

 

A state-based 3-way batch merge algorithm
for models serialized in XMI

Aron Lidé

Supervisor: Lars Bendix

Department of Computer Science
Faculty of Engineering

Lund University

November 2011

Abstract

With the ever-increasing usage of models for development in the industry, the
need for merge tools for models to support parallel work on the the same files
grows. Models are serialized in XMI, used to represent them as trees with
nodes in text form. Merge tools that are intended for text-based development
can make the XMI code in the model files syntactically incorrect, making them
unable to be opened in their intended editors. There are also conflicts that are
not found with text-based merge tools. The model merge tools that exist often
require the developer to take care of the conflicts when merging, not creating
a merged output until all conflicts are taken care of. We would like to give the
opportunity to simply create a file with conflicts and warnings represented to
later be fixed.

Due to the structural nature of models and its complexity, the possible com-
binations of changes to consider when implementing a model merge tool are
quite many. There is therefore need for a thorough analysis of these combina-
tions, done in a structured way so as to make sure that all are covered.

In this thesis a 3-way batch model merge algorithm is designed and imple-
mented. The models are analyzed to find changes and inconsistencies before
finally being merged. The output needs to be able to represent warnings and
conflicts in a way that keeps its XMI valid. The algorithm is based on the algo-
rithm in Martini, A., Merge of models: an XMI approach. The purpose of this
thesis is to see if it is correct, if it is possible to implement, what complications
that can appear when doing so and how well-covering it is. To this end a test
suite was created, which can be used as a basis for other model merge tool test
suites.

To Naishi
for her constant love and support

Contents

1 Introduction 7

2 Background 9
2.1 XMI and models . 9
2.2 Version control . 12
2.3 Algorithm overview . 14

3 Analysis 17
3.1 Initial requirements . 17
3.2 Changes . 18

3.2.1 Change characteristics . 18
3.2.2 Change attributes . 19
3.2.3 Change types . 20

3.3 Change combinations . 26
3.3.1 Prerequisites . 26
3.3.2 In the same version . 29
3.3.3 In different versions . 32

3.4 Conflict management . 39
3.4.1 Resolving inconsistencies 39
3.4.2 Inconsistencies due to resolved inconsistencies 45
3.4.3 Combinations of more than two changes 47

3.5 Merging . 49
3.5.1 Annotations . 49
3.5.2 Warnings and alternatives 50
3.5.3 Representation approaches 51

3.6 Test suite . 52
3.6.1 Overview . 52
3.6.2 Test cases . 53

4 Design 54
4.1 Requirements . 54
4.2 Algorithm . 55

4.2.1 Overview and architecture 55
4.2.2 Model comparison . 57
4.2.3 Change comparison . 61
4.2.4 Change application . 64

5 Implementation 69
5.1 Choosing API . 69
5.2 Algorithm implementation . 70
5.3 Test suite implementation . 71

6 Discussion 72
6.1 Results . 72
6.2 Related work . 73
6.3 Future work . 75

7 Conclusions 79

List of Figures

2.1 Metamodel hierarchy . 10
2.2 Model parts . 10
2.3 XMI serialization . 12
2.4 Parallel work . 13
2.5 Merge process . 15

3.1 Change types . 20
3.2 Node addition . 21
3.3 Node deletion . 22
3.4 Moves . 23

(a) Move . 23
(b) Nested moves . 23

3.5 Data changes . 24
(a) Property addition . 24
(b) Property deletion . 24
(c) Property update . 24

3.6 Reorderings . 25
(a) Node reordering . 25
(b) Property reordering . 25

3.7 Change position combinations . 27
3.8 Reference breaking . 28
3.9 Changing position combination 29
3.10 Node deletion inconsistencies . 41
3.11 Move conflicts . 42

