Master’s Thesis

Tool Assisted Product Configuration in
Software Product Lines

Jacob Kristhammar pos & Roger Schildmeijer po4

Department of Computer Science
Faculty of Engineering LTH
Lund University, 2008

ISSN 1650-2884
LU-CS-EX: 2008-20

Tool Assisted Product Configuration in Software
Product Lines

Jacob Kristhammar (kristhammar@gmail.com)
Roger Schildmeijer (d04rp@student.lth.se)

August 8, 2008

Abstract

Software product lines enable large organizations to derive different products
on a tight schedule by reusing its developed assets.

This master’s thesis will identify some of the problems involved with product
configuration in software product lines by investigating how it is done at Sony
Ericsson Mobile Communications. We will use the identified problems to present
how a tool could be used to improve the process of product configuration.

In order to fully benefit from the reuse of developed assets the variability
mechanisms and asset structure must be well defined. Otherwise the derivation
of products from a software product line can get very complex and difficult to
manage. The number of variation points and dependencies among them give
rise to problems that needs to be taken care off. Processes and responsibilities
are other areas that are important in order to manage a software product line.
Another issue with product configuration is to enable some level of traceability
between the configured products and the system requirements to ensure that
the right products are produced.

We have identified that products are configured in a bottom-up manner, i.e.
the binding of the variation points are performed by the developers rather than
a dedicated unit that is responsible for the derivation of products.

We present how product configuration could be done by using variability
suggested by the requirement engineers and product planners. A product con-
figurator prototype has been developed to demonstrate how the benefits from
well defined variation points and their dependencies can be used to derive new
products from the software product line and maintain existing ones. We also
propose how the current configuration process should be changed and give ex-
amples of how some tasks could be done using the developed prototype.

Keywords

Product Configuration, Software Product Line, Product Family, Product deriva-
tion, Variability, Variation point, Tool, Configuration Management, Reusability,
Traceability

Contents

1 Introduction 3
1.1 Background 3
1.2 Research questions)
1.3 Methodology 5
1.4 Outline e 5
2 Introduction to variant management 6
2.1 Variability oo 6
2.1.1 Variation pointo oo 6
2.1.2 Variability mechanism, 7
2.2 Software Product Line 8
2.2.1 Reusability oo 8
2.3 Product configuration oL 9
231 Assembly 9
2.3.2 Configuration selection 10
3 Problem identification 11
3.1 Modularization 11
3.2 Process 13
3.3 Method 14
3.4 Variation points L oo 15
3.5 Summary e e e e 16

4 Variability management at Sony Ericsson Mobile Communica-
tions 17
4.1 Organization 17
4.1.1 Stakeholders 17
4.1.2 Imterfaces 19
4.2 Product configuration 0oL 19
4.2.1 Variability mechanisms 20
4.3 Mapping between product configuration and system requirements 21
4.3.1 Requirement management 22
432 Mappingo 24
4.4 Analysis 24

4.4.1 Variabilityo
4.4.2 Configuration packages and variation points
4.4.3 Responsibilities 0oL
5 Proposals
5.1 Top-down configuration
5.1.1 Responsibilities
5.1.2 Connection between requirements and configuration
5.1.3 Non functional configuration
5.1.4 Dependency representation
5.2 Variation point structure and rules
5.2.1 Method suggestions L.
522 Rules
5.3 Discussion Lo
6 Tool development
6.1 Generalmeed
6.2 Tool variations L L
6.3 Toolgoals e
6.4 Tool implementation L.

6.5 Future work

7 Conclusion

29
29
29
30
31
31
31
31
34
35

38
38
40
43
45
46

48

Chapter 1

Introduction

In this chapter we will provide a general background about product configuration
and the problems involved. A list of questions the master’s thesis aim to solve
and the methods used will be presented.

1.1 Background

The mobile phone market is evolving fast and the requirements customers put
on the phones is changing from day to day. The demand for new phones is ever-
increasing and it is crucial that the mobile manufacturers release new products
at the same pace to not loose their market share. In addition to the demands
on frequent releases it is important that the manufacturers offer a wide variety
of phones to attract new customers and keep the ones they’ve got.

The development process needs to handle the great variety of phones and
frequent releases. It would be infeasible to start developing from scratch each
time a new phone is developed. Reinventing the wheel every time would be a
painful and costly process. It is also important to minimize the time-to-market
when developing a new product to avoid that the new functionality gets obsolete
before the phone reaches the market.

To achieve this, many companies try to adopt techniques that let them
develop their assets in parallel and enable a high degree of reuse. In a majority
of software development projects, the ability to reuse core assets is important[4].
One way to achieve this is to group similar functionality into assets that different
development units are responsible for. Different variants of products can later be
derived by combining the assets. This is common in many organizations and is
often referred to as a software product line or software product family. Different
mechanisms to derive products from such product families exist, but it is a
challenging task[16]. In order to utilize the benefits, like parallel development
and reusability, the interfaces between the different assets an their relationships
need to be well defined. It is important to realize that even though software
is divided into assets grouping similar functionality, assets often depend on

other assets. Documentation about the dependencies and care full planning
may reduce the complexity, but dependencies still present a problem that the
developers and designers need to be aware of.

With a working software product line, organizations have experienced sub-
stantial decreases in both cost and time-to-market. Organizations have also
experienced an increase of quality in their products[4].

Sony Ericsson Mobile Communications (SEMC) uses a software product line
to develop their software. The application software in the phones is developed on
top of a common platform that provides the basic functionality for the phones.
Different end products include a subset of the application software and it is the
process of selecting the assets constituting the desired functionality that will be
investigated further.

Currently products are configured by editing a configuration file that spec-
ifies all variation points in the software product line. The number of variation
points has become very large and a lot of undocumented dependencies exist
between them. SEMC is starting to experience difficulties with the variabil-
ity management since e.g. the outcome of a configuration modification is hard
to predict. Another problem is the lack of clear responsibility regarding who
should be doing the product configuration.

Traceability between the system requirements and the configured products
is another area where problems exist. It is hard to find a connection between
the variation points and the general requirements from the product planners.
Changes to the functionality aren’t always reflected in requirements; instead
the developers receive input from testing systems and change the software
accordingly|[2].

In an initiative to address some of these problems Sony Ericsson Mobile
Communication recently started to migrate the existing product configuration to
a new, more modular method, of configuring the products. The new suggestion
is currently under development and still needs to address some issues. The input
this master’s thesis will provide with is a proof of concept prototype that uses
the new modularized method and some improvement proposals to the process
of product configuration.

The goals of this master’s thesis will be to investigate the way product
configuration is conducted at SEMC and identify the problems involved. The
main goal is to develop a prototype of a product configuration tool that remedies
the problems found and improves the overall product configuration process.
The stakeholder for this prototype is the product configuration managers at
the product CM department at SEMC. Another goal is to analyze how the
suggested modifications to the product configuration mechanisms, can be used
by a tool to further improve the product configuration, including how it can be
used together with requirement information to increase the traceability in the
configuration process as suggested by Andersson and Nygren[2].

1.2 Research questions

The questions this master’s thesis set out to answer are listed below.
1. How are products configured at SEMC?
2. What are the problems with product configuration at SEMC?

3. How can the new configuration method be used to solve the product con-
figuration problems together with a tool?

4. What changes are necessary to get the most out of a product configuration
tool?

1.3 Methodology

Different methods were used throughout the master’s thesis to get a clear picture
of the problem domain regarding product configuration. To initiate the project
and introduce ourselves to product configuration and software product lines,
articles and papers regarding these subjects were read. This was an adequate
method to learn and see different definitions of the nomenclature that appears
in theory about software product lines. We then continued the thesis with an
investigation about existing, mostly web-based, product configurators, to obtain
some ideas about possible features and functionality in the prototype.

The next phase included interviews with employees with different roles within
the SEMC-organization. One of the goals with the interviews were to under-
stand who did the product configuration and when. The interviews gave some
hints about how a configuration tool could improve the process. An internal
course about requirements and processes regarding requirements were taken in
parallel with the interviews.

Then the implementation of the product configurator prototype started. The
development was carried out in a partially iterative manner.

1.4 Outline

This master’s thesis report consists of six more chapters. In chapter 2 an intro-
duction to the basic concepts and theories will be presented to the reader. The
purpose of this chapter is to define a common vocabulary and to disambiguate
the nomenclature. As part of the analysis, chapter 3 identifies a set of problems
concerning software product lines. Chapter 4 presents how Sony Ericsson Mo-
bile Communications work with software product lines and identifies the need
for improvements. In chapter 5 a proposal for modification is presented and
evaluated. In chapter 6 the development of a product configurator prototype is
described. Chapter 7 will summarize and conclude the master’s thesis and the
improvement proposals.

Chapter 2

Introduction to variant
management

This chapter will present the basic concepts and theories used throughout the
rest of the report. Definitions of common terms will be provided to avoid mis-
understandings. Section 2.1 will describe variability in general and different
ways to handle it. A brief description of software product lines and software
reusability will be given in section 2.2. To conclude the chapter section 2.3 will
describe product configuration in the context of software product lines.

2.1 Variability

In this section the basic concepts of variability, variation point and variation
mechanism will be presented and defined.

2.1.1 Variation point

To efficiently derive new variants from the software product line an explicit
way to specify and handle the variability must be in place. Some product
specific decisions are beneficial to delay so that derived products can be varied.
These delayed design decisions is referred to as Variation points. Variability
in software systems is realized through Variation Points which identifies one or
more locations at which the actual variation will occur [16] [4].

Variability or variant management is one of the more obscure issues in soft-
ware configuration management. Even though variant management has a high
practical relevance, it has not yet gained the level of attention it deserves in
the software community [9]. It is often mislabeled as another version control
problem.

