There are several problems which can arise when dealing with technical relationships,
and which must be handled. They are presented here. Similar problems have been
discussed in other settings, notably by Syrjänen [13].

Dependencies and anti-dependencies On a basic level, relationships must be
fulfilled. If Alice requires Bob, and Alice is selected but Bob is not, then the selection
must be expanded to include Bob. Each time a selection is changed, a new sweep

27

Figure 10: A relationship tree Figure 11: A simplified relationship tree

must be made to see if additional components are required – Bob may for example
require Charlie, and so on. This is the problem of dependencies.

Anti-dependencies are the opposite problem: If Alice conflicts with Bob, and both
Alice and Bob are selected, then one of them must be removed. This may potentially
leave orphan components in the selection: If Bob requires Charlie, and Alice is kept
while Bob is removed, then maybe Charlie is no longer necessary and should be
removed – or maybe Charlie should be selected, even though Bob is now removed.
This is the problem of anti-dependencies.

Cyclic relationships Suppose that Alice requires Bob, Bob requires Charlie, and
Charlie requires Alice. Unless care is taken, this will cause an infinite loop when the
component relationships are mapped. The loop must also be handled if components
are added to an existing configuration, because no two components can be installed
at exactly the same time – the loop must be broken up into a linear process with a
start and an end, as shown in Figure 12.

Figure 12: Cyclic relationships

28

There is also the problem of unselectable components, due to cyclic anti-depen-
dencies. If Alice requires Bob, Bob requires Charlie, and Charlie conflicts with Alice,
then Charlie, or Bob and Charlie, can be selected, but Alice cannot: Because of the
anti-dependency, Alice is completely unselectable. Figure 13 illustrates this.

Figure 13: Cyclic antidependencies

Conflicts in practice It should be noted that even though Alice and Bob do
not theoretically cause conflicts, they may in practice behave in ways which cause
problems. If both Alice and Bob need to create a specific file, say, /users, then
whichever component creates it first will have its changes overwritten by the other.
While the components may still work together, one of them may not behave as
expected, and the problems caused may be very hard to identify.

Missing relationships Related to the conflicts in practice are missing or unknown
relationships, which can occur simply as a result of human error or because the
relationships are hard to detect. Some of these can be automatically detected, as
outlined above, but most can be caught only with the help of testing and debugging.
When missing relationships are found, the next problem is what to do with them
– should the component be updated with new information, and, if so, what should
happen with configurations containing that component, where the new relationship
is no longer fulfilled? This is discussed in section 3.4.3.

3.3 Configurations

In component-based systems, configurations are the top-level objects – they are prod-
ucts. A configuration is in essence just a collection of components, and by varying the
components, different product variants can be created. However, since components
have versions and relationships, collecting them poses challenges. Configurations
themselves can also exist in different version – namely when the collection is changed
as components are added or removed – and have properties of their own, in addition
to properties which come with the components.

29

Configurations do not need to consist of many components, although they nor-
mally do. An empty configuration (containing zero components) is useless, but a
configuration with only one component may be useful: This is a way of transforming
just that component into a product. The same goes for small configurations, con-
taining only a few components (partial configurations), and for configurations which
represent entire systems with all the necessary components (full configurations).

It is worth noting that component suites are equivalent to configurations. The
only difference is that suites are used internally, when configurations are created,
whereas configurations are used externally, when configurations have been created
and are being distributed as products – there is no technical difference between them,
and they could be handled in the same way. Figure 14 illustrates different cases of
configuration, where the full system (right) contains another configuration (suite).

Figure 14: Examples of configurations

3.3.1 Properties

A configuration has two classes of properties: Properties which are specific to the
configuration itself (static properties), and properties which depend on the the com-
ponents it contains (dynamic properties).

Static properties are set directly and manually by a user, and should generally
never be changed – if they need to be changed, a new revision of the configuration
should be created. There are however exceptions, which are further discussed in
section 3.4.3. Static properties for a configuration could be for example its name,
the date it was created and who is responsible for it.

Dynamic properties on the other hand are calculated from the configuration’s
components and their static properties according to preexisting rules. Typical exam-
ples of dynamic properties are completeness, consistency, customer, market and test
status. The first four are analyzed below, and test status is dealt with in section 3.5.

30

Completeness A configuration is complete if it contains all needed components.
There are two reasons a component may be needed, corresponding to two different
kinds of completeness: layer completeness and relationship completeness.

Layer completeness is the requirement that components from certain layers must
be present – typically, the operating system is required to be able to use components
from any other layer. Required layers differ between configurations: partial config-
uration may have no required layers at all, whereas full configurations do. Certain
layers simply must be present for the system to work. The reason is that if there is no
operating system, all the applications of the world can be part of the configuration
and it still will not be usable – which is why layer completeness is important.

Relationship completeness is the requirement that all components are present
which are required by other components – the interesting relationship is requires (and,
if it is used, pre-requires). If Alice is selected, and Alice requires Bob and Charlie,
then a configuration containing only Alice would not be relationship complete; nor
would a configuration containing Alice and Bob, or Alice and Charlie. Only if all
three are included will relationship completeness be achieved. If a configuration
is layer complete but not relationship complete, then most parts of it may work as
expected, but some parts will not. It is obviously unacceptable that parts of a system
simply do not work – which is why relationship completeness is important.

This type of completeness, technical completeness, is based on layers and relation-
ships, is strictly technical, and its applicability may differ between configurations
– especially for layer completeness. However, technical completeness does not fully
solve the problem of checking if configurations are usable – a configuration consist-
ing of an operating system and a service layer would be technically complete, but
hardly usable, since it would contain no applications. In order to ascertain that a
configuration is usable, it must not only be technically complete, but also abide by
all rules (see section 3.6) which are applicable to it. One such rule could be that
applications must be present in full configurations.

Consistency Consistency is similar to completeness in that it is a sort of san-
ity check for configurations. It is based solely on the relationships between the
components in a configuration, and a configuration is said to be consistent if all
anti-dependencies of all components are respected – that is, no components in the
configuration are in conflict with each other. If a configuration is inconsistent, some
components will be unable to function – applications may for example not start –
which is why consistency is important.

Conflicts must be respected in order for a configuration to be consistent. Depend-
ing on the software system being built, components which have relationships of types
breaks or replaces may or may not be allowed to be part of the same configuration.

31

This could be specified using rules (see section 3.6).
Just like with completeness, technical consistency does not cover all problems. A

configuration can be technically consistent and still make no sense from a business
or legal perspective. Technical consistency is however in some way the most basic
level of consistency: if a configuration is inconsistent from a business perspective,
it may still be technically consistent; but a technically inconsistent configuration is
inherently broken and can therefore not be consistent from a business perspective.

Customer The customer property of a configuration is directly determined by
the properties of its constituent components. Each component can either have no
customer set, or exactly one. In a sensible configuration, each component will either
be generic, or have the same customer as the others – meaning that the configuration
as a whole will either be generic or have one customer. If mistakes are made, however,
two components may be selected which have different customers. This will cause the
configuration to receive conflicting values – in effect, a configuration will be created
which is intended for two customers at the same time. This is hardly sensible, and
should be disallowed – with the one exception that a configuration may at the same
time contain some components which are generic and some components which are
targeted for one specific customer. The generic customer can simply be disregarded
and considered as being compatible with an actual customer.

Another aspect is that if a component is chosen which belongs to a certain cus-
tomer, then it should be possible to check whether other components which are
generic could be interchanged for compatible components which belong to the same
customer. An example is displayed in Figure 15. In performing this check, however,
care must be taken to ensure that versions are compatible and that no other errors
are introduced. Ultimately, the choice of which component to use should be left to
the user, but automated support is a plus.

Figure 15: Suggesting components

In a sense, these checks can be regarded as a form of consistency: customer
consistency.

32

Market While a configuration can be intended for only one customer (or be gen-
eric), it can be targeted for several markets. This means that it is not necessarily a
problem if different components in the same configuration are targeted for different
markets. It may however still be preferable – if all components support both Denmark
and Sweden and the entire system is set to Denmark by default, but Alice supports
just Sweden, the end-user may be rather confused when settings and languages differ
between Alice and all other parts. This requires the same type of automated support
as above, to allow for market consistency.

A further complication regarding the market is that it is in a sense both a static
and dynamic property. The actual value is determined by the components’ values
and is therefore dynamic, but the desired value needs to be stored as a static property,
since not all components may be able to support it. Figure 16 illustrates this: the
leftmost illustration depicts the configuration having the market of Sweden, and since
all components also have the market property set to Sweden, the configuration’s
actual market is Sweden.