(a) Conflict between two moves 42
(b) Conflict between a move and an NR 42

3.12 Property conflicts . 43
(a) Property deletion conflicts 43
(b) Property addition and update conflicts 43

3.13 Order conflicts . 44
(a) Reordering conflicts . 44
(b) Order position conflicts . 44

3.14 Combination of three changes . 48
3.15 Removing the last child node . 53

4.1 Algorithm overview . 56
4.2 Order comparison . 59

List of Tables

3.1 Combinations of two changes in one version 31
(a) Different subtrees . 31
(b) Same subtree, different nodes 31
(c) Same node . 31

3.2 Combinations of two changes in two versions 35
(a) different subtrees . 35
(b) Same subtree, different nodes 35

3.3 Same node . 37

List of Abbreviations

C conflict

C1 change 1 (in V1)

C2 change 2 (in V2)

CA common ancestor (of V1 and
V2)

CI context issue

D1 developer 1 (working on V1)

D2 developer 2 (working on V2)

DD different destinations (of
moves)

DO different orders

DP different properties

DV different values

MD Move destination

MDD model-driven development

MOF Meta-Object Facility

MS Move source

N1 node 1 (which C1 pertains
to)

N2 node 2 (which C2 pertains
to)

NA Node addition

ND Node deletion

NP not possible

NR Node reordering

OMG Object Management Group

P possible

P1 property 1 (C1’s)

P2 property 2 (C2’s)

PA Property addition

PD Property deletion

PR Property reordering

PU Property update

SC same change

SO same order

SP same property

SV syntax violation / same
value

UC unit of comparison

UML Unified Modeling Language

V version (arbitrary)

V1 version 1

V2 version 2

XMI XML Metadata Interchange

XML Extensible Markup Lan-
guage

Chapter 1

Introduction

When working in a group of developers, you don’t want to lock the files from
being edited by more than one developer at a time. To this end the developers
will have to copy the files in the system to their own workspace where they can
work on them by themselves. This is not a problem, but when the developers
need to commit the changes they’ve made to the system into the shared version
of the system, in the repository, the files need to be merged with the new version
of the system in the repository as other developers have commited their changes.
There are different ways to merge, but most of them look at the two versions
and their common ancestor to see what different changes there have been in the
different versions and then make those changes as long as there isn’t a conflict
when the developers have changed the same lines, in which case both changes
are represented in the text and the developer has to manually fix the conflict.

Since software development traditionally is done in text form, almost all
merge tools are developed with text file merging in mind. However, with the
ever-increasing usage of UML and other models for development in the industry,
the need for merge tools especially designed for merging models has increased.
This is because merge tools that are intended for text-based development can
make the model files syntactically incorrect, making them unable to be opened
in their intended editors. Models are serialized into text form according to
XMI, an XML dialect, which describes this syntax. The structural nature of
models makes it easier to find connections between different parts of the files
than in normal code, but at the same time it makes it harder to make the
merged files syntactically and semantically correct, especially when giving the
developer options from both of the versions in a conflict. Often, model merge
tools require the developer to take care of the conflicts when merging, in an
order decided by the tool, before there is created a merged output file. But
when merging, and especially when merging with models, there is often need
for the developer to look at many changes that are connected before deciding
what to do. Therefore we would like to give a batch merge solution, meaning
that the algorithm doesn’t get any input from the user. The merged output file
will therefore have conflicts and warnings represented in it. The developer can
then take care of the conflicts with the flexibility to do it in whichever order he
wants, and whenever he wants.

In this thesis we will analyze, design, implement and test a 3-way batch
merge algorithm for models, which means that the algorithm takes two versions

7

CHAPTER 1. INTRODUCTION

of the same model file together with their common ancestor and without any
input from the user creates a merged output. The two versions will be analyzed
to find changes, which are compared to find conflicts before finally being merged
as a valid XMI file. The algorithm is based on the algorithm in Martini [10].