In an organization using a software product line it is desirable to achieve a
high degree of traceability between the requirements and the variation points to

facilitate further development and maintenance. Problems concerning variation
points will be further analyzed in section 3.4.

Different definitions of variation points exist and two of them will be pre-
sented below. Bachmann et al. defines variation points as ”Places in design
artifacts where a specific decision has been narrowed to several options but the
option to be chosen for a particular system has been left open” [3]. Deelstra et
al. defines it as ”Places in the design or implementation that identify locations
at which variation will occur” [4].

Variability mechanism and binding time are two important concepts concern-
ing variation points. The term binding time refers to the point in a product’s
lifecycle at which a particular alternative for a variation point is bound to the
system. Variability mechanism is the technique that is used to realize the vari-
ation points that exists in the software product line [4]. Different mechanisms
for this realization will be further discussed below in section 2.1.2.

2.1.2 Variability mechanism

To control the variability and explicitly choose which features (bind variation
points) that should be included in a product a well defined variability mechanism
must exist. Different alternatives for variability mechanisms exist and two of
them, ifdefs and configuration, will be investigated further in this section.

Ifdefs are used at compile-time and are directives that instructs the pre-
processor to include or exclude a block of code. Since the binding is done at
compile time, which allows unused variant code to be excluded in the binaries,
the overall performance is often increased [13] [2]. A significant drawback of
using ifdefs is that the number of potential execution paths tends to explode,
due to the combinatorial explosion, resulting in difficulties in maintenance and
bug-fixing [13]. Another disadvantage of ifdefs is the scenario that occurs when
a new product is introduced, which means having to find and modify all the
ifdef statements throughout the entire code base. Mahler has identified two ad-
vantages with ifdefs. The first advantage is that "redundancy between different
variants of a given component can be almost completely avoided” and the sec-
ond advantage is that ”disc space is used very efficiently” [9]. The most serious
disadvantage that Mahler has found is that this variation technique relies on
text processing rather than programming language concepts [9].

Configuration is another mechanism used to bind variation points. A new
concept called configuration package modules is introduced. These modules
points out the actual software that constitute the elements of the products.
Products then include these modules to enable certain features and functionality
(binding variation point). A module, which is the smallest configurable unit,
can have dependencies, like mutual exclusion or hardware dependencies, to other
modules imposing constraints on which configurations are valid.

This mechanisms for binding variation points are further discussed in section
4.2.1 when describing how products currently are configured in the software
product line at SEMC.

2.2 Software Product Line

A general introduction of software product lines and how they can help organi-
zations achieve a higher degree of reuse will be described in this section.

2.2.1 Reusability

Reusability is a well known concept in computer science and software devel-
opment. It is the ability to use a segment of source code with slight or no
modification to add new functionality. Reusability enables the possibility to
build larger things from smaller parts, and being able to identify commonalities
among those parts. IEEE defines reusability as: ”the degree to which a software
module or other work product can be used in more than one computing program
or software system.” [1].

Organizations using a software product line have one common thing they
strive for; they want their developed assets to be reusable to a high extent. Being
able to reuse already developed software reduces the time-to-market and the
total cost for the product. Also the fact that the software is already well tested
and used, resulting in eliminated bugs, is another advantage for the organization.

Deelstra et al. has identified four levels of scope of reuse. The first level is
Standardized infrastructure. Every new project starts from scratch and the first
thing to reuse is they way products are built. This level of reuse standardizes
the infrastructure within an organization. Operating system, components such
as database management and graphical user interfaces are standardized and
reused in future development projects.

The next scope of reuse is: Platform. To further increase the reusability
within the organization a platform, on top of which the products are built,
is maintained. The platform consists of the things described in standardized
infrastructure and also contains the functionality that is common to all products.

The third scope of reuse is: Software product line. Within a software product
line, functionality common to a sufficiently large subset of products are reused.
Features that are specific to a small set of products are still developed in product
specific artefacts. In this scope of reuse variation points are added to accomodate
the different needs of the various products.

The last scope of reuse is: Configurable product family. When an organi-
zation reaches this level almost no product specific development is done. The
product family possess a collection of shared artefacts that captures almost all
common and different functionality in the products. A new product is derived
through reuse of these shared artefacts and no product specific development
is required. As soon as this level is reached it is easy to automate product
configuration.

2.3 Product configuration

Different alternatives and definitions of product configuration will be presented
and defined in this section.

To fully profit from the benefits of software product lines the process of
selecting assets should work without effort. This process is generally referred
to as product configuration. Tu and Skovgaard defines product configuration
as ”"determining a set of components and their relationships, and composing
them into a product that satisfies costumer requirement and design constraints”
[17]. Kruse ans Bramham defines it as ”an arrangement of part, services and
assemblies that make up a specific product variant and its associated services”
[6].

Two methods considering the initial phase of product configuration will be
discussed. A first configuration from the family assets is created during this
phase. The input to the initial phases is a subset of the requirements that are
managed during the entire process of the product configuration. The two alter-
native methods, presented by Deelstra et al., that will be analyzed is assembly
and configuration selection.

2.3.1 Assembly

The first stage in the initial product configuration involves the assembly of
a subset of the shared product family assets to the initial software product
configuration [4]. Deelstra et al. identifies three types of assembly approaches,
construction, generation and composition. Since the last one, composition, is a
composite of the two other this one is not further analyzed in this report.

Construction

In this approach the initial configuration is created. The configuration is con-
structed from the product family architecture and shared assets. This ap-
proaches starts with the deriving of the product architecture from the product
family architecture. The following step is that for each component, select the
closest matching component implementation from the component base. The
last step in this approach is giving the parameters for each component their
respective values [4].

Generation

The generation approach uses a different way, compared to construction, to
the initial configuration. In this approach the shared artefacts are modelled in
a modelling language instead of implemented in source code. These modeled
artefacts constitute the fundamental elements of the initial configuration. And
it is a subset of these artefacts that are chosen and constructed to an overall
model. It is this model an initial implementation is constructed from.

2.3.2 Configuration selection

Instead of construct or generate the initial software configuration like in the
assembly method, configuration selection involves selecting the closets matching
existing configuration. The existing configuration consists of an arrangement of
components, with the right options and parameters are able to function together.

Old configuration

In the beginning of a new project an old configuration, from a previous project,
is chosen. The selected old configuration, often from the most recent project,
is a complete product implementation containing the latest bug-fixes and func-
tionality.

Reference configuration

Instead of reusing a complete product configuration, only a subset of an old
configuration is reused in the forthcoming project. This reference configuration
constitutes the basis for the new products that are intended to be developed.
The reference configuration may be a partial configuration where all the product
specific parameter settings are excluded or a complete configuration, including
all parameter settings.

Base configuration

The third variant of configuration selection is base configuration, which is a
partial configuration that acts like a core for a certain group of products. The
base configuration must not necessarily be the result from a previous product.
It is usually neither an executable application as many parameter settings are
left open. One significant difference between old- and reference configuration is
that the focus has shifted from reselecting components to adding components
to the already predefined set of components in the base configuration.

Configuration selection has one big advantage in comparison to assembly,
which is the benefit in terms of efforts saved in selecting and testing. Config-
uration selection is especially applicable when large systems are developed for
customers that have purchased a similar type of system before. This kind of
customers often desire new functionality on top of the functionality they ordered
for a previous product.

10

Chapter 3

Problem identification

This chapter presents and organizes a set of problems and impediments that can
be found within organizations having a software product line. Four categories
are introduced and used throughout this chapter. The first category, which is
discussed in section 3.1, is modularization which deals with problems that appear
when software is divided into modules. In section 3.2 problems concerning
processes and guidelines are handled. In section 3.3 more practical related
issues are analyzed and are included in the third category which is method.
Issues about creating and maintaining variation points are described in section
3.4. The last section in this chapter is section 3.5 which will summarize the
problems identified within software product lines.

3.1 Modularization

Modularization of software is as mentioned a common way to achieve reusabil-
ity. Many of the difficulties with modularization arise from different kinds of
dependency issues. Even though strategies to minimize dependencies between
software libraries, components, etc. exist, it’s hard to completely avoid software
coupling. This fact is reflected in, and constraints, the way modules can be used
to derive different products. The following problems have been identified in the
context of modularization and product configuration:

Software dependencies Modularized software tends to create complex de-
pendencies between the different modules that make up the functionality.
It’s a complex task to model variability since the assets that constitute the
configurable products are diverse and form complex interdependencies [5].
An example of this problem is software modules that have both hardware
dependencies and are mutual dependent on another module.

Mutual exclusion In product families it’s not uncommon that it exist over-
lapping sets of functionality. The functionality may be spread over many

11

modules or configurable by supplying configuration parameters to a spe-
cific module. Such overlaps may be the result of options that serve as al-
ternatives, i.e. the functionality given by one alternative can be replaced,
to some extent, by the functionality of another. Supplying a value for
one of the alternatives effectively excludes the other alternatives. Hence,
a specification of the configuration can only specify one of the available
alternatives.

Mutually dependent In the same way that configurable alternatives can be
mutually exclusive, some alternatives depend on each other in order to
work. This means that one of the alternatives cannot be selected without
the other one. Perhaps this is an indication that the different alternatives
should be merged into one variable option, but more about that later.

Prerequisites Software can be divided in libraries and modules that include
each other. The complex mesh of dependencies imposed by this kind of
structure falls under the modularization problem - software dependen-
cies. Prerequisites refer to dependencies among different functions of the
product being configured. This means that a specific configurable option
shouldn’t be selectable unless another option is already selected. E.g. it
wouldn’t make sense to configure the detailed settings of a radio compo-
nent unless the product was configured to have a radio.