Figure 16: Desired and actual market

The illustration in the middle shows the same situation, except that one compo-
nent is generic, so the configuration’s desired and actual markets are not the same.
This may be acceptable, or it may be necessary to ensure that all components can
have Sweden as a market. In the third case, however, the situation is more complex.
The desired market is Scandinavia, but one component does not support that. It
does however support the markets Sweden, Denmark and Norway. Is this acceptable,
or is a new component necessary, which does support Scandinavia? Only the user
can answer that question.

A similar challenge is that of market suites – Figure 17. The markets Sweden,
Denmark and Norway are three distinct markets, and the market Scandinavia is yet
another. They may share many settings, but they are not identical, and Scandinavia
cannot be created by merging the three others. However, for ease of use, it may
be desirable to create a suite of the markets Sweden, Denmark and Norway – the
ScandinaviaSuite. That suite is however not equivalent to the Scandinavia market: If
ScandinaviaSuite is selected, what will actually happen is that the markets Sweden,

33

Denmark and Norway are selected, and the software system will be able to use any
one of them – possibly allowing the end-user to choose between them – but if the
actual market Scandinavia is selected, there will only be one market available to
the system, albeit one that is appropriate for use in either of the countries Sweden,
Denmark and Norway.

Figure 17: Market suites

This also brings up the same question as for component suites: What if the user
selects the markets Sweden, Denmark and Norway? The composition system should
be able to identify that this corresponds to an existing suite and ask the user if
the suite should be selected instead. Maybe the user even intended to choose the
market Scandinavia, and the system should be able to catch this, and possibly ask
the user to confirm whether the suite or the market should be used. This does
require a manually entered connection between ScandinaviaSuite and Scandinavia,
but is otherwise uncomplicated.

3.3.2 Problems

Configurations are a powerful way of managing even complex product variants, but
they do have their own problems. These are however primarily related to dynamic
problems which occur when changes to an already running configuration are nec-
essary. These issues are not the primary focus of this thesis, but they can affect
the design of the composition system and should therefore be considered before that
design is decided upon.

Identification There are many situations where configurations need to be iden-
tified, outlined in Use cases, such as when components must be added or removed,
when a configuration needs to be verified, etcetera. Configurations are not static
entities, mainly because they have dynamic properties. The selection of components
in a configuration is however static, in the sense that it can be changed only by
a user’s direct actions. This means that although configurations’ properties may

34

change, configurations themselves can be identified by the components, and versions
thereof, that comprise them. Advantages to this approach include that two formally
different configurations which are in practice the same would be recognized as being
the same; but also means that all components must be inspected to know if two
configurations are the same.

Also, configurations – like components – exist in several revisions; each time a
component is added, removed or updated to a newer revision in the configuration it
results in a new revision of the configuration. Unless configurations are specifically
saved, earlier versions will be lost, which may or may not be a problem. If earlier ver-
sions ever need to be retrieved, it certainly is, and configurations should be handled
just like components: Stored in some kind of repository and never really changed –
instead, new revisions of configurations should be created.

One specific case where identification is important is when a configuration needs to
be updated on the device, under control of the end-user. This is a dynamic problem
which is greatly affected by the design of the composition system: If the entire list
of components and versions is transmitted to the update server it will mean a lot of
data, which is costly in terms of time and bandwidth.

If, on the other hand, configurations are handled like components with revisions
and unique identification numbers, only that identifier needs to be transmitted.
Then, when the configuration on the device has been updated, the new set of compo-
nents – known by both the device and the update server – can be inspected and the
configuration identification can possibly be changed, so as to keep the list of local
differences as small as possible.

Optimality In several cases, more than one version of a component may be used,
for example if Alice requires Bob version 2.0 or greater. Bob may exist in a hundred
different revisions greater than 2.0, but only one of them must be chosen. A common
tiebreaker is to pick the latest component, but there are other issues to consider first.
Do all versions of Bob have the same relationships, and are they all satisfied? Have
all Bobs been tested and accepted, separately and together with all other components
in the configuration? Are there more open bugs in any of them than in others? Are
they all roughly the same size or are some larger than others, thus costing more in
time and transfer fees than others? All else being equal, choosing the latest version
is still a good tiebreaker, but “all else” must first be verified as being equal.

In some cases, there may be not only several versions of a component, but
more than one component as well, for example if Alice depends on a feature and
there are many components available to satisfy the requirement. Not only is the
set of candidates greater than for just one component, but components may differ
more from each other than versions of the same component do. It may be desir-

35

able to allow for expressions to decide which component to select, where several
properties can be used in calculating the best suited component, and even gener-
ate a ranking between possible components. Such expressions would be able to
handle even complex evaluation criteria in a simple way. An example could be
componentSize ·10+componentAge ·8+requiredComponents ·knownBugs, where
lower values would be better.

Efficiency Apart from the problems above, there is the problem of being able
to create a configuration easily and quickly. It may not be wise, for instance, to
recalculate the entire relationship graph every time the selection changes, for reasons
of speed and response time. Rather, the graph should be calculated only once, for
the entire system, and then used. This problem is exacerbated if dynamic updates
of configurations must be possible on the devices running them, since those devices
may not be as powerful as the servers used by the producing company.

3.4 Repository

The repository is the central location where everything needed for the CBS is stored:
components, configurations, relationships between components, etcetera. Table 1
lists typical configuration items which need to be stored in the repository.

Table 1: Configuration items

Item name Notes
Component Exists in different revisions and/or variants, each of which

may have different properties.
Configuration Exists in different revisions and/or variants, each of which

may have different properties.
Relationship Connects a revision of a component or group of revisions

of a component, to another revision or group of revisions.
Feature dependency Each component may supply zero to many features. Rela-

tionships are used to indicate that a component depends
on a feature.

Component suite Functions like a partial configuration. Exists in different
revisions and/or variants, each of which may have different
properties.

The exact format may vary – the repository could for instance either store in-
formation regarding components, such as their versions and properties, in one part,

36

and the relationships in another part; or the relationships may be documented to-
gether with properties; or both properties and relationships may actually be part
of the component; and so on. The components themselves may be stored in the
repository, or the repository may only hold a reference to the actual location in an
external system – there are many variants of the same basic premise. As long as
the capabilities of the repository remain the same, the differences pertain mainly to
optimization and other implementation-specific concerns. There may even be more
than one repository, but this thesis assumes that only one repository is used, unless
specifically noted.

The focus in this thesis is not on the technical aspects of the repository. The
important characteristics of the repository are described on a general level, and the
implementation details are left for future work – efficiency considerations, cost-benefit
compromises, etcetera. It is however important to notice that these issues must be
handled before detailed plans for a configurator are laid down. Milligan [11] presents
more details on why these aspects are important.

One important thing to note about the repository, which is very relevant for the
configurator, is whether components are stored as source code or as binaries. From
a composition perspective, it is much easier to manage binaries. Source code must
be compiled, which means that every such component pre-requires the compiler, and
that the compiler version, all flags etcetera must be stored for future reference. This is
not necessary for binaries, and the focus can therefore be exclusively on composition.

It should be noted that whether source code or binary components are added
to the repository, this is not a repository where active source code development
will take place. Rather, all day-to-day development will take place in a dedicated
repository, and once a component reaches a certain stage it will be added to the
configurator repository. Revisions in the development repository do not have to
match those in the configurator repository; and the development repository may
have many branches, variants or even entire components which are never added to
the configurator repository.

Capabilities Regardless of the form the repository takes, there is one basic capa-
bility it must have, namely support for proper versioning of items. There are also
a great many capabilities which users may wish that it had, such as allowing for
variants and concurrent work7 [6]. The distinction between capabilities of the repos-
itory itself, and of tools working with the repository – such as the configurator – is
somewhat blurry, since tools can often simulate many aspects even if the repository
does not support them directly.

7Component development is not carried out on this repository, but creating configurations may
still require parallel and concurrent work by several users.

37

Without versioning capability, development on many different components over
time cannot be accommodated, and the component-based aspect collapses. This is
very similar to just about all existing version control systems such as CVS8, Sub-
version9, ClearCase10 etcetera. Depending on how complex configurations become
and how many persons work on them, there might even be an interest in providing
features like branches or tags.

In addition to versioning, the repository could provide support for answering ques-
tions such as Who added component Alice, What was changed between revisions X
and Y, What does the entire history of changes look like for configuration Z, etcetera.
These capabilities are not strictly required, because the same questions can be an-
swered by performing manual work, but would be valuable to improve efficiency.