We will analyze the structure of the models to discern all the different kinds
of changes that can be done in a model, what distinguishes them, how they
affect each other and how to best take care of them in case they end up in
conflict with each other. With this as basis we can in a structured way study
the possible combinations of changes and make sure that the algorithm takes
care of them in a proper way. This is done to make sure that the merge tool
covers as many kinds of merges as possible. These combinations can also be
used as the basis for a test suite for the tool, and for other model merge tool
test suites as well.

We will design a more detailed algorithm than Martini’s and will then try to
implement the algorithm to see if it’s possible to implement and the problems
that appear when doing so. In the end we will also test how well-covering the
algorithm is with the test suite.

8

Chapter 2

Background

In this chapter we will provide the background and context needed for the
later parts of the thesis. First, since we are working with models, we need to
introduce models and their structure as well as why and how they are used in
development. We will also look at how they are serialized in XMI and how XMI
is structured. Secondly, the problem of version control and the need for merge
tools when working in parallel will be explained. The different kinds of merge
tools will be presented and why traditional merge tools don’t work for models.
This will give insight to the general problem dealt with in the thesis. Finally,
we will give an overview of the algorithm presented in Martini [10] to lead into
the later parts of the thesis where analysis, design and implementation of this
algorithm will be done.

2.1 XMI and models
Models have been used in software development for a long time, mostly for
designing products, but lately also for auto-generating code directly from the
models. There are a lot of different types of models, but they all use the same
standard for exchanging metadata information. This is the XML Metadata
Interchange (XMI) specification from the Object Management Group (OMG).
XMI is a standardized way of using XML to serialize models. Although there
are more types of models we will for the sake of simplicity use the most common
model type for discussion, the Unified Modeling Language (UML), which also
is an OMG standard.

Every model that follows the OMG standard conforms to a metamodel which
defines the structure and syntax that is used in the model. Since a metamodel
also is a model, it in turn has to conform to a metamodel, a meta-metamodel.
Meta-Object Facility (MOF) defines a model which conforms to itself, being the
metamodel for itself. Because of this MOF is on the highest level of abstraction,
an M3-model. Every model type (like UML) has a metamodel that conforms
to MOF, and every model of that type conforms to its metamodel, and their
run-time instances conform to the model, see figure 2.1. This forms a hierarchy
where the higher layers are more abstract than the lower ones. Every serilized
model instance that conforms to a meta-model that conforms to MOF indirectly
follows to the XMI standard. A model that is serialized in XMI correctly is XMI

9

2.1. XMI AND MODELS CHAPTER 2. BACKGROUND

valid.

Figure 2.1: The four-layer metamodel hierarchy for UML.

Each of the models (layers M1-M3) can be serialized in XMI. The models
in layer M2 and M3 are abstract models (metamodels) which represent the
semantic information, whereas the model on layer M1 is a concrete model. The
concrete model needs to be serialized in XMI when saved, although the extension
on the file isn’t always .xmi, as is the case with UML files.

Even though XMI is a standard for serializing models, there exist different
specifications of XMI, and unfortunately they are not completely compatible
with each other. In this thesis we have chosen to use the XMI 2.1 specification
[12] due to the fact that the tool used for creating the models used during
implementation uses that specification.

Figure 2.2: Different parts of the XMI model.

An XMI file, as every XML file, is structured as a tree, see figure 2.2. The
tree consists of a number of nodes that are connected. Every node has zero or
more child nodes, which are located below it in the tree. The child nodes of
a node are each others’ siblings and they have a specific order. A node that

10

2.1. XMI AND MODELS CHAPTER 2. BACKGROUND

has a child node is called the child’s parent node. Every node has exactly one
parent, except the root node, which has none. The root node is located at the
top of the tree, and has paths down to every node in the tree. The path from
the root to a node is called the node’s root path and the length of it the depth
of the node. The root node thus has the depth 0. All the nodes that are located
below a node are called its descendants and all the nodes in a node’s root path,
including the root, are called its ancestors. Any node in the tree is a root to a
subtree which includes itself and all its descendants.