Adaptation When deriving new products from a product family the need for
new functionality may arise. The process of developing and adapting
the functionality to the product family is referred to as adaptation. The
amount of resources allocated to the adaptation process determines if the
needed changes will be product specific or integrated with the product
family. Product specific adaptation is probably fast but the resources
spent on it cannot be reused in other projects. The alternative to prod-
uct specific development is reactive evolution [4] which aims to integrate
the change(s) with the rest of the product family. This is problematic
in organizations where time-to-market is an important issue since time
constraints will degrade the configurability [4].

Mapping to configuration The stakeholders involved when deriving a new
product are many. Depending on their function in an organization they
have different views of what product configuration is. E.g. a product
planner only cares for the external configuration (variability in the re-
quirements) while a developer is only concerned with the internal configu-
ration (the concrete binding of variation points using a specific variability
mechanism). This is problematic because there’s seldom a one-to-one
correspondence between the external configuration needs and the inter-
nal configuration mechanism. Without the ability to unambiguously map
customer requirements to actual variation points, the product derivation
gets difficult [5] [3].

12

Scoping of features It can be hard to determine if a feature should be product
specific or integrated with the shared assets. It’s also difficult to decide
who should be responsible for the implementation of the feature [4].

3.2 Process

As mentioned before when we presented the four categories, that each represents
a specific scope of concern, the process related issues are supposed to reflect the
concerns with product configuration when it comes to processes and guidelines
used when developing software. It supposed to include many of the problems
and impediments that can arise when deriving a new product from a process
related point of view. The majority of the problems that will be described can
hopefully be minimized or annihilated by a well established process and well
written guidelines.

Lack of methodological support There has been a lot of research about
methodological support for designing and implementing shared artifacts
in such a way that the actual product derivation should be as painless as
possible. [4]. Unfortunately most of the approaches fail to provide sub-
stantial supportive guidelines. The consequences, of the lack of method-
ological support, are that organizations fail to utilize the benefits that
software products families imply.

Duplicated errors The presence of errors and bugs in a modern software or-
ganization that utilize the idea of product families are inevitable. In the
ideal scenario a specific error will only occur once and the effort needed
to solve this error will only be used up once. Unfortunately this is not the
situation. If a certain error occurs as the result of a particular implicit
dependency the importance of externalizing the tacit knowledge becomes
obvious. The term externalization is defined as the process of converting
tacit knowledge to documented or formalized knowledge [4].

Expert knowledge The need of experts and their knowledge considering dif-
ferent domains are required in a large set of abstraction levels during
a product derivation. The different constraints concerning the need of
experts are many, e.g., time, costs and the experts availability. As men-
tioned above, the experts are involved in many of the steps in the product
derivation process and because of this they tend to experience a very high
workload. This is sometimes experienced as negative by the experts them-
selves [4].

Tacit knowledge As discussed in Duplicated errors the importance of docu-
menting and formalizing tacit knowledge can be of high interest. This is
because of the increasing dependency on experts during product deriva-
tion. The drawbacks of this are the vulnerability to loss of knowledge,
which may take place if experts leave the organization, resulting in un-
necessary repetitive work. The risks of this can be minimized if the tacit

13

knowledge is divided over multiple experts. However, approaches like this
are often expensive and time consuming.

Spread knowledge The knowledge about specific variation points, indepen-
dently of the abstraction level they belong to, can be widely spread within
the organization. Knowledge about low level variation points in source
code may be located at the development units while knowledge about
variability at product level, which is usually of interest to a CM depart-
ment, is none of their concern.

Too much documentation Documentation is a vital part of all software de-
velopment at larger organizations. The drawback of too much documenta-
tion for a component is the decreased traceability of relevant information
that could be of particular interest when deriving a specific product. An-
other drawback is the problem related to maintaining the documentation
and a consequence of that is that you get out-of-date information, which is
worse than no information at all. The quality to quantity ratio concerning
documentation requires an acceptable level in order to be effective [4].

Decreased testability The combinatorial nature within product families of-
ten negatively affects testability. A large amount of variation points and
variants combined with late decisions for the different variation points of-
ten makes it impossible to test all combinations (atleast the used ones)
during development.[4]

3.3 Method

Regardless of the structure and implementation of variable options in a soft-
ware product line, there have to be ways in which actual configurations can be
specified. This category aims to identify problems related to this kind of work.
The following issues have been discovered:

Complex methods Methods used for configuration selection, such as ifdefs
and parameterization, tend to become unmanageable as the number of
products increase [14]. As the number of configuration options increase,
the consequences of a specific configuration choice are hard to predict.
A choice that seems good for the moment can possibly have negative
consequences in the future [4].

Lack of tool support The methods used for variability modeling and config-
uration selection often lack tool support to simplify the process. Organiza-
tions lack tools and applications that well fit their needs in the derivation
process [5]. Without proper tools the process of deriving new products
can get time consuming and expensive [12].

Lack of automation Lack of automation could easily be confused with lack
of tool support, because their differences are somewhat subtle. Lack of

14

automation means that processes that could be done automatically are
currently done manually. Without automation, product configuration can
be a hard and error-prone process [4]. The complex dependencies between
modules and configuration parameters contribute to a heavy cognitive load
on the persons responsible for product configuration. Automation can be
hard to incorporate because a large upfront investment may be needed to
put the automation into practice. The methods and processes involved
with product configuration have to be formalized and well defined.

Parameter dependencies Parameterization is a common way to achieve con-
figurability in product families. As projects get bigger, and the number of
products grows, the dependencies between the configuration parameters
may get complex and unmanageable. This can lead to a large number of
errors and severely complicate the product derivation process [4].

3.4 Variation points

As the software product line evolves and the number of variation points increases
a new set of problems, concerning maintenance and organization of variability,
arises.

Unmanageable number of variation points Organizations that develop prod-
uct families have identified the problem that the complexity of variation
points increase as they grow in number. The vast number of variation
points in some projects, and their complex relations to each other, impose
a cognitive load on the individuals performing the setting and selection of
variants. As the number of variation points grow these tasks soon become
unmanageable. A reason for an organization to have a large number of
variation points could be because their product portfolio is magnificent
and contains a large number of different products.

Obsolete variation points During the lifetime of a product family, config-
urable options may become obsolete. This could be due to the fact
that new functionality has been added or perhaps the option has become
mandatory in every product derived from the family. If obsolete variation
points aren’t removed, they will contribute to the cognitive complexity
the plethora of configurable parameters create [4].

Variation points not organized Without a clear structure of variation points,
individuals performing product configuration may have to be concern with
variation points that is not relevant to the product being derived [4].

Removal difficulties To reduce the number of variable options, variation points
that are no longer used should be removed. This can be difficult since other
variation points maybe depend on them. Removing a variation point may
thus require reimplementation of the product family [4].

15

Variation points become invariable As a product family evolves, function-
ality that only used to be included in some of the derived products may
become standard in all products. This eliminates the need for this feature
to be a configurable option and the variation point is no longer needed.
If this kind of variation points is not removed, many of the previously
mentioned issues follow as direct consequences [4].

3.5 Summary

This section will summarize the identified problems. A new large set of problems
arises when an organization utilize the benefits of a software product line. This
chapter has identified and explained some of these problems. The first initiative
to solve a problem is to be aware of its existence, identify and define it. To
further ease the approach of solving the typical problems that occurs within
software product line, this chapter has established four categories that partitions
the problems. The four categories, each containing a similar set of problems are:

e modularization
e process
e method
e variation points

The first category, modularization refers to problems that occur when split-
ting up big systems, whereas the remaining three categories more describes
problems and issues related to putting big systems back together in different
ways. The variation point’s category is especially important because it identi-
fies problems related to variability management like organizing and maintenance
of the variability. Obsolete variation points and variation points not organized
have many things in common, but one difference is that the latter one could
be the result of that new variation points are introduced from different lay-
ers within the organization, e.g, the developers introduce new undocumented
variability to ease their software development. While obsolete variation points
could be the result of remnants from an earlier project. Many of the problems
discussed in this category are problems that arises in parallel as the software
product line evolves and gets more functionality added.

To solve all of these problems is out of scope for this master’s thesis. The re-
maining chapters of this report will focus on a subset of the identified problems.
An example of problems the improvement proposals in chapter 5 will try solve
are problems concerning dependencies like mutual exclusion and prerequisites,
lack of tool support and a number of problems related to variation points.

16

Chapter 4

Variability management at
Sony Ericsson Mobile
Communications

The purpose of this chapter is to discuss how Sony Ericsson Mobile Communi-
cations work with software product lines and product configuration. It will also
discuss how SEMC experienced some of the problems identified in chapter 3.
First a description of the stakeholders in the organization and the interfaces
between them will be given in section 4.1. In section 4.2 details about the
variability mechanisms used will be discussed. After that a presentation of the
requirements system will be given with focus on the creation and management
of configuration packages. Section 4.4 will highlight the most important issues
that the proposal in chapter 5 will try to solve.

4.1 Organization

To understand the details of product configuration this section will discuss how
different stakeholders are concerned with product configuration and identify the
interfaces between them.

4.1.1 Stakeholders

To derive a new phone from the product line a wide range of roles needs to
be involved, ranging from business people to developers. Roles that are more
concerned with the market value of a phone want to create a, somewhat abstract,
specification of the desired product. Requirement engineers need to find and
specify all the requirements of the products functionality. The developers need
to know which of these requirements that should be implemented to create the
desired product.

17

When a product is derived from a software product line (Section 2.3) the
people responsible need to know which assets from the product family that
should be included. They also need to know how to map the assets to the
requirements and the feature specification created by the other roles.

To address the mapping to configuration problem described in Section 3.1
the following stakeholders have been taken into account during the construction
of the improvement proposal and prototype development:

Product planner Creates concepts of new phones. The product planner is
concerned with how competitive a product will be and aims to create
new products with features that will attract new customers. In a way,
the product planner performs the first product configuration by selecting
which features that should be included in a phone. The work done by
a product planner is kept on a more abstract level than the requirement
engineers, the products are defined in terms of the features they should
have.