Concurrency There are three main possibilities for handling the concurrency
problems which occur when different persons work with the same components or
configurations at the same time11: Serialize the work using locks, allow and support
parallel work using merges, or ignore the problem and place the checks outside the
system. The latter is the easiest: users are left to handle the issue themselves, and
the process is defined so that only one user or organizational unit is allowed to make
changes to the repository, though many others may still be allowed to read from
it. As long as there is only one user at a time making changes to a specific item
in the repository, there will be no concurrency problems12. There may however be
drawbacks in terms of efficiency, since people cannot collaborate on the same item
at the same time.

Serialization is the second simplest approach. The checks are then internalized
into the repository, so the users do not have to ask each other whether or not it is
safe to change an item – whenever a user starts working on an item, that item is
locked and no other user may modify it. The efficiency problem is still present, but
the manual checks will become automatic so there is no longer any risk that users
will make mistakes and accidentally modify the same item at the same time, and
users will be spared at least some manual work.

Parallelization is the most advanced approach, and is present in all modern ver-
sioning systems. Several users can modify the same item at the same time, and the
first one to save changes will quite simply be allowed to save. The second user will

8http://www.nongnu.org/cvs/
9http://subversion.tigris.org/

10http://www.ibm.com/software/awdtools/clearcase
11This applies when making changes to configurations, or to the properties of components – not

when the actual components are modified, since this is done in the software development repository.
12If two or more users do make changes to the same item at the same time, the last one to save

the item will overwrite all earlier changes, which will then be permanently lost.

38

http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://www.ibm.com/software/awdtools/clearcase

however not be allowed to save changes, and will instead be notified that the item
has already been changed by the first user. The second user must then look at all
changes and decide what the end result should look like, and only then can the item
be saved – and so on for all the other users attempting to save.

Distributed development For large companies, there is also the problem of mul-
tiple sites. When development on components and configurations needs to be geo-
graphically distributed, it may also become necessary to provide for multiple repos-
itories. This is a problem that even powerful versioning systems have not fully ad-
dressed, although completely distributed version control systems such as git13 may
indicate a solution. Other possible solutions include a master-slave-setup, where all
changes must be made directly to the master and the slave is used only to speed up
reading, or repository synchronization.

3.4.1 Evolution

When a repository is created, it is normally small and it is possible – even easy –
to get a complete overview. Over time, however, as new components are added,
and revisions and variants complicate the picture, the repository becomes larger and
more complex. The overview is lost and achieving a full understanding of even a
single component may require considerable effort.

Mechanisms must be in place from the very beginning to help counter this problem
and keep the repository usable. A typical example of this is a method to trace all
configurations where a given component is used, to quickly see if it is used at all, and
whether or not those configurations are still active. Sorting and filtering capabilities
are also a bonus, to facilitate administrative tasks. Whether this is technically carried
out by the repository itself or the configurator is less interesting.

Clean-up When more and more components and versions thereof are added, to-
gether with relationships, large webs of component interdependencies14 risk being
created. A simple solution to this is to regularly remove old components which
should no longer be available to ordinary users. Since it is still desirable to be able
to recreate old configurations, the components should not actually be deleted from
the repository, but instead marked as not being available when new configurations are
created15. This will keep the amount of components available for daily use limited,
thereby helping the user to retain an overview.

13http://git-scm.com/
14Also known as The dreaded Italian spaghetti-symptom.
15Although some roles, such as configuration managers and support personnel, may need to be

able to create new configurations with such components, or update existing configurations.

39

http://git-scm.com/

A more demanding clean-up is also possible, in the form of architectural decisions.
It should be possible to identify newly developed or updated components which rely
on old components, or components which have relationships with many others, and
consider whether their relationship webs can be pruned. While this costs in terms
of development effort, the benefit is a smaller and healthier system which can be
combined more freely. At some point, entire component webs may even be marked
as deprecated, and replaced with newer solutions. Crnkovic and Larsson [5] present
some interesting thoughts about this, namely that development on a component is
most active in the beginning and end of its useful lifespan, eventually reaching a
point where it is better to start on a new design than continue working on the old.

Commit checks Whereas clean-up is performed on the contents already in a repos-
itory, commit checks are run before any changes are allowed to be made to the repos-
itory. The basic idea is to apply the same checks that are run when a configuration is
created, and make sure everything looks good. Some problems can be caught, but not
all – if they could, there would be no need for checks when creating configurations.

A typical example of a problem which can be caught before commits is that of
cyclic anti-dependencies, as introduced in section 3.2.7 and Figure 13. If components
Alice, Bob and Charlie are added to the repository at the same time, applying the
relevant checks will reveal that while Bob and Charlie can later be used, Alice in
essence conflicts with herself and can never be used. This should probably not be
allowed – it makes little sense to create components which cannot be used, and the
user may be confused when trying to select such a component. It may however be of
interest during planning stages, to use the configurator as a tool in deciding on the
system architecture, for instance if other components have dependencies with Alice.

An entirely different case is that of unsatisfied dependencies. Assume that the
repository is empty, and that two components should be added: Alice and Bob,
where Alice requires Bob. Alice has been completed, but Bob is still in development
and cannot yet be added to the repository. Should Alice be allowed in, knowing
that it is not currently usable but that it will be in the future? In the end, this
can only be answered on a per-case basis, but the problem is obvious: An unwary
configurator user may be surprised when trying to add Alice to any configuration,
since Alice cannot be selected until Bob has been added to the repository. A possible
compromise would be to allow the addition, but not display Alice in the configurator
until Bob has also been added to the repository, but then there is little use in adding
Alice at all. Ultimately, this is not a technical problem at all, but a management
problem caused by the development planning process.

40

3.4.2 Adding items

Components need to be added to the repository in order to be available for inclusion
in configurations. The point at which they are added can however be discussed –
should they be added as empty placeholders as soon as a decision has been made to
create them; or when the first versions, which may lack several features, are ready;
or should they be kept out of the repository until they are completely finished?

All alternatives have advantages and drawbacks. The later a component is added,
the more users can depend on it being finished, but this also means that it may take
a long time before a component shows up and can be used, lengthening turnaround
time. Adding components early means times will be shorter, but it will probably be
necessary to create more versions as bugs are found and corrected, and new features
become available. If an early version of a component is part of a configuration, the
configuration will also need to be updated to instead use a newer component version.

There are also several possible compromises between alternatives. The most natu-
ral is to add components as soon as possible, but to restrict usage to those users who
actually have a reason to use the components – and to warn them when a component
is not safe to use. Before coding has started, for example, maybe only developers
and configuration managers should be able to select the component, and everybody
else should see nothing at all of it, or should perhaps see that it exists but that it
is unfinished and therefore can not be added to configurations. Once early versions
with some features have been finished, more users could then be able to use the
component, culminating in a final released component which has been fully tested
and approved, and which can be added to a configuration by any user.

A similar model is that of separated stages, where the component is added to
one repository when it is planned, then moved to another repository when code is
added, moved to yet another when it is stable enough for testing, and moved to the
final repository when it has been tested and approved – akin to the idea of staged
integration lines, described by Appleton et al [1]. This requires more repositories, to
which different users may or may not have access, but otherwise works like restricted
usage. The main advantage is that it is very clear what stage a component is at, but
the drawback is that it is harder to follow the development of a single component
since it is spread over different repositories.

3.4.3 Modifying metadata

Components and configurations are stored in the repository together with their prop-
erties and relationships. If configuration management rules are followed strictly, a
specific version of a component must never be changed once it has been added to the
repository – a new version must be created instead. While this is a sensible strategy

41

for the component itself – its source code and behavior should never be allowed to
change unless a new version is created – it is not necessarily the best approach for
the properties and relationships, collectively known as the component’s metadata16.

Consider a configuration which contains the components Alice and Bob. Neither
Alice nor Bob has any relationships, and both of them have been tested for bugs
and approved – everything is just dandy, and the configuration is saved. However,
an attentive developer realizes that Alice actually requires Charlie too, and that the
configuration will not work. Even if a new version of Alice is added to the repository
with the “new” relationship, the configuration will still indicate that everything is
fine, since it contains the old version of Alice.

If, on the other hand, the existing version of Alice is corrected and the relationship
is added, the configuration will correctly indicate that Charlie is needed, but the
system will have lost the possibility to exactly recreate old configurations17 – if the
configuration is now loaded, it will indicate a problem and Charlie must be added
before anything can be done. The incorrectly “possible” combination of only Alice
and Bob is gone.

A similar problem is that of Bob’s markets, and while the problem with Alice
was one of missing relationships, this is a problem with properties. Bob’s market
property has been incorrectly set to Norway, but in reality, Bob was designed for
Denmark – a simple human error has been made somewhere along the road. The
question is the same: Should a new version of Bob be added to the repository, or
should the existing one be changed?

If a new version is added, which has the correct value Norway for the market
property, there is a risk that users will select the older version of Bob when creating
new configurations, instead of the newer version, simply because one of them appears
to work with Denmark and the other does not. Alternatively, the old version could
be replaced by a new one with the correct market, and the old version marked as
being deprecated.

There is also the problem of when to add items to the repository: If no metadata
must ever be changed, then it is impossible to add untested items to the repository,
test them afterwards, and then set the test status property (see section 3.5). Instead,
items can be added to the repository only when they have been tested and accepted.
This may be a benefit for many users, but it means that the test department has little
use for the repository, since all items there have been tested and accepted. While
this can be solved by having several different repositories (one for untested items,
one for accepted and so on) it increases complexity in the system.

16A component’s metadata is actually any kind of information regarding the component, but
properties and relationships are the most important kinds.

17To be precise, the exact configuration can be restored, but its exact metadata cannot.

42

Over time, when components become old and are eventually replaced, it may also
be necessary to remove them from active use, as discussed above. How should this
be performed? It is very counter-intuitive to add new versions of components and
mark them as deprecated, while allowing the older versions to reside in the repository
without being marked as deprecated.

The very best solution is to manage versions not only of components, but also
versions of their metadata18. This means that it is always possible to recreate all
previous configurations, components, properties and relationships – but at the cost
of a large system and much complexity.

A compromise may be to allow only certain metadata, notably relationships and
statuses, to vary inside the repository without creating a new revision, while others
are frozen. Such metadata could be the test status and a few similar status properties,
and there would probably have to be restrictions on what kind of user was allowed to
change properties; in which circumstances it would be allowed; and how notifications
should be sent once updates are made.

3.5 Status modes

Both components and configurations can have several different statuses modes, and
these status modes (statuses) can have different values over the course of the item’s
life cycle. Both the status modes themselves, and the values available for each status
mode, must be decided upon by the producing company – large, complex products
may need many modes and many possible values for each mode, while relatively small
products may need only a few. The status modes can be thought of as different status
dimensions, which may depend on each other in non-trivial ways.

One status which should be common to most development situations is test status.
This will be used to explain the basic workings of status modes; first for components
and then for configurations. The basic premise is the same for other status modes,
some of which are also presented below.

3.5.1 Component test status

When development on a component has resulted in a new version, that version
generally needs to be tested to ensure high quality; even if tests are also part of
the development process. While this can be performed in a separate system, there
are advantages to doing so inside the world of the configurator; the most obvious
being that those users who need access to new versions quickly can start using them
immediately and that work on configurations and work on testing can run in parallel,
while untested versions can still be kept hidden from users who should not use them.

18Akin to sixth normal form as defined by Date et al [7].

43

The test status of a single component is rather simple: A component can have
only one of a limited number of values for its test status. Those values could typically
be Untestable, Untested, Tested – rejected (or just rejected) and Tested – accepted
(or just accepted). Different situations will probably call for different levels of detail.
A new component starts with a test status of untestable or untested, depending on
when it is added to the repository – if it is added without any code, or a skeleton
code which performs no work, it may start as untestable; if it is added when it is
nearer to completion, it will more likely start as untested. It will then be tested and
subsequently have its test status updated to rejected or accepted; or it may never
be tested, for some reason. New versions of a component should always start as
untested, and then be updated to rejected or accepted – or, if something has gone
terribly wrong, maybe even untestable.

There is a simple order to these values. Untestable indicates a broken or useless
component, and is the lowest possible value a component can have. Rejected indicates
that the component works well enough to be tested, but that it does not perform
as expected. Untested is in some aspect better than rejected, since there is still the
possibility that the component will work, even though it provides less information
than rejected and even though the component may move from untested to rejected
or even untestable. The only desirable test status is of course accepted. The order
between values may differ for different companies but the concept of ordering should
still be available, and when more (or fewer) values are used, the same kind of ordering
should be available for them too. This is relatively simple for components, but
configurations introduce entirely new problems.

3.5.2 Configuration test status

While a component has just one single test status at a particular point in time, a
configuration consists of many different components which potentially have different
values for test status. The fundamental question for the test status of a configuration
is how to make sense of all these underlying values and be able to tell whether a
configuration will work or not.

A case where this is very simple is presented in Figure 18, leftmost. Even if
two of the components have been tested and accepted, the third has been rejected,
and the configuration as a whole cannot work if one of its components is broken – it
essentially receives a test status of rejected. The third component should be updated
to a new version which can be tested and accepted, and the configuration updated
to use that component instead.

This is an example of the principle of the least common denominator – if the
first two components would instead be untested, the configuration as a whole would
still be rejected. The principle of the least common denominator is at the core of

44

Figure 18: Configuration status

calculating the status of a configuration from its components: The configuration can
never get a better rating than that of the lowest of its constituent components, since
it makes little sense to say that a product works even if some of its parts are broken.
It can however receive a lower rating than that of its components, since even parts
which work independently may break when they have to work together.

The middle illustration in Figure 18 exemplifies this. Each component has been
tested and approved in isolation, but components may affect each other and therefore
need to be tested together, too. In this case, although all components work individu-
ally, two of them disrupt each other and do not work together – so the configuration,
again, receives an effective test status of rejected. The only way to make absolutely
certain that components work together is to verify the entire configuration as a whole,
as depicted in the rightmost illustration. In so doing, not only should each compo-
nent be tested individually, but also in combination with all other components, and
the results from this system test should be stored so that other configurations can
make use of that information – otherwise, the same work may need to be performed
several times, which is of course unnecessary.

In the end, the only way to be entirely sure that a product is of desirable quality
is to test the entire configuration. However, this takes time and ties up resources.
In some cases, an entire system test is not required to make an educated guess
about a configuration’s quality. During development of a new product, this kind of
analysis can be used to direct development and testing towards the areas where the
probability of faults is highest, and a full system test can then be performed when
the product is nearing completion.

A typical example could be when an existing configuration is used as a basis for
a new one, and the new configuration uses newer versions of components than the
old one did. If the old configuration had had all its components accepted as working
together, and the new component versions have been accepted individually, chances
are that there will be little problems integrating them into the configuration, and
testing resources can be directed towards other areas where they are better needed.

45

This kind of reasoning is especially applicable when components have no relation-
ships between them, which should generally be the default case in a well-designed
CBS. If a configuration consists entirely of components which have no relationships
at all and where each component has been individually tested and accepted, it should
be possible to say that the configuration as a whole will work and therefore should
receive a test status of accepted. To be on the safe side, however, it may be more
intelligent to assign a test status such as tentatively accepted to the configuration,
and then make entirely sure by actually testing it.

Configurations may also have the opposite situation: They may be accepted even if
some components are rejected individually. While this may not be desirable (or even
allowed) for business reasons, it is entirely possible to handle technically by separating
the test status into one dynamic part and one static part. The dynamic part would
then be based on the analysis described above, and depend on the test statuses and
relationships of components; whereas the static test status of a configuration would
quite simply be set by a user. If the two differ, the static test status could be given
priority, with the interpretation that “The user knows there are problems, but the
configuration as a whole is good enough” – or the lowest value of the dynamic and
static properties could be chosen, with the interpretation that “Everything must be
tested and accepted before the product is delivered to customer”.

Since component suites are in essence configurations, they can be handled very
much the same way when they are selected for inclusion into configurations. Feature
dependencies are another matter, however, since a feature dependency is satisfied by
selecting just one component, whereas component suites require that all its compo-
nents are added. Because of this, the logic is inverted for feature dependencies: It is
enough that one of its components has been approved, for the entire feature to be
considered approved. The problem of testing components together with each other
still applies, but if just one of the components supplying the feature has been tested
with those other components, that is enough.

Finding the test status of a component is simple. Calculating the test status of
a feature dependency, component suite or configuration is considerably harder, but
the payoff is shorter turnabout times and the possibility to direct testing efforts to
where they are most needed. Complicating the picture even more is the fact that
there are also other status modes.

3.5.3 Other statuses

Test status is probably the most fundamental status mode, and is intuitively under-
standable to most persons who work with software development. There are however
several other statuses too, which can be of great help in working with a component-
based system. Four of them are exemplified here to give an idea of what statuses

46

may look like and be used for, and the problems which come with having several
different status dimensions. More status dimensions can be required, depending on
the producing company.

Deprecated Primarily applicable to components, feature dependencies and com-
ponent suites, but sometimes also to configurations, the status deprecated typically
takes one of only two values: yes or no. When an item has been deprecated it should
no longer be available for use in new configurations, and not even visible for most
users. Marking an item as deprecated indicates that it has reached the end of its
lifespan and should not be used. Sometimes, an item marked as deprecated is also
on the receiving end of a replaces relationship, so that old configurations containing
the item can be updated to use its successor, if any.