Requirement engineer Creates and maintains all the requirements of the
products. The requirement engineers should analyze the features the prod-
uct planner wants and find the necessary requirements on a more detailed
level. Feedback from the developers about the implementation of the de-
sired modularization may result in changes of the requirements and their
dependencies.

Developer The developer role includes all persons that are involved with the
implementation of the assets in the software product line. They need to
know what to implement and how to structure it in such a way that it’s
possible to configure the desired products using the variability mechanisms
in place.

Product configuration manager Responsible for the binding of variation
points. Uses the information about what should be included in a product
to select the assets from the software product line using the variability
mechanism.

Configuration Manager Responsible for the configuration management within
one of the development groups in the organization. The configuration
manager receives changes from the developers and delivers them to the
product configuration management department.

Software architect Works with the overall design of the assets and makes
sure that the different modules can be used together.

Testers/QA Verifies the developed assets by running tests. Supplies important
feedback to the developers to inform them if the assets they develop meet
the requirements they should implement.

The focus of this master’s thesis have been on the work done by the product
configuration managers and how their work can be simplified. But the changes

18

proposed in this report also impact, and hopefully improve the work for many
of the other roles mentioned.

4.1.2 Interfaces

The roles described above interact with each other in different ways. To clarify
and emphasize the communication channels used in the product configuration
process the following interfaces have been defined (see Figure 4.1). A lot of
other communication channels exist but the ones displayed have been identified
as a part of the tool development to understand which information that is, and
could be, input to a product configuration tool, and what should be the output.
The direction of the interfaces indicates the direction of information related to
product configuration.

1. The product configuration managers need to know what should be in-
cluded in a product in order to bind the variation points and configure
the products. It is the product planner that initially created the specifi-
cation which should be the input to the product configuration.

2. The requirement engineers need to know which features the products
should have in order to create the necessary requirements.

3. Mapping between the system requirements and the product configuration.
Not currently used, will be discussed further in Chapter 5.

4. Developers deliver the assets to the product configuration managers. The
configured and built product can be used by the developers to validate
and verify that assets are correctly implemented.

5. The requirements inform the developers of what should be implemented.
Chapter 5 will discuss the information the developers need to supply to
the requirement engineers.

4.2 Product configuration

This section describes the specific variability mechanisms and product config-
uration methods used at SEMC. The variability mechanism is currently being
changed and the focus of this section will be on the new way of configuring
products. More details about the old configuration method can be found in [15]
and [11].

SEMC creates a product family for each big project in the company. The
product family is used to create many similar phones by exploiting their com-
monalities. The product family is called a cluster and all the product config-
uration is done within such a cluster. The cluster is represented by a specific
module that defines the different variants in the product family, and contains

19

Product

Pl
anner Product Configuration
Manager
2
4
Requirement
Engineer
Developer

Legend

Information flow
direction

Figure 4.1: Product configuration communication interfaces. Some of the inter-
faces are all ready in use at SEMC and some have been defined to support the
tool development and improvement proposal.

the product configuration. The assets that constitute the products reside in sep-
arate modules with their own version history. The configuration in the cluster
module specifies which version of the asset modules that should be used, and
binds the variation points defined in the modules.

4.2.1 Variability mechanisms

As mentioned above SEMC is currently changing the mechanisms used for prod-
uct configuration. The old configuration mechanism suffered from a lot of the
problems described in Chapter 3 which made it hard to maintain, and the con-
figuration process erroneous in general. To remedy this, the architectures at
SEMC has been constructing a new modularized configuration syntax which

20

=W N =

will be described in this section.

Modularized product configuration

The new product configuration uses an XMIL-based syntax to configure the prod-
ucts (see Listing 4.1). The old syntax relied heavily on conditional expressions
to make decision about the value of a variation point. This made the config-
uration hard to understand and change since the value of each variation point
could depend on the value of a series of other variation points. The new con-
figuration method is more context sensitive, i.e. instead of asking about what
product that is being configured, each product has its own configuration file that
contains the configuration specific for that product as depicted in Figure 4.2.
Instead of supplying on/off values for every variation point, this configuration
method only needs to specify what should be included in the product.

<product name="Product-1" variant="GENERIC">
<configuration —package name="Feature-1">
<configuration —package name="Feature-2">
</product>

Listing 4.1: New configuration syntax. Line 1 declares a new variant of Prod-
uct 1 called GENERIC. Lines 2-3 specifies which configuration packages that
should be included in the variant.

This is made possible by partitioning the old configuration in such a way that
the configuration of a product only consists of a specification of which feature
the product should have. The detailed configuration of the features has been
isolated in the modules implementing the features.

These configurable features have been named configuration packages and
should be the smallest configurable entity in a product.

In order to achieve this partitioning the software assets needs to be organized
in such a way that the inclusion of a single module is possible. This is somewhat
problematic because of dependencies between modules or features that require
other features to work as described in Section 3.1. The possibility to structure
all assets in such a way should be thoroughly investigated but is out of scope
for this master’s thesis. Methods to deal with possible modularization problems
should also be researched.

4.3 Mapping between product configuration and
system requirements

In this section the current possibilities to map system requirements to product
configurations will be discussed and analyzed. Dhungana et al have identified

21

Product Configuration Features / Configuration packages Software modules

1 1
1 1
(products) | (variation points) I (assets)
1 1
1 1
1 1
1 < 1 P <
] : : [
4|'[Configuration package 1 - Asset 1
1 \
-~ | I
5 | [Configuration package 2 | r ~
-§ : ! Asset 2
[—|—-[Configuration package 3 1 N
1 1 - N
N ') : Asset 3
N —'—-[Configuration package 4 SSE
—— 1 g B 2 1 \
]

Figure 4.2: Modularized product configuration. A product can only be con-
figured to include configuration packages. The configuration packages should
correspond to different features that a phone can have. Many configuration
packages can include the same software modules.

[5] that a typical problem with product configuration is the lack of traceability
between the decisions taken by customers and sales people and the actual prod-
uct configuration. It is important to create a mapping between the variation
points and their counter parts in other specifications, such as those created by
the product planner [3]. The mapping between the requirements and the prod-
uct configuration is important in order to see whether the built product really
implements the requirements it should. Without a clear mapping between them
it would be hard to see if a specific feature actually is included in a product,
even though it may be implemented and tested. It is also important to have
the ability to do the opposite - look at a built product an see which features it
includes.

4.3.1 Requirement management

Requirement engineering is an important part of software development. A com-
plete description of the different methods and systems used at SEMC is out of
scope for this master’s thesis but a simplified description of the parts relevant
to product configuration will be given in this section. The discussion about the
requirements is meant to investigate the possibilities to map the system require-
ments with the product configuration. Big parts of the requirement engineering
process and the roles involved will be omitted and focus will be put on the way
requirements are structured and organized.

Requirement system

All the system requirements at SEMC are stored in a central database con-
trolled by a system that enables the engineers to add dependencies between

22

requirements, group requirements, generate lists with requirements and per-
form various other tasks. There are tens of thousands system requirement that
together specify every piece of functionality for all the phones in a cluster.

Requirement structure

As mentioned above the requirements systems allow engineers to specify de-
pendencies on a requirement. A requirement can have hardware-, form factor-,
operator- and market dependencies. Each of the dependencies can be either
inclusive or exclusive, i.e. the dependency is met if the specified dependency is
present and not present respectively.

A requirement can be defined to be part of one or more configuration pack-
age(s). This is done by simply listing the configuration packages a requirement
belongs to in the database post representing the requirement. By querying the
database for all requirements belonging to a specific configuration package it is
possible to see what a configuration package contains. The (simplified) structure
of the system requirements are shown in Figure 4.3.

Currently there are two kinds of configuration packages. The first kind is
the configuration packages that are defined by the requirements engineers in the
requirements systems. These configuration packages may actually exist in two
places, once in the requirements system where they are declared, and once more
if they are implemented using the new XML-based syntax. The other kind
of configuration packages are only implemented using the XML-syntax, and
doesn’t have a counter part in the requirements system. The difference between
the two is that only configuration packages declared in the requirements system
can define dependencies that can be used by e.g. a tool. This kind (requirement
system compliant) of configuration packages are the preferred sort but currently
the other kind is needed in the process to migrate the configuration to the new
syntax. The term configuration package will be used to refer to any of the two
and is intended to be thought of as the logical unit that represents a variation
point in the software product line.

The difference between the configuration packages in the requirements sys-
tem and the XML-implemented is that the ones in the requirements system are
their logical representation and the XML-files provide their implementation, i.e.
it is the declarations in the XML-files that states which modules etc. that should
be included in a specific configuration package. And it is the XML-versions that
are used when products are being configured.

The system requirement database also contains a specification of which con-
figuration packages that should be included in every product of the cluster and
the hardware attributes of each product. This is the result from the initial
configuration done by the product planner together with the requirements en-
gineers.

23

(

Gependencies \ Requirements @fig uration packages \

Configuration Package 1

/[Configuration Package 2]
|| Operator 1

\[Configuration Package 3]
(G

5 e)L JIN y

Figure 4.3: Requirement system structure

4.3.2 Mapping

The product configuration at SEMC currently doesn’t enable any mapping be-
tween the requirements and the product configuration [2]. The new modularized
syntax proposal has addressed this issue by suggesting that the configuration
packages used in the XML-syntax should correspond with configuration pack-
ages defined in the requirement system. Most of the product derivation is done
by copying old configurations and changing the configuration after receiving
feedback from the testing organization.

4.4 Analysis

The analysis of the results and findings in the previous sections will be presented
in this section.