In addition which component to use instead, it may also be wise to note when
and why a component was deprecated, and who did it. The owners of configurations
using the item should also be notified of the change, as well as owners of components
with dependencies on the item, so that appropriate actions can be taken.

Update needed There are many reasons why an item may need to be updated.
The latest revision of it may for example have been tested and rejected, necessitating
a new revision, or it may depend on another component which was recently updated
or it may simply be decided that a new feature is needed. To signal this, the status
Update needed may be set to yes. Again, as for deprecated, it is prudent to also record
when and why it was done, and by whom. Once a new version of the item has been
added to the repository, update needed may be safely restored to no on the original
item, since the version system indicates that the later item is available.

The main reason for including the status update needed is that it enables au-
tomating a lot of work when creating configurations. If a revision of a component is
selected for which update needed is set to yes, the configurator can immediately warn
the user of this – or may not even allow selecting that revision to begin with. If such
a status is not available, the user must manually check to see if there are circum-
stances which require a new revision, for each component added to the configuration;
or the user adding new revisions of a component must notify all other users whose
configurations include that component. The same applies when other components
have relationships with a component which needs to be updated.

Production stage Primarily applicable to configurations, production stage indi-
cates how far in the process of creating a product for a customer the configuration has
come. Possible values include planning, design, development, pre-fabrication, fabrica-
tion, deployment, delivered, etcetera – again, depending on the producing company

47

and the specific situation. The usefulness of this status is that some actions may
look different depending on what production stage a configuration has reached.

Notifications are an example of this. Typically, if a configuration is still in the
planning stages and a new revision of a selected component becomes available, the
owner of the configuration may want the configuration to be silently and automat-
ically updated so that the new component revision is used instead of the old one.
For a configuration in pre-fabrication, it may be desired that new components cause
notifications to the configuration owner, who can then manually decide on the best
action to take; while nothing at all should be done if a configuration has already been
delivered – not even delivering a notification. Notifications also allow for a smart
way to propagate information such as update needed, above, to owners of components
or configurations.

Support level Like production stage, the support level applies primarily to config-
urations. It denotes the level of support the producing company is willing to extend
to a certain configuration, and may take values such as unsupported, supported, guar-
anteed etcetera. An unsupported configuration may be one which should work, but
for which there will be little or no support offered if it does not, perhaps created on
the direct request of the customer; a supported configuration could be one which has
been created after discussions between the producing company and a customer and
for which there will be general support; and a guaranteed configuration could carry
promises such as “on-site support within 24 hours” or similar.

Unlike production stage, support level is of great interest for persons outside the
producing company – customers may even be more interested in having support than
in having many features. It is also of interest internally, perhaps especially when bugs
are reported because bugs afflicting components which are part of guaranteed con-
figurations should be given higher priority than bugs which only affect unsupported
configurations.

3.5.4 Combining statuses

Many times, it is less interesting to consider the many different status values that a
component may have, and more interesting to reduce the many status dimensions and
their values to one single combined status. This applies even more to configurations,
which can have even more statuses since they are made up of components, and those
components and their relationships may put the configurations in any number of
situations. In essence, this reduction corresponds to combining all relevant status
values in order to answer the question “Is this good enough for my purposes?”.

Different users in different positions may have different interests. If a certain
configuration is in active use by an important customer and that customer has filed

48

a bug report, it matters little whether components in that configuration have been
marked as needing update, or even being deprecated – what is important is to work
with the corresponding versions and fix the bug. On the other hand, when new
configurations should be created it is important that all components are of the latest
versions and work well with each other.

There are basically two ways of combining different statuses to one single value:
Either set up a hierarchy of statuses, or create a more general rule where boolean
expressions, weighting and similar operations are possible. The first is simpler but
much more limited than the second, and not all hierarchical combinations may make
sense. Also, the list containing the hierarchical mapping between values for all sta-
tuses and the combined value will grow exponentially in the number of statuses and
their values, which will quickly make it hard to maintain. Some kind of rule, allowing
for expressions to calculate the combined status, would be preferable.

Figure 19 and Table 2 illustrate the two approaches for a small example. Note that
even though just two statuses are used, the table becomes large for both combined
statuses, whereas the expression remains compact.

Overall status provides an example of how statuses can be combined to provide
information about a configuration at a glance, whereas Test action illustrates a com-
bined status specifically designed to supply information about whether testing needs
to be performed – a veritable plethora of other combined statuses can be imagined.
Whether expressions or tables are used, automation will help the user greatly – in
one case to evaluate the expressions, and in the other to find the correct value in a
very large table.

if(testStatus == Untested && productionStage < Deployment &&
productionStage > Planning) {

testAction = Test;
} else {

testAction = None;
}

Figure 19: Calculating combined status using expressions

49

Table 2: Reading combined status from hierarchical mappings

Test status Production stage Overall status Test action

Accepted Delivered Delivered None
Accepted Deployment Deployment None
Accepted Fabrication Fabrication None
Accepted Pre-fabrication Pre-fabrication None
Accepted Development Development None
Accepted Design Impossible None
Accepted Planning Impossible None

Untested Delivered Warning None
Untested Deployment Warning None
Untested Fabrication Warning Test
Untested Pre-fabrication Warning Test
Untested Development Untested Test
Untested Design Untested Test
Untested Planning Impossible None

Rejected Delivered Error None
Rejected Deployment Error None
Rejected Fabrication Error None
Rejected Pre-fabrication Warning None
Rejected Development Rejected None
Rejected Design Rejected None
Rejected Planning Impossible None

Untestable Delivered Error None
Untestable Deployment Error None
Untestable Fabrication Error None
Untestable Pre-fabrication Warning None
Untestable Development Broken None
Untestable Design Design None
Untestable Planning Planning None

50

3.6 Rules

Rules are a generalization of relationships. Relationships exist between two com-
ponents; rules can apply to many items at the same time. Relationships can only
exist between components19; rules can apply to components, component properties,
configurations, relationships, other rules, and more.

Relationships are explicitly technical in nature and must be observed if the con-
figuration is to work; rules are non-technical and configurations may work even if
rules are violated. However, the repercussions of shipping a product which violates
rules may be even worse than delivering one which violates relationships. Finally,
relationships and rules have different origins and are added or removed by different
roles, for different purposes. Relationships are added or removed when components
are modified, whereas rules can be changed independently of items in the repository.

Rules have the potential of removing a lot of complexity from the user, but that
complexity still exists and must be managed somewhere else. One aspect of this is
that somebody has to add, remove and generally maintain the rules, which is not
necessarily effortless. Another is that there must actually be a system in place to
process the rules. That system is however beyond the scope of this thesis – here,
rules are simply assumed to work in some magical way. The paragraphs below outline
what rules should look like and what they can be used for.

Types of rules There are primarily two types of rules: rules from within the
producing company, and rules from outside it. Business rules can come both from
within and outside, but are used here to exemplify rules from within the company.
Legal rules typically come from outside and exemplify that type of rules. Different
companies may need others.

Examples of business rules could be All configurations produced during 2010 must
include component Alice, to promote that component, or Components which have
the customer property set to Acme and the market property set to Europe are rec-
ommended to support the Chinese language, because Acme want general support for
Chinese in Europe. The first example is an absolute requirement, whereas the second
is a suggestion to the user. There can also be negative rules: Components with the
market property set to Sweden must not be included in configurations with the market
property set to Denmark.

Legal rules are more definitive. They are of the type The Danish language must
never be present in configurations with the market property set to Sweden, because
of language laws, or the opposite: Configurations with the market property set to
Germany must include the German, French and Turkish languages, again because of
language laws.

19Component suites and feature dependencies are ultimately converted to components.

51

Completeness and consistency Introducing business rules and legal rules also
introduces two new types of completeness and consistency (see section 3.3.1), namely
business completeness and business consistency, and legal completeness and legal con-
sistency. A configuration is business complete if it contains all components indicated
by business rules, and legally complete if it contains all components indicated by
legal rules. In the same way, configurations are business consistent if all negative
business rules are adhered to (no components or properties in a configuration violate
business rules), and legally consistent if all negative legal rules are adhered to. This
only applies when rules are definitive, not for suggestions and similar rules.

This means a configuration can, at the same time, be technically consistent, busi-
ness inconsistent and legally consistent; and the same applies to completeness. In
order for a configuration to be complete, it must be complete with respect to all three
kinds; if it is incomplete with respect to one of them, it is said to be incomplete. The
same applies to consistency.