4.4.1 Variability

The different roles identified in this chapter are all involved in product configu-
ration to some extent. However, their tasks are very different and the kinds of
problems they have differ widely since they encounter product configuration on
different levels of abstraction. The identification of how the needs for a product
configuration tool differed between the roles was an important factor when the
proposal and tool was created.

A product planner needs a simple way to specify the features of a new
product without caring too much about the underlying variability mechanisms
and architecture. The ideal situation would be if the product planner could
create a clear specification that could be directly transformed or mapped with
the variability mechanisms. Due to practical limitations such as dependencies

24

between modules, component prices, etc. the product planner might have to
revise the initial configuration of a product, but those changes should be easily
reflected in the configuration.

The product configuration manager should be more concerned with how the
specification supplied by the product planner can be transformed into the vari-
ability mechanism used. This is the kind of information that could be transfered
via interface 1 (see Figure 4.1). The current product configuration at SEMC
lacks this kind of mapping.

On the least abstract level, the developers need to assist in the product
configuration process. Since it is the developers that create the assets that
should be configured they need to be aware of the constraints and limitations
the assets they develop need to adhere to. The developers need to know about
the desired variability in order to create the corresponding variation points. A
problem at SEMC is that there’s lacking control of when and how variability
should be introduced in the software product line. Most of the variability is
actually introduced by the developers. When variability is introduced by the
developers interface 4 is used for product configuration, rather than delivery of
the assets that should be configured by the product configuration managers. A
goal of the proposal presented in this master’s thesis is to change the product
configuration from being done in a bottom-up manner, into a more top-down
process.

The organization of the system requirements with configuration packages and
dependencies aren’t currently used in the product configuration. The creation
of the configuration packages is an important part of the variability manage-
ment since a goal was to only use the configuration packages as variation points.
The grouping of system requirements into configuration packages is done by the
requirement engineers together with the product planners. Interface 2 repre-
sents this work, i.e. the requirements on the variability come from the product
planner and should be implemented, logically, by the requirement engineers.
Communication from the developers to the requirement engineers via interface
5 may also be needed since the developers possess the knowledge about depen-
dencies between modules and hardware etc. that needs to be reflected in the
configuration packages.

4.4.2 Configuration packages and variation points

As suggested by both the software architects at SEMC and Andersson et al[2] the
variation points used by the new modularized configuration syntax should cor-
respond with the configuration packages defined by the requirement engineers.
During the analysis of the requirement and configuration package structure a
couple of problems have been identified.

Products from the software product line should only be configured by se-
lecting which of the available configuration to include. In order to achieve this
all of the functionality must be available in such packages. It is also important
that the packages are specific enough to allow a high degree of configurability,
but at the same time general enough to not make configuration management

25

too complex.

Currently SEMC configures the products using both the old variability mech-
anisms and the new. Only a few modules have been migrated to the new syntax,
and the product configuration still heavily relies on the old configuration files.
The mapping between the configuration packages and the configuration is only
suggested and a thorough investigation if the existing configuration packages
are enough to enable the desired degree and variability haven’t been performed.

As described in Section 4.3 the configuration packages are made out of system
requirements. These requirements may, or may not have dependencies. This
means that the configuration packages effectively inherits all dependencies from
the included requirements. The way the configuration packages currently are
constructed have some interesting consequences because of this.

Variable configuration packages Assuming it is desired that the product
configuration match with the specification of configuration package avail-
able in the requirements system, the content of a configuration package
is variable, i.e. depending on which product currently inspected, the con-
tent of an included configuration package may change. This is the result
from requirement dependencies propagated to the configuration packages.
According to the configuration specification two products with different
hardware configuration can include the same configuration package, which
may depend on a hardware feature available in only one of the products.
This kind of variability within the configuration packages are depicted in
Figure 4.4.

This however, is only a problem if the configuration is allowed to be done
in such a way, that a product missing a hardware attribute required by a
configuration package, can include that configuration package anyway. If
the new modularized configuration syntax is used, this kind of variability
within configuration packages would make configuration very confusing
since it would be hard to tell which functionality the end product would
get.

Contradicting dependencies An easy solution to the problem above would
be to simply enforce all the dependencies, i.e. it wouldn’t be possible
to include a configuration package in a product if some dependency isn’t
met. As it turns out, some configuration packages currently include re-
quirements that directly contradict each other. Some of the configuration
packages defined in the requirements system have requirements that both
states that a specific hardware attributes are required and specifies that it
isn’t allowed. If all dependencies have to be met this configuration package
could hence never be included in any product.

None existing dependencies Another issue with the current structure of the
configuration packages is that some requirements depend on hardware
attributes that aren’t listed in the product configuration specification. If

26

Configuration packages Product configuration Resulting products

C Product 1 Product 1

onfiguration

Package 1 Configuration
Hardware:
Req 1 GPS

GPS Only Bluetaoth
S Configuration:
Req 2
CP1

EJ

Product 2 Product 2

5 Configuration
Hardware:

FM gnly -, * | Bluetooth Req 3

. Configuration:

| (

Configuration
Package 2

Req 4 1 cp1

(T

CP2

i

Figure 4.4: Configuration package variability. Example of two products with
different hardware traits, configured using identical configurations. If variability
within configuration packages is allowed, based on e.g. hardware, the same
configurations can result in different end products.

it isn’t possible to specify that any product have the needed hardware
attribute, the package can never be used.

All of these problems have been identified from a product configuration
point of view. In other words, the problem with the configuration package
variability and contradicting dependencies may only be a problem when the
mapping between the configuration packages and the variability mechanism is
done. The ability to specify dependencies the way it’s currently done lets the
requirement engineers specify differences among different products in an easy
and intuitive way. Most of the problems arise when you strictly need to enforce
the dependencies and need to know what should be included in a product or
not. Different ways to make the configuration more dynamic is subject to further
investigation.

27

4.4.3 Responsibilities

One of the problems at SEMC seems to be the lack of clear responsibilities of who
should do what. There is no clear specification that states who is responsible
for the maintenance of the variability in the software product line. Variability
is introduces by both product configuration managers and developers. The
introduction of new variation points is done without any impact analysis on the
configuration.

If the configuration packages defined in the requirements system are going be
the variation points in the software product line, it is important to implement
a well defined process of how they should be maintained, both in respect to
product configuration and requirement engineering. It is also important that it
is clear which roles that are responsible for the different maintenance tasks.

In order to address this problem the benefits of the needed changes have
to out weigh the cost, e.g. time it would take to change the way the different
roles are working. During the interviews that was conducted as a part of this
thesis work, a common complaint about the current process was the lack of clear
responsibilities.

28

Chapter 5

Proposals

The following section will present a proposal for changes that SEMC could
perform in order to improve the product configuration process. The proposal is
divided into a general process suggestion, that suggests how existing initiatives
within SEMC can be used together to improve the process, and a rule set, that
the variation points in the software product line need to conform to. Section
5.1 will present the process modification and the rules are presented in section
5.2.

5.1 Top-down configuration

In this section we will present a proposal of how the product configuration
process could be changed to make it more manageable. As discussed in Sec-
tion 4.4.1 the product configuration is currently mostly done by the developers,
which makes it grow from the bottom. The problem with this is that it gets hard
to maintain the configuration. In order to control the the variability it is impor-
tant to control when, why and by who variability should be introduced in the
software product line. Without sufficient amount of control over the configura-
tions many of the problems identified in Section 3.4 will appear, such as obsolete
variation points, unmanageable number of variation points and variation points
not organized.

To make the product configuration more manageable it should be done top-
down, i.e. the product configuration managers should configure the products
according to the specifications created by the product planners and requirement
engineers, forcing the developers to develop assets that enables and works with
this variability.

5.1.1 Responsibilities

One common problem identified at SEMC is the lack of clear responsibilities.
The following descriptions of each role’s responsibilities are supposed to be in-

29

corporated together with the other suggestions in this proposal and a tool such
as the prototype described in chapter 6.

Project planner Creates the variation points, i.e. constructs the configura-
tion packages together with the requirement engineers. Introduction of
new variability and removal of old, should be based on decisions taken by
the product planner.

Requirement engineer Responsible for maintenance of the configuration pack-
ages. They should assure that the proper dependencies are defined and
that the needed variability is reflected in the available configuration pack-
ages. Since the configuration packages are initially declared in the require-
ments systems, and other versions of the package such as the implemen-
tations in XML should reflect these ones, the role that knows most about
the requirement system and the reason for the creation of the package
should also maintain it.

Product configuration manager Bind the variation points specified by the
requirement engineers and product planner according to the product con-
figuration specification. The product configuration manager should also
update the product configuration when a developer group have made
changes to the content of a configuration package and delivered the changes.

Developer Develop the assets and configure configuration packages to contain
the correct modules. The maintenance responsibility for every configura-
tion package should be assigned to a group of developers. The developers
will make sure that the configuration package implements the require-
ments it is supposed to, and deliver configuration package changes to the
product configuration managers.

5.1.2 Connection between requirements and configuration

The product configuration specification should fully reflect the configuration of
the products. The product configuration specification consists of a product /fea-
ture matrix that lists all product variants in one dimension, and all configuration
packages in the other. A variant is configured by simply marking the configu-
ration packages that should be included in the column corresponding with that
variant.

The product configuration specification is maintained in the requirements
system and should be created by the product planner together with the require-
ment engineers.

When the product configuration managers configure a product this document
should be the specification of what should be included.

With proper tool support the mapping between the product configuration
specification and the actual variation point binding can be automated and con-
sistency checked.

30

5.1.3 Non functional configuration

It is important to enforce the dependencies available in the requirements system.
Configuration packages may depend on certain hardware features in order to
function, or should only be included if the product is to be released to a specific
market. To enforce these dependencies the tools used needs to be aware of the
specific traits of the product currently being configured.

We suggest that all non functional configuration, i.e. hardware-, operator-
, form factor- and market configuration, should be done with configuration
packages representing that specific hardware attribute, form factor, etc.

By representing this kind of configuration this way e.g. hardware dependen-
cies can be modelled the same way as dependencies between ordinary configu-
ration packages.

5.1.4 Dependency representation

The purpose of the dependencies is to guide and help the roles performing
the product configuration to construct valid configurations. The dependency
information available from the requirements systems can be used both to prevent
the construction of illegal configurations and validate existing configurations.

We suggest that the tools used to create the product configuration specifica-
tion and the tools used for product configuration should query the requirement
system about the dependency information. By doing this the users of the tools
can e.g. get valuable feedback about which hardware components that are
needed, and information about which prerequisites a configuration package may
have.

In order to use the information from such queries it is important that the
suggestions from Section 5.1.2 are implemented.

5.2 Variation point structure and rules

This part of the proposal will present suggestions on methods that could be used
to solve some of the problems with the configuration package structure identified
and define a set of rules that the configuration packages need to conform to.

5.2.1 Method suggestions

To achieve the mapping between the system requirements and the product con-
figuration some of the problems identified in Section 4.4 needs to be fixed. In
order to use the existing variability mechanisms the variability within the con-
figuration packages needs to be removed. The configuration package variability
that currently exists is caused by features that have optional functionality and
requirements that serve as alternative implementations. These features need
to be split up into configuration packages that can be included in a product
without the need for variation.

31

We have created two alternative strategies that could be used to achieve this
kind of split.

Method 1

One approach to solve the problems with conflicting dependencies and variability
within configuration packages is to create one configuration package for each
desired variant of the configuration package as shown in Figure 5.1.

The upper part of the figure illustrates a configuration package that includes
two requirements with contradicting dependencies. In this case two almost iden-
tical configuration packages could be created only differing with respect to the
contradicting requirements. A common reason for this kind of contradictions is
because the requirements implement different alternatives of the same function-
ality.

The lower part of the figure shows a configuration package containing re-
quirements that are supposed to be optional, i.e. included in the product if it
has touch screen or GPS. In this case a configuration package representing each
configuration alternative could be created and the product configured with the
appropriate one.

One of the advantages with this method is its simplicity and easy implemen-
tation. A disadvantage is that the configuration packages will require double
maintenance when the common parts are changed.

Method 2

The second method suggestion is more complex than method 1. Instead of creat-
ing multiple configuration packages with mostly the same content, this method
works by only extracting the affected part into configuration packages of their
own. In the example with contradicting dependencies (see Figure 5.2) the ex-
traction of requirements Z and Y creates dependencies between the originating
configuration package and the extracted ones. The dependencies are marked
with 1 and 2 in the figure. Dependency 1 is necessary if the extracted require-
ments constitute a required part of the functionality in Feature A, such as the
source of the positioning data in a map application. Dependency 2 is necessary
since Feature A Z and Feature A Y probably wont work, or even make sense,
without Feature A’.

Dependency 1 is problematic because Feature A’ doesn’t depend on both of
the extracted configuration packages, only one of them. In order to model this
dependency a mechanism to describe this would be needed. One way could be
to declare a common interface that the alternative implementations could be a
part of, and specify a dependency to this interface in Feature A’, marked with
3 in the figure.

In the case of optional features, as shown in the bottom part of Figure 5.2,
only the dependencies between the extracted packages and Feature A’ are needed,
marked with 4.

32

8
o Feature A Feature A Z
c <
g ¢ 1 L
2 PR P s
CIJE y AN p / ~ b Y
g, + 00 L
Loy \ \ \

N 1 O @)
20 @) vy ' '
= e / / /
O \ \ \
= ~ 7/ ~ N /7 7/
g £ -""-.-, ""'--"< “’

1)
—_— =
= E ’
O% Feature A 'Y
Oz

Feature A Feature A 'Y Feature A X
,fL\ ,’ _'/\o-_"'\

)

£ ' % ll s /k\ /
= \ y \/ N N
Q ~ P + ~

© /

c \ /

el ~ 7

f=3

O

-
Feature A’ J

. Requirement ¥ — Touch screen only
O Requirement ¥ — GPS only
O Requirement 7 — GPS excluded

% Rest of requirements in configuration package
Mo dependencies

Figure 5.1: Method 1. The figure illustrates how a configuration package can
be split into many configuration packages to resolve contradicting dependency
issues or remove variability from a configuration package.

33

Contradicting dependencies

Optional features

Alternative implementations (must have ane)

Feature A

-
~
-
/
-~
©)
]
_’I

Feature A Feature A Y J

Feature A
l Feature A X
- r
/’ \\ - TN /—\\
/
0@ ;) 2

| \ N~
Q) S I
d \ / lo\

7/ ~ 1
\\ ” -...-, ~ /7

-—
Feature A’ L Feature A Y

. Requirement X — Touch screen only
O Reguirement ¥ — GPS only
O Requirement Z — GPS excluded

Rest of requirements in configuration package
Mo dependencies

The advantage with this method is that the need for double maintenance
would be eliminated, but the complexity of the configuration would increase

Figure 5.2: Extraction of configuration packages.

because of the need for dependencies and interface declarations.

5.2.2 Rules

In order to map the requirements to the product configuration, using the existing
variability mechanism, the following rules about the structure and creation of

34

configuration packages needs to be obeyed.
e Forbid configuration packages with contradicting dependencies.

e Enforce dependencies when a configuration package is included in a prod-
uct.

e The product’s hardware configuration should match with the hardware
configuration in the product configuration specification.

The purpose of the rules is to proactively prevent the identified problems
with the structure of the configuration packages. The first rule should pre-
vent the creation of configuration packages that is unusable using the current
variability mechanism. The second rule is supposed to prevent invalid configura-
tions. It is easier to stop an error from being made, than finding what’s causing
it afterwards. In order to strictly enforce all dependencies the configuration
packages cannot depend on things that don’t exist.

5.3 Discussion

The contribution of this proposal will be summarized and evaluated in this
section.

The three main parts of the proposal are clear responsibilities, usage of the
variability mechanism and structure of the variation points. The clarification
of responsibilities is needed to make the product configuration more top-down
rather than bottom-up.

The arrows in Figure 5.3 represent different tasks. The arrow marked with 1
is the process of constructing the configuration packages and create the product
configuration specification. This work should be done by the product planners
together with the requirement engineers.

Arrow number 2 indicates the clear specification, viz. the product configura-
tion specification, that the product configuration managers should use as input
to the configuration. The configuration packages used in the specification should
be implemented by the developers, indicated by arrow 3. The developers also
need to provide feedback to the requirement engineers to help them construct
the configuration packages in such a way that they are implementable, hence
arrow 3 is bidirectional.

The developers, that implement the building blocks in the product config-
uration, should deliver the configuration packages to the product configuration
mangers (arrow 4). We suggest that these releases are freeze labels to modules
that implement one or more configuration package(s) using the new modularized
syntax. The product configuration managers can use these labels to add new,
or change existing, configuration packages. This is done by adding or changing
an entry in the XML-file that defines which modules that supply configuration
packages.

35

Finally the product configuration managers should use the delivered config-
uration packages and the product configuration specification to configure and
build the products (arrow 5).

4

Product Configuration

[RequirementEnginer]\‘ v [Manager] ?

=75

[Product Planner

X D) o= (Ll

Figure 5.3: Configuration process overview. The black arrows indicate tasks
that are supported by the tool prototype described in Chapter 6.

Even though the work involved with arrows 1 and 3 isn’t directly supported
by the tool, it can still be used in both cases to get an overview of the current
state of affairs, e.g. check wether it is possible to remove a configuration package
without breaking any dependencies.

The second part of the proposal concerned the mechanisms used to represent
the variability. We suggest that all product configuration should be done using
configuration packages, including hardware, operator and market configuration.
All configuration packages should be available in the requirements system and
dependencies between them should be enforced when the products are config-
ured. This should be done by using a tool that can communicate with the
requirements system as well as interpret the XML-based configuration syntax.

Our suggestions of how to deal with the structure of the variation points,
i.e. the configuration packages, contained a suggestion of how the existing prob-
lems can be dealt with by splitting up the configuration packages. We suggest
that method one should be used because of its simplicity and since it doesn’t
require any changes to the mechanisms already in place. As a part of the pro-
posal we also defined a set of rules that the configuration packages and product
configuration needs to obey.

One of the reasons for SEMC to migrate the product configuration to the
XML-syntax is because of the unmanageable number of variation points in their
software product line. During the work we looked into what’s called formal
concept analysis (see [7][8]) and how it could be used to model the configuration
and identify e.g. obsolete variation points. We realize that it would not be
easy to partition the entire old configuration into the new smaller configuration
packages but formal concept analysis could probably be used to ease the process.
Due to its complexity we decided to focus on how the configuration can be done
using the new syntax and how the dependencies can be used and visualized.
The formal concept analysis used a product-feature matrix to construct a lattice

36

consisting of all the different products and features. Before we decided not to
use the formal concept analysis we also investigated different ways to parse the
old configuration files!. Since we decided not to use the formal concept analysis
the result from this was also discarded.

Lhttp://research.cs.queensu.ca/~thurston/ragel/
http://flex.sourceforge.net/
https://javacc.dev.java.net/

37

Chapter 6

Tool development

One of the main goals of the master’s thesis was to develop a proof of concept
prototype that visualize dependencies and facilitates the product configuration.
The tool was intended to give the people at the product CM department new
insights about how product configuration could be done to make their every day
work easier. The general needs concerning the prototype is analyzed in section
6.1. Issues about variations regarding the tool is in section 6.2. The main
goals that constituted a foundation for the development are presented in section
6.3. The actual implementation and development of the prototype is discussed
in section 6.4. Some points and ideas about how further development of the
prototype could be performed, and some hints about additional investigations
concerning product configuration in software product lines, are located in section
6.5.