Adding rules Just as commit checks are meant to catch components which can
never be used for technical reasons (section 3.4.1), components which violate rules
can be caught before they are allowed into the repository. The reverse must however
also be considered, namely that when new rules are introduced, components which
already exist in the repository may no longer be usable – for instance, a component
with market Germany and support for just the German language would no longer
be usable if the language rules above were introduced, since it would then need to
support the French and Turkish languages too.

This kind of checks need to be made whenever a new rule is added. One option
is that the rule should not be allowed to be added at all, which would of course be
negative since the rule can be assumed to fill an important purpose. An alternative
is components in the repository which are no longer selectable should be marked
with update needed, deprecated or some other similar status. This has the drawbacks
that those components can no longer be used – which might be exactly the intended
effect.

A third alternative is that the rule could simply be added with no change to
existing components and configuration, which would make the rule take effect only
on items which are added from that point forward. This should perhaps even be
possible for the user to select when rules are added. Finally, since rules can be active
during only certain periods – in other words, relate to dates as well as to components
or other items – some problems can be avoided using this mechanism.

The basic premise for managing the complexity of CBSs is to hide it from the
user and make the configurator perform as much work as possible automatically. In
order to succeed with this, some information must be made explicit – for example

52

relationships, properties, and rules. Introducing rules means that the configurator
becomes more capable, but also more complex. In essence, flexibility and ease-of-use
for the user comes at the cost of complexity inside the configurator, where it must
be managed by whoever is responsible for developing and maintaining it.

Implicit rules A subtle point about rules is that even if explicit rules, as outlined
above, are not introduced, there will still be implicit rules. These are the fundamen-
tal assumptions and restrictions which the configurator place on the composition
of configurations, such as Relationships must be observed for a configuration to be
complete and consistent or There must be no more than one operating system. If
introducing explicit rules is too much work and not worth the effort, then the most
important of those rules could instead be hard-coded into the configurator in the
form of implicit rules.

Configurator behavior Rules can also be used to define the very behavior of
the configurator itself. This is on another level than the layers specifying permitted
compositions, and could for example specify that Test personnel are not allowed to
create new configurations, or Configuration managers are allowed to break rules X,
Y and Z (for instance, create inconsistent configurations to see the repercussions).
This kind of rules could be specified in the same way as ordinary rules and checked
using the same system, but would need to be applicable not only to components and
other items inside the system, but also to users and capabilities of the configurator.

In a sense, this is reminiscent of allowing for script languages inside a program.
Several applications have done so already, Microsoft Office being an example, with
exceptional results. The important gain is that users are given increased flexibil-
ity within the confined and therefore safe limits of an existing system, while the
complexity handled by configurator rules is hidden during everyday use.

Configurator rules could also be used to handle updates, discussed in section 3.5.3.
A typical example of this could be when a new component version is made available
and the user is working on a configuration which uses an older version of the com-
ponent. There might be a rule which, depending on several different variables, auto-
matically updates the configuration, informs the user, or does nothing. This would
remove the need for users to manually check whether items have been updated,
allowing them to focus on decisions which actually must be made manually.

Priorities Rules could also be given priorities, to facilitate understanding for the
user. Rules with the highest priority are run first, and could for example be the
implicit rules which absolutely must be adhered to. The rest of the rules can then be
run in descending order, passing definitive business and legal rules, and only when all

53

those rules have passed will the suggesting rules be run. This would mean that the
user would be shown only one problem at a time, and the most important problems
first. There is little point in adding suggested components if a configurations is
technically inconsistent, for example. Still, the user could be given the choice on
whether to display one problem at a time, or all at once. Priorities could also be
used as a simple ways of providing different users with different possibilities. Some
users may be allowed to break rules below a certain priority, whereas other users
must adhere to all rules.

54

4 Design

This section builds on the results in Analysis to present a comprehensive outline of
what a configurator should be able to provide in terms of features and user support.
A possible program sketch is also provided, to provide a concrete example of what it
could be like.

At the very beginning of the analysis, an overview of the configuration process was
given. This overview can now be made a bit more detailed, and is presented in Fig-
ure 20. The concepts of components and their properties, statuses and relationships,
as well as business and legal rules, have been explained. The repository has been
introduced, and the problems and possibilities of configurations are known. All of
this can now be combined into a complete overview, to provide a design proposal for
a configurator.

Figure 20: The composition process, revisited

It is obvious that any configurator must support version management of compo-
nents and configurations, and their properties, to be able to handle the repository
and the difficulties inherent in a system where both components and configurations
may exist in revisions and variants. In fact, a configurator can be seen as a form of
version management system. Dart [6] elaborates on issues which any version man-
agement system should be able to handle. It must also support at least the most
basic use cases (see section 3.1).

55

There are also a great many details to take under consideration, such as whether
customers should be considered to be on a higher level than markets, or the other
way around (section 3.2.1). Considering the options, advantages and drawbacks as
presented in the analysis, the following proposals seem to be the most natural and
efficient decisions for the important aspects of the first iteration of the configurator.

Customers are considered to be on a higher level than markets – that is, in order
to select a customization for a market, the customization for a customer must already
have been selected. If a setting is defined both on the customer level and the market
level, the customer takes precedence, to retain consistent settings per customer.

Layers are used, as defined above: operating systems, service layers, applications
and customizations. When a relationship is created between components, it must
either stay within one layer of the configuration, or must be from one layer to the
layer immediately below, in order to promote separation of components on different
layers. Customizations are the exception: they are allowed for operating systems and
service layers as well as for applications. Complex relationships are not sufficiently
cost-efficient and therefore disallowed. All relationships for a component must be
fulfilled (conjunction), and feature dependencies are used to implement disjunction.

The configurator must be able to handle general relationships, in the form of
Alice or Alice ≥ 1.4.0.0, in addition to specific ones such as Alice 1.4.3.7. The basic
assumption of the relationship system is that all components may be freely combined,
unless explicitly forbidden. Feature dependencies are fulfilled by including exactly
one component providing the feature, and component suites are fulfilled by including
all components referenced by it. Component suites are also somewhat restricted in
functionality – they should not be treated as general configurations. Rather, they
must refer to specific versions of components, and if a new component version is to
be used, the suite must itself be updated to a new revision. Suites must not use
feature dependencies to indicate constituent components; only specific relationships.

Each time the user selects or deselects a component, the configurator should
update the display of all other components, to indicate in real-time which components
are now available for selection. No user, except for administrators, should be allowed
to select components which conflict with each other – this would be useful for some
users, but may come at a later stage.

If a selected component requires additional components, those components should
be indicated to the user by the configurator, but not automatically selected. If they
are selected and the first component is later deselected, the user must keep track
of this manually. The exception to this is component suites, where all constituent
components are automatically selected when the suite is selected, and deselected
when the suite is deselected. Components which cannot be selected are not hidden
from view, but marked as unavailable.

56

Configurations are allowed to be saved even if they are empty, in order to refer to
them inside the configurator. Incomplete or inconsistent configurations can also be
saved, but are not allowed to receive a production stage status greater than develop-
ment. This applies to technical completeness and technical consistency, as well as to
business and legal completeness and consistency when such rules exist.

Technical inconsistency is considered to occur if two components in the same
configuration conflict with each other, or if one component breaks another. It is
however allowed to have two components in the same configuration where one replaces
the other. All components in a configuration must have the exact same values for
market and customer, with the exception that an empty value can be combined with
anything, otherwise the configuration is considered technically inconsistent.

The configurator must perform commit checks before components are allowed to
be added to the repository. Components are only allowed to be added if they can
later be selected for use in a configuration – components which suffer from cyclic
anti-dependencies are not allowed, for example. A repository administrator should
also be appointed, charged with the task of keeping the repository clean and warning
when components risk becoming too entangled for the component-based system to
work as intended. No items in the repository may be changed in any way unless
a new version is created – with one very important exception: Components and
configurations may be given new values for status properties such as test status,
update needed etcetera, without necessitating new versions.

The configurator should display notifications whenever changes to one item affect
other items – typically, when a new version of a component becomes available, all
configurations which contain older versions of it should be notified. The exact form
of notification may vary – a message inside the configurator, or an email or similar
sent outside of it.

4.1 Application sketch

While certainly not a complete proposal, the sketches below give an indication of
what a configurator could look like. Many features are not detailed in the figures,
but are no less important because of that. There are several different ways of working
with a configurator, and three of them are shown here, together with a sketch of how
administration could be performed. Figure 21 illustrates the first approach.