6.1 General need

This section will deal with the general needs that the developed prototype should
conform to.

Before the actual implementation of the prototype started, a research of
existing product configuration tools was carried out. The purpose of this re-
search was to obtain some innovative and pioneering ideas regarding product
configuration. The results from this investigation constituted a basis for further
analysis of problems involved with product configuration and their solutions. A
wide variety of tools were examined and evaluated according to the guidelines
and criteria’s defined below. To demonstrate the information that was captured
during the research a real example is given.

Product Online car builder
Indented user(s) Buyers

Description Web based tool that let customers configure/build a car online.

38

Usage
1. Select a car model. All available cars are listed with the correspond-
ing price information.

2. Select an engine. All engines available for the selected car model are
listed.

3. The user can see the cars standard equipment and select custom
accessories. The customization is done by selecting checkboxes next
to the description of the item.

4. Select color of the car and its interior.

5. (Generate a cost estimate)
Advantages

e When the user picks an item that conflicts with another item, all
choices that conflict with that choice is indicated to be ”impossible”.

e The order in which items are selected is natural and intuitive.

e The cost estimate is updated as the user selects items.

e If the user clicks and item in the list a short description of that item
is given.

Disadvantages

The lists are small and hard to read.

e No clear overview of what is selected.

e When a custom choice generates impossible configuration, it is hard
to track what option that was disabled.

e The tools get slow and unresponsive when a lot of checkboxes are
selected.

Even though this example is from the car industry, many of the features and
functionality that are described are also of importance to a software product
configuration tool.

Research results

The results from the research was not used to a large extent but provided some
helpful insights into what features are of importance. The investigated prod-
uct configurators were online, web-based car and computer configurators. Some
example of features that were discovered and later taken into account when
the prototype development started was to visualize incompatible configurations
dynamically with colors, information about both software and hardware de-
pendencies, divide similar configurations with tabs and the possibility to show
further information about software assets. Some examples of features that not

39

were implemented in the prototype are details button for each specific part and
cost estimates.

What also was discussed during the research phase was the interest to choose
a base configuration when constructing a new product, and then augment it with
further functionality depending on the system requirements. This way of deriv-
ing a product adhere much to the assembly method called, base configuration,
that is analyzed in section 2.3.2.

Use cases

The next step in the tool development process was to create use cases that
described typically scenarios during product configuration. The use cases were
divided into two separate categories: Product and Configuration packages, where
each of these two categories was further divided into sub-categories. The cate-
gory Product was divided into product set-up, product configuration, maintain
configuration and maintain hierarchical structure. Configuration packages was
divided into one sub-category called create configuration package. Each use case
was given a unique ID, a descriptive name, intended actors, assumptions and
the none-functional requirements. An example of a use case, concerning product
set-up, that constituted a foundation for the actual prototype is given below.

Use case Set up new product variant from scratch.

Description Set up a new product from scratch with a name and list of in-
cluded features.

Actors Product CM, Product Planner.
Assumptions
e All the information, such as name, and included features, should be
available to Product CM.
e Configuration is feature-based.
e Including none-implemented functionality does not break anything.

None-functional It should not be possible to create a product with the same
name and variant as an existing product.

6.2 Tool variations

Different variants and variations of a product configurator will be described in
this section. Two types of product configuration tools were discussed before
a final decision, about these two implementation alternatives, was taken. The
first candidate used the old syntax and configuration method. This variabil-
ity mechanism is briefly described in section 4.2. As mentioned before, this
mechanism, currently used in the projects running at SEMC, is supposed to be
superseded by the new, XML-based, modularized initiative. So one advantage

40

of implementing a tool using the old syntax, compared to a tool using the new
initiatives, is that the tool hopefully could be used within a short time frame.
On the other hand, a disadvantage is that the tool would soon become old and
obsolete because of the changes to future projects. Also, two previous master’s
thesis, [15] and [11] have already been investigating these method and proposed
some improvement suggestions.

The other alternative of product configurator would be a tool based on the
new modularized way of configuring products. This XML-based syntax is pre-
sented and discussed in section 4.2.1. One interesting feature of this new method
is the possibility to define abstract products. The abstract products are a way
to avoid unwanted redundancy and group similar functionality into base prod-
ucts. Because of these abstract products and the inheritance structure, different
scenarios related to adding and removing configuration packages appeared. Two
scenarios regarding product configuration, called generalize and specialize, will
be analyzed in the next two sections.

Generalize

Generalization is a scenario that may occur when a configuration package is
added to a product variant. Picture 6.1 visualizes an inheritance tree and a
simplified version of the generalize-scenario.

Three products exist in this cluster. One abstract product named Base
product and two concrete product variants named Product 1 and Product 2.
Base product has two local configuration packages, CP1 and CP2. The two
product variants have one configuration package each - CP3 and CP4. As the
picture depicts, the both concrete products inherits from the abstract product
thus they both got two inherited, non local, configuration packages.

The scenario that number 1 in the picture refers to is what happens if CP3
is added to Product 2. In the next transition (2), CP3 is moved to Base product
because all of its children possessed the configuration package. As a result of
this, Product 2 no longer contains any local configuration packages, instead all
three are inherited.

The drawback of this solution is the side effect that products (Base product
and its children) that explicitly wasn’t involved had it contents changed (The
intentions were to change only one product, but the result of that change re-
structured an entire sub-tree). In order to achieve more control of the product
configuration, the result of this scenario should have ended after the first arrow,
i.e., CP3 would never be moved to the abstract product.

Specialize

The specialize-scenario is the somewhat reverse scenario of generalize. This
is a scenario that may occur when configuration packages are removed from
products. Picture 6.2 visualizes an inheritance tree and a simplified version of
the specialize-scenario.

41

E Base Product l Base Product

HED(EA 1EER

Product 1 Product 2 Product 1 Product 2

..........................

: Base Product
/ \ flcPi||cPz || crs
E z Ahstract product T
D Product variant

D Local configuration package

Product 2

Inherited configuration package

\ ’ Inheritance arrow ‘

Figure 6.1: Generalize

The initial cluster, with one abstract and two concrete variants, is identical
to the one used for generalization.

Number 1 in picture 6.2 shows what happens if CP1, which is an inherited
configuration package, is removed from Product 1. The package is removed from
the abstract product, resulting in that Product 2 ends up in an invalid product
state because of the lack of CP1. To solve this, the lost package must be re-added
to all children of the abstract product, except the one the configuration package
was removed from, to make the products valid again (Like in generalize, an
entire sub-tree was reorganized when the intentions were to change the content
of one product). In the scenario in picture 6.2 only Product 2 was involved in
the re-adding of configuration package.

The lack of control discussed earlier in generalize is a problem here also
because of the implicitly restructuring within the inheritance tree. It is not
possible to end the process in number 2, because that would leave Product 2 in
the invalid product state. A constraint that makes is impossible to remove none-
local configuration packages is a more appropriate approach to this scenario.

42

BT LT T T O PP TTIITITI T
E Base Product : Base Product
{ (o) L (=

Product 1

Product 2 Product 1 Product 2

CP3

/ \ i Base Product
E x Abstract product CP2

el

Product variant

Q Invalid product state

Local configuration package

Product 1 Product 2

Inherited configuration package

CP1

CP4

\ > Inheritance arrow J

Figure 6.2: Specialize

Thus the only way to remove a configuration package is if the specific package
was earlier added to the product, making it product specific and local.

6.3 Tool goals

In what way a tool could facilitate the actual product configuration will be this
sections main topic. The new modularized initiative, described in section 4.2.1
was used for the developed prototype.

The decision concerning that the prototype should be a stand alone applica-
tion instead of an application integrated in their current build environment was
taken with some valuable input from the thesis supervisor and documentation
from previous master’s thesis. The supervisor, who carried out his master’s
thesis two years earlier at SEMC, developed a dynamic analysis tool into the
current build environment. The experience he gained from that project was
that the build environment was too complex and the time spent reading source
code and documentation was too much for a 20 weeks master’s thesis.

A subset of the most important features and requirements of the prototype
are listed below.

User interface The prototype should consist of a rich, cognitive and intuitive
graphical user interface.

43

Cluster configuration The possibility to specify a cluster to work with, in-
stead of a single product variant, should exist.

Dependencies The application should visualize the different dependencies that
can exist on configuration packages. Dependencies like mutual exclusion,
prerequisites, form factor- and hardware dependencies.

Inheritance structure A perspicuous reflection of the inheritance structure
that exists within the cluster.

Configuration package Visualize if a configuration package is local or inher-
ited.

Enforce constraints A configuration package with a prerequisite or another
type of dependency that is not fulfilled should not be addable.

New products Both abstract and concrete product variants should be con-
structible form scratch. The possibility to create a product using a base
configuration should also exist. For a detailed description of base config-
uration see section 2.3.2.

Configuration Possibility to add and remove configuration packages from a
product. Specify hardware, form factor, operator and market.

Updating labels The prototype should facilitate the process of updating which
labels that should be used for a specific product.

Interfaces

The different interfaces, discussed in section 4.1.2 and visualized in picture 4.1,
within the SEMC-organization was also taken into account when the goals for
the prototype were arranged.

In an ideal scenario much of the product configuration, analyzed in chapter
4, would be eliminated. This configuration, currently done by product config-
uration managers and developers, would instead be done in an earlier stage.
The preferred way would be if the product planners could use a tool to spec-
ify the initial configuration and then deliver this to the product configuration
managers, this communication channel is depicted as interface 1 in picture 4.1.

Another desirable goal for the tool was related to interface 4 in picture 4.1.
Input from the product configuration managers informed us that it is sometimes
advantageous if the developers have the possibility to construct a tentative prod-
uct configuration for test purpose during the development of certain function-
ality. This tentative configuration could be created by a product configuration
tool.

44

6.4 Tool implementation

Implementation specific issues and problems that occurred during the imple-
mentation of the prototype will be presented in this section.

Before the implementation presentation some new technical terms needs to
be introduced.

RCP RCP is an abbreviation for Eclipse Rich Client Platform (RCP). RCP
is the minimal set of plug-ins needed to build a rich client application in
Eclipse. John Wiegand, Eclipse Platform PMC Lead says ”We did not
explicitly set out to create the Eclipse Rich Client Platform (RCP). The
Eclipse mission was to create a universal tool platforman open, extensible
integrated development environment (IDE)” [10].

JAXB JAXB is an abbreviation for Java Architecture for XML Binding. JAXB
can make it easier, compared to ordinary XML-parsers, to access XML
documents from applications written in the Java programming language.

The prototype was developed in Java using JAXB and RCP. JAXB enabled
easy read and write access to the XML configuration files.

Dependency information

The central database which is discussed in section 4.3 was used to access the
domain knowledge about the software dependencies. Instead of working di-
rectly against the requirement system database, a mockup database was used.
The reason for this was the lack of time dedicated to this thesis. The mockup
database was simply a replica of the database containing all dependency infor-
mation regarding the configuration packages. The drawback of this was that the
mockup database had to be rebuilt as soon as the real database was updated.

Software architecture

Figure 6.3 depicts a simplified version of the software architecture. The input to
the prototype is the configuration files that contain the current product variants
from the software product line and their current configurations. As discussed
in the section above, the prototype is using a replica of the requirement system
database to acquire the domain knowledge regarding dependencies between the
configuration packages. The output from the tool is same configuration files
that acted as input.

Implementation problems

Some minor problems are inevitable when developing a tool of this size. One
of the bigger problems that occurred during the prototype development was
the problem concerning hardware and form factor configuration. The first pro-
posal to hardware and form factor configuration involved a new tag that was

45

TOOL

Product

XML

Figure 6.3: Tool architecture overview.

introduced to the XML-files. These changes to the XML scheme and the XML
configuration files were unwanted and a new way of configuring hardware and
form factor had to be invented.

The method that later on was used had very much in common to the ordinary
software configuration. Each different hardware and form factor had their own
configuration package introduced. Section 5.1 contains a more detailed and
verbose information about this proposal.

6.5 Future work

What further improvements and features that could be added to the prototype
will be discussed in this section of the report.

If a new development team were supposed to continue the development of the
prototype we would recommend investigating the opportunities to incorporate
a connection to the central database. Using this method instead of the mockup
database would be the preferred way because of two reasons. The first reason is
to avoid the manually export of the central database to the mockup database.
The other reason is the fact that the tool will, in realtime, receive updated
information about the dependencies.

Another subject open for further investigation is the methods called gener-
alize and specialize. These two features were never implemented because of the
lack of control discussed earlier. A deeper research about these two methods
and the different alternatives that arises could be of interest. E.g instead of

46

automatically do the generalization, implement an executable feature that do
the restructuring (optimization) within the inheritance tree.

Linux kernel

A research about the linux kernel and how the kernel is configured could be a
interesting topic for future work. What have the Linux community accomplished
to achieve such a popular configuration method? Is the kernel configuration file,
which is kept in the .config file in the top directory of the kernel source tree, an
alternative configuration method that SEMC would benefit by.

Formal concept analysis

A method that was briefly investigated is a method called Formal Concept
Analysis (FCA). FCA is mathematical method that provides a way to identify
meaningful groupings of objects [7]. The input to this method is a matrix that
specifies a set of objects and there properties, often called attributes. In this
context the objects are product variant and the properties are variable features.

The Product Configuration Specification, discussed in section 5.1 and 4.4,
would probably be an appropriate candidate as the input matrix. The method
constructs a concept lattice including all concepts. For more information about
the lattice and concepts consult [7]. This lattice contains information about the
objects and their relationship to each other. The reason for using this technique
is to analyze the usage of variable features in product configurations. The
analysis will hopefully find a way of restructuring and simplifying the provided
variability of the components.

47

Chapter 7

Conclusion

The goal of this thesis was to investigate how Sony Ericsson Mobile Communi-
cations performs product configuration in their software product line and how
they could improve the process with the help of a tool. We have studied the
variability mechanisms currently in place at SEMC to get a clear picture of the
difficulties with product configuration. This has been done by reading docu-
ments, performing interviews and taking courses.

Our studies have resulted in a proposal that consists of changes that SEMC
needs to perform and a prototype product configuration tool that utilizes these
changes and shows how product configuration could be done more easily.

We have identified that products currently are configured bottom-up at
SEMC. This means that it is the developers that both introduce the variation
points and binds them. By allowing this it is very hard to manage the software
product line since variability is more or less introduced without control.

Instead of letting the developers create variation points, we suggest that
the variability should be defined by the requirement engineers together with
the product planners. This has all ready been suggested by Andersson and
Nygren[2], but we introduce an additional set of rules that the configuration
packages, defined by the requirements organization, must conform to. The
purpose of these rules is to more easily be able to use the dependency information
in the configuration packages to control that invalid configurations cannot be
created. We have also presented methods that could be used to change the
existing configuration packages in such a way that they will conform to our
rules.

If the available variability in the software product line is defined by the
configuration packages, we think that the product configuration will be more
top-down. It will also provide a good amount of traceability between the config-
ured products and their requirements. We think it is important that the product
configuration is performed in a top-down way to make the software product line
more manageable.

A big part of the work done is the development of a product configurator
prototype. The goals with the prototype were to show how product configura-

48

tion could be more simpler and show how the proposed changes could be used
to accomplish it. The tool uses the new modularized configuration syntax and
enables the desired connection between the configuration and requirements sys-
tems. By having the tool enforce configuration package dependencies and clearly
visualize product configurations we think we’ve showed how configuration could
be more effective. The tool also includes features to create new products from
scratch or using an existing product as reference. It is also possible to mod-
ify and manage the underlying configuration structure to further simplify and
streamline the configuration process.

The subjects we want to emphasize to summarize this conclusion are the
importance of the proposed set of rules concerning product configuration and
to show how a tool, that e.g. prohibits invalid configurations, could simplify the
process.

49

Bibliography

1]

2]

[10]

Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. 1990.

J. Andersson and S. Nygren. Managing variability requierments and vari-
ation points for software product lines. Master’s thesis, Lund Institute of
Technology, 2008.

F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and
A. Vilbig. A Meta-model for Representing Variability in Product Fam-
ily Development. Software Product-family Engineering: 5th International
Workshop, PFE 2003, Siena, Italy, November 4-6, 2003: Revised Papers,
2004.

S. Deelstra, M. Sinnema, and J. Bosch. Product derivation in software prod-
uct families: a case study. The Journal of Systems €& Software, 74(2):173~
194, 2005.

D. Dhungana, P. Griinbacher, and R. Rabiser. DecisionKing: A Flexible
and Extensible Tool for Integrated Variability Modeling. First International
Workshop on Variability Modelling of Software-intensive Systems, 2007.

G. Kruse and J. Bramham. You choose [product configuration software].
Manufacturing Engineer, 82(4):34-37, 2003.

F. Loesch and E. Ploedereder. Optimization of Variability in Software
Product Lines. Software Product Line Conference, 2007. SPLC 2007. 11th
International, pages 151-162, 2007.

F. Loesch and E. Ploedereder. Restructuring Variability in Software Prod-
uct Lines using Concept Analysis of Product Configurations. Proceedings of
the 11th FEuropean Conference on Software Maintenance and Reengineering
(CSMRO07), Amsterdam, Netherlands, March, 2007.

A Mahler. Variants: Keeping things together and telling them apart. John
Wiley & Sons, Inc. New York, NY, USA, 1995.

J. McAffer and Lemieux J-M. Eclipse Rich Client Platform: Designing,
Coding, and Packaging Java™ Applications. Addison Wesley Professional,
2005.

50

[11]

[12]

[13]

[14]

B. Pileryd and A. Hellstrém. Controlling the variant explosion - enforcing
stability in highly configurable large scale software. Master’s thesis, Lund
Institute of Technology, 2005.

R. Rabiser and D. Dhungana. Integrated Support for Product Configura-
tion and Requirements Engineering in Product Derivation. Software Engi-
neering and Advanced Applications, 2007. 33rd EUROMICRO Conference
on, pages 219-228, 2007.

Svahnberg. Supporting Software Architecture Evolution - Architecture Se-
lection and Variability. PhD thesis, Blekinge Institute of Technology, 2003.

M. Svahnberg and J. Bosch. Issues Concerning Variability in Software
Product Lines. Software Architectures for Product Families: International
Workshop IW-SAPF-3, Las Palmas de Gran Canaria, Spain, March 15-17,
2000: Proceedings, 2000.

S. Thorngren and V. Karadzic. Modeling dependencies in dynamic software
configurations. Master’s thesis, Lund Institute of Technology, 2007.

D.L. Webber and H. Gomaa. Modeling variability in software product
lines with the variation point model. Science of Computer Programming,
53(3):305-331, 2004.

B. Yu and HJ Skovgaard. A configuration tool to increase product com-
petitiveness. Intelligent Systems and Their Applications, IEEE [see also
IEEF Intelligent Systems], 13(4):34-41, 1998.

o1

	Framsida 2008-20.pdf
	Master’s Thesis
	Jacob Kristhammar D04 & Roger Schildmeijer D04

	Department of Computer Science

	blank.pdf
	ks08_report.pdf