This approach supports any of the three basic ways of creating configurations; top-
down, bottom-up or mixed-mode. Each time a component is selected all conflicting
components are marked as unavailable and cannot be selected; and any components
which must be selected are also indicated. This provides direct feedback and helps the
user to understand why a component cannot be chosen, allowing for easily making the
choice between two or more components which conflict with each other. Ultimately,

57

Figure 21: General design proposal

this is a means to ensure that configurations are complete and consistent.
It is also possible, at any time, to choose global settings. In the example, the

market has been set to Scandinavia. The configurator should then mark components
as unavailable if they cannot supply that market, and for the components which
do support it, it should be automatically selected. Application 9 does not support
Scandinavia, and has therefore been marked unavailable. Applications 2 and 8 do
support Scandinavia, and the market property has been accordingly set. Application
10 does in fact not support Scandinavia, but the user has enough privileges to include
components without regard to this rule, and has done so – the market has been set
to Generic.

The test status, or perhaps combined status, as chosen by the user, should also
be displayed so that it is directly visible to the user. The exact method for this is
less important than the fact that it is actually displayed. Here, a colored line has
been added to indicate when components are untested, rejected or untestable, as in
Figure 22.

In addition to components, suites can also be added to the configurator, as indi-

58

Figure 22: Component availability legend

cated in Figure 21 and illustrated in Figure 23. The rules for calculating suite status
apply, so if a selected component in a suite is rejected, for example, the entire suite
should be marked as rejected.

Figure 23: Handling suites

The method for calculating how component availability should be marked is based
directly on the relationships as described in section 3.2.3, and is summarily illus-
trated in Figure 24. The leftmost situation illustrates how the five components are
connected. In the middle, component B has been chosen, which causes C to be re-
quired and E to be unavailable. Finally, components A, B and C have been chosen,
and D and E are left unavailable.

Figure 24: Component selection

Another approach is suggested in figures 25 and 26, namely that of a top-down-

59

approach where global options must be set before applications etcetera can be se-
lected. The same visual conventions are used here as above. It should be noted that
when a component is selected, such as application 2 in Figure 26, a number of choices
regarding it must also be made, for instance the revision, and customer and market.
The latter must be specified even if the generic options are chosen. For revisions,
the same rules as for components apply: revisions which can not be chosen or must
be chosen should be indicated, and the test status (or combined status) should also
be indicated directly to the user.

Figure 25: Top-down approach, first step

Figure 26: Top-down approach, second step

An important note regarding revisions is that it should not only be possible for the
user to select a specific revision, such as 1.4.3.0, but also a few conceptual revisions –
for example latest, latest accepted and similar notions. If this is done, the configura-
tion should always be updated (automatically or after asking the user, depending on

60

rules and settings in the configurator) when new revisions are made available. This
corresponds to partially bound configurations [8].

The approaches above focus on the configuration as a whole, not on the details of
individual components. These details are however the central interest for a different
approach, illustrated in Figure 27. Components are selected from one layer at a time
and added to the configuration which is displayed to the right. Components, variants,
revisions, status etcetera can be seen at a glance and be added to the configuration
once the user is satisfied. Global customization is still available on the configuration
side.

Figure 27: Contents review proposal

The question of administration should also be dealt with when the configurator
is designed. Whether it is a separate tool or part of the entire configurator, the
considerations noted in the beginning of this section still applies. Several features
should be available, including the relationship graph illustrated in Figure 28, the
ability to edit metadata, statistics, etcetera.

As a final note on design, it is worth returning to the fact that not all users require
the same things from the configurator. Regardless of the actual design, user profiles
and views can be utilized to achieve a dynamic program suitable for many different
users and roles.

61

Figure 28: Administration

User profiles Different users may need to perform very different activities, such
as creating configurations or administering components. Some actions should only
be available to certain users; and sometimes the configurator should display slightly
different information to different users. This can be easily accomplished with user
profiles. Some options and actions can be hidden for certain profiles, and some users
may even be allowed to switch between user profiles, typically from a more privileged
profile to a less privileged one, in order to see the effect changes will have on other
users.

Defining the actual user profiles to use is up to each producing company, but some
general types of profiles can be suggested. Configuration managers is the most obvi-
ous profile, and should be allowed to do almost anything, including creating config-
urations which cannot work, performing administration, cleaning up the repository,
creating rules as defined from business and legal requirements, and taking similar far-
reaching actions. Configuration managers should typically also be allowed to switch
to other profiles, to track down problems and see the effects of administrative tasks.

Developers could be allowed to create components and new versions thereof di-
rectly, since they have knowledge of properties and relationships; or they could be
asked to submit changes to configuration managers, if tighter control is necessary.

62

Testers, likewise, could be allowed to update certain properties, notably test status.
Testers would probably also need to work with configurations, in order to see what
needs to be tested. Account managers, finally, typically only create configurations
and do not edit components in any way – which could even be disallowed for that
profile. More fine-grained profile restrictions can also be imagined, for instance giving
certain persons access to act as testers for only some components, while remaining
ordinary unprivileged users for all others.

Views No interface can be everything to everyone at the same time. A common
and easy way around this is to split the interface into different views, where each
view roughly shows just what is needed to perform a certain task. Many different
persons can be expected to use the configurator, and to do so in many different
ways, and views are a good solution to the problem of how to support them without
cluttering the interface. A simple and elegant solution, albeit one which does require
some effort, is to provide the different sketches above in the form of different views
inside the same configurator.

63

5 Discussion

This section presents a discussion regarding the results – the context in which they
are applicable, related studies, possible future extensions, etcetera.

There are a few things worth noting regarding the results. The study underlying this
thesis was carried out mainly on one large company (more than 1 000 employees),
with additional input from persons working in smaller companies. All companies are
active in the software engineering industry. The results can therefore be expected
to be applicable to most companies in that industry, but depending on the size and
complexity of the products to be managed, some of the findings and suggestions may
be unnecessary.

The configurator described in Design is geared mainly towards managing large
products built from components which vary in several different dimensions, and
where a very large number of products (on the order of hundreds or thousands)
can be created from the same underlying components. For less complex systems,
many aspects of the configurator are almost certainly overkill, for instance the more
complicated parts of the status system.

A great deal of time and resources are required to introduce a component-based
system into an organization. First of all, the product must be designed using com-
ponents. This may be easy if the target is a new product which has not yet been
designed, but altering existing source code to be modular in nature may not be
cost-effective. Second, a suitable configurator must be created, or found and possi-
bly extended. Third, the implicit properties, relationships and rules of the software
must be found and made explicit.

The benefit is however very real. Quoting an existing vendor of configurators [9]:

Companies that build configurable, multi-option, and customizable
products are finding that a configurator can provide a competitive edge
by reducing lead times, automating quotation documentation, increas-
ing workforce efficiency, eliminating errors and rework, and increasing
customer satisfaction.

The actual benefits realized depend on how much information is available. Deriv-
ing statistics, for example, is possible using almost any component system, so long as
component and configuration data can be machine-processed. Other benefits, partic-
ularly the ability to work directly with requirements and integration between software
and hardware components, require additional information, such as traceability. Some
possibilities fall in the middle, such as impact analysis, which is possible when com-
ponents and configurations can be read, but is greatly augmented if traceability is
present.

65

5.1 Traceability

Traceability has been discussed in many configuration management articles and
books [3, 12]. Traceability provides the ability to connect different items, for ex-
ample components with their binaries, binaries with their underlying source code;
source code with the underlying design, designs with their requirements, and so on.
Figure 29 displays an example of such a hierarchy.

Figure 29: Vertical traceability

On a slightly more detailed level, most items are made up not only of sub-items but
also of metadata, as displayed in Figure 30. There can also be traceability connections
in more dimensions – test cases could be displayed. With traceability between a
specific source code file and a certain test case, test cases could also be traced back
to see which requirements were covered by tests. More advanced queries can also
be answered, for example finding all requirements which are part of a configuration
currently in use and where there is at most one test case. Similar queries could be
answered if there is also traceability to and from hardware components.

Also, in many settings, the configurator is merely one piece of the puzzle. The user
may need to select appropriate hardware for the software combined in the configura-
tor (or vice versa), or there may already be a system for managing settings. In these
cases, the configurator would have to allow for external references – meaning that
not only must there be completeness and consistency between components inside a
configuration, but also between components and hardware, and between components
and settings, in all directions. In essence, this would mean merging software config-
uration management (SCM) and product data management (PDM) – and possibly
other kinds of information management – into one single system, which Crnkovic et
al talk about [4].

66

Figure 30: Traceability tree

5.2 Package managers

The initiated reader has probably noted that throughout the thesis, several issues
already have a solution. Specifically, the problem of maintaining components and
their relations is solved by programs such as the Debian package management system
dpkg20, the RPM package manager RPM21, and similar. There are also front-ends,
such as Apt22, which help with some tasks related to composing configurations,
for instance notifying the user of required or conflicting components. In and of
themselves, however, these programs are not quite sufficient.

For one thing, these package managers serve a slightly different purpose than
the configurator described in this thesis – they are focused on solving the dynamic
composition problem of adding, updating and removing components on an existing
system. They could be very useful on the finished product, to support changes
to configurations in the field, but the configurator is required to solve the static
composition problem correctly – the problem of composing a configuration before it
is installed on a device.

20http://www.debian.org/doc/FAQ/ch-pkg_basics
21http://rpm.org/
22http://wiki.debian.org/Apt

67

http://www.debian.org/doc/FAQ/ch-pkg_basics
http://rpm.org/
http://wiki.debian.org/Apt

There are certainly similarities between the two situations but there are also
important differences, such as for whom the programs are intended (end-users versus
producers), the available data (status information should probably not be visible to
end-users) and capabilities of the programs (while some users are allowed to create
incomplete or inconsistent configurations during static composition, this should never
be allowed during dynamic composition).

5.3 Versioning systems

The configurator suggested in this thesis shares many traits with an ordinary version-
ing system (VS), the most basic of which is that both components and configurations
are stored in different versions. In a sense, using this approach would mean having
a hierarchy of such systems – requirements are managed in one type of VS, design
documents can be stored in another VS, source code is managed in its own VS,
the generated binaries may be stored in another, the components are stored in the
configurator which is yet another VS, and the configurations may even be used in a
further VS, higher up, akin to matryoshka dolls.

An alternative approach is to move towards one single system which is capable
enough to handle all these aspects, and to handle them well – in essence incorporating
all systems above into one. This would transform the hierarchical relations between
them, into a linear one. Since this would be one integrated system, it would be
possible to directly apply not only source code-versioning during development, but
to directly, during coding, identify relationships which are needed at the configurator
level, and so on. The drawback is obviously that such a system would become
somewhat on the larger side.

5.4 Future work

There is still much to be done in this area, as evidenced by the fact that there are
relatively few academic articles regarding configuration composition, and very few
which focus on the problem of combining binary components; the work which has
been done is mainly concentrated on combining components in the form of source
code, and tends to drift towards architecture and system design.

One obvious starting point for future work is to evaluate alternatives for configura-
tors in practice. Debian and similar system is one venue, which have the advantages
of being free and well-documented, making them both cheap and extensible. Com-
mercial programs are another venue, having the advantage that they can be expected
to be more capable. Developing a configurator entirely in-house is also an option –
a much more expensive option, but also one which provides complete flexibility and
enables integration into existing systems.

68

The rules, as discussed in section 3.6, are another important area where more
work is required: Finding the best strategy for achieving simplicity and capability at
the same time and working out the details of the kinds of rules which are needed, how
the underlying technical system for managing them might work, etcetera. A note on
the underlying system is that rules can probably be separated into two parts: the
facts regarding how items are connected, and the logic which dictates how facts can
be combined to state whether a certain action is allowed or not. There will probably
also be cases where rules can be combined or simply removed, and a way of detecting
such cases automatically would be useful.

Also of interest, although tending towards compilers and text analysis, is the ques-
tion regarding how to find relationships automatically, and for which relationships
this is even possible. Automated smoke testing might also be a possible approach to
identify both dependencies and anti-dependencies. Status data could possibly also
be identified automatically, and details on how different statuses and relationships
can be correlated to supply combined statuses and support to the user could prove
very valuable.

Using traceability to create, or at least suggest, relationships or rules directly from
requirements, design or source code would also be an interesting topic. Some rules
can probably also be inferred from existing configurations.

69

6 Conclusions

This section presents the most important findings from Analysis, Design and Discus-
sion in a clear and concise manner. For more details, please refer to those sections.

Using component-based systems allows for great flexibility, but at the cost of com-
plexity. That complexity needs to be handled, and a semi-automated tool for helping
to do so would be very valuable. Such a system could mitigate the risk of manual
errors, provide statistics of component usage, and enable the tracking of license costs,
among other things.

Components Components generally need to be independent of each other, and
when they are not, the relationships need to be explicitly documented. Components
have many properties, notably market, customer and test status. The test status may
for instance take the values untested or approved, but many more can be envisioned.

Relationships Components may have many different types of relationships; among
them requires, conflicts and replaces. Components may also have indirect relation-
ships in the form of feature dependencies, which allow a loose coupling between
service-providing and service-using components, or component suites, which is a
method to group components into suites. Relationships are purely technical.

Rules Rules correspond to a higher level of abstraction than relationships and
can be used to define requirements between components, component relationships,
component properties, etcetera. They allow for managing more advanced associations
between these items, thereby lessening the manual labor, and can be limited in time
or space. Rules can be explicit or implicit, and different types of rules may be
necessary, such as business rules or legal rules.

Configurations A configuration is created by specifying which components and
their versions that are needed. Configurations have properties of their own, such as
production stage, but also receive property values from their constituent components
– an untested component, for example, means the entire configuration can receive a
test status no higher than untested. Configurations may vary greatly in size, from
single components sold as separate applications, to complete software systems.

Repository The repository stores all configuration items and their metadata, such
as relationships, test status, etcetera. Changes and deletions are generally not al-
lowed, only additions; but for some metadata, other considerations apply. To keep
the repository clean, commit checks and controls for modifying items are needed.

71

References

[1] Brad Appleton, Stephen P. Berczuk, Ralph Cabrera, and Robert Orenstein.
Streamed lines: Branching patterns for parallel software development. In Proc.
Third Conference on Pattern Languages of Programming and Computing, PloP,
Monticello/IL, number WUCS-98-25 in Technical Report, Washington Univ.,
Dept. of Computer Science, 1998.

[2] Wayne A. Babich. Software configuration management: coordination for team
productivity, chapter 1, 2, 3, 5. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[3] Shawn A. Bohner and Robert S. Arnold. Software Change Impact Analysis,
chapter An Introduction to Software Change Impact Analysis, pages 1–26. Wi-
ley, 1996.

[4] Ivica Crnkovic, Ulf Asklund, and Annita Persson-Dahlqvist. Implementing and
Integrating Product Data Management and Software Configuration Management.
Artech House Publishers, 2003.

[5] Ivica Crnkovic and Magnus Larsson. A case study: Demands on component-
based development. In Proceedings of 22nd International Conference of Software
Engineering, pages 23–31. ACM, 2000.

[6] Susan Dart. Concepts in configuration management systems. In Proceedings
of the 3rd international workshop on Software configuration management, pages
1–18, New York, NY, USA, 1991. ACM.

[7] C J Date, Hugh Darwen, and Nikos A Lorentzos. Temporal data and the rela-
tional model : a detailed investigation into the application of interval and rela-
tion theory to the problem of temporal database management. Morgan Kaufmann
Publishers, 2003.

[8] Peter H. Feiler. Configuration management models in commercial environments.
Technical report, Software Engineering Institute, 1991.

[9] Configure One Inc. Four types of configurators, 2008. URL: http://www.
configureone.com/pdf/ConfiguratorWhitePaper.pdf.

[10] Axel Mahler. Variants: Keeping things together and telling them apart. In
Walther F. Tichy, editor, Configuration Management, pages 73–97. John Wiley
& Sons, Inc., 1994.

73

http://www.configureone.com/pdf/ConfiguratorWhitePaper.pdf
http://www.configureone.com/pdf/ConfiguratorWhitePaper.pdf

[11] Tom Milligan. Better software configuration management means better business:
The seven keys to improving business value. Technical report, IBM (Rational),
2003.

[12] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line
Engineering. Springer, 2005.

[13] Tommi Syrjänen. A rule-based formal model for software configuration. Report
Series of Digital Systems Laboratory, A55, 1999.

74

	2009-33_Framsida.pdf
	blank.pdf
	GS.pdf
	Introduction
	Problem
	Purpose
	Business case
	Context
	Thesis structure

	Background
	Causes of variation
	Static vs. dynamic configuration
	Monolithic vs. component-based systems

	Analysis
	Use cases
	Day-to-day usage
	Administration
	Advanced usage

	Components
	Properties
	Layers
	Relationships
	Feature dependencies
	Component suites
	Complex relationships
	Problems

	Configurations
	Properties
	Problems

	Repository
	Evolution
	Adding items
	Modifying metadata

	Status modes
	Component test status
	Configuration test status
	Other statuses
	Combining statuses

	Rules

	Design
	Application sketch

	Discussion
	Traceability
	Package managers
	Versioning systems
	Future work

	Conclusions