Every node can have one or more properties. Every property has a name
which is unique among the properties in the node, and a value which is rep-
resented by a simple string. Just like a node’s child nodes are in a specific
order, so are the properties. The property xmi:id or xmi:uuid contains the
ID of the node, which in the former case is unique in the tree and in the latter
case globally unique. The value of a property in a node N1 can contain the
ID of a node N2, in which case the property points to N2, creating a reference
between N1 and N2. The ID is also, as we will see in 3.1, important for be-
ing able to identify and access the nodes without depending on the path to the
node. IDs for the nodes are strongly recommended to have, but not compulsory.

In an XMI file the root node is an XMI element, which denotes the start of
XMI information and identifies the XMI version that is used.1 The XMI el-
ement can have many child nodes, but we are mostly interested in the model
node, which contains the actual model. Many times in XMI files there is only
this single child node of the XMI element, in which case the XMI element itself
doesn’t need to be present (as it’s not in figure 2.3). In this case, the XMI
version that is used needs to be specified in the model node [12]. From now on,
when we talk about the “model”, we refer to the the tree in the XMI file with
the model node as the root.

Figure 2.3 shows how a simple UML model can be serialized in XMI, and
the model in between is the graph representation of the XMI serialization. The
coloured lines connect the parts that represent the same things. As we can see,
the model node has properties that declare that XMI 2.1 and UML2 3.0.0 is
used for this model.

UML models (and other models) can be serialized using XMI in different
ways. The serialization pattern that is going to be used in this thesis doesn’t
allow nested entities, that is nodes of the same type under each other. Different
kinds of nodes in the model can only be located at a certain depth from the
root node, the model node. Child nodes of the root can represent classifiers,
associations, etc. These are connected in the model using references, which are
always made to nodes at depth 1. Child nodes of classifiers can be attributes and
operations and child nodes of association can be association ends, which have
references to the classifiers the association connects. Using this serialization
pattern the model never gets very deep, but gets broader instead, which makes
it easier to traverse.

It is also possible to serialize models in XMI in a way that allows nested
entities. This means that a node type can exist on many different depths,
which we will see will cause some trouble later in 3.2.3. Using this pattern one

1The XMI element can be present in any XML file of which not the whole conforms to the
XMI standard. This is to show that the subtree with the XMI element as the root node does
conform to it.

11

2.2. VERSION CONTROL CHAPTER 2. BACKGROUND

Figure 2.3: A small UML model represented as a model and serialized in XMI.

classifier can have another classifier as its child node because they are connected
in a certain way, like one of them being the subclass of the other. Connections
between different nodes are therefore not as often represented by references as
in the previous pattern (the one that we will be using).

2.2 Version control
Usage of models in the industry is very common and as it’s starting to be used
more often as a part of the implementation when used for auto-generation of
code, instead of just for designing the architecture of the software, changes to
the models are of much greater importance and happen more frequently. This
is because there are not only designers, but also developers working on the files,
and contrary from how it was before, the models have a direct impact on the
code of the system. Therefore parallel work on models has increased, which
means that there is a greater need for tools to handle the problems that come
with that way of working.

When a group works on the same files in parallel using version control there
exists a shared repository in which the files of the system are stored. The
developers copy these to their own workspace (check-out) and make changes
which they commit to the repository after checking that their code is not faulty.

12

2.2. VERSION CONTROL CHAPTER 2. BACKGROUND

However, if there has been a commit from a developer D1 since developer D2
checked-out, the code in the repository contains D1’s changes which need to be
added to D2’s version of the system before it can be committed to the shared
repository. Developers thus have to update their workspace with changes from
the repository before committing, which, if D1 and D2 have been working on
the same files, means that these files need to be merged. See figure 2.4.

Figure 2.4: Parallel work between developers D1 and D2 leads to a merge.

The usual way of merging is called a 3-way merge and takes the two versions
(V1 and V2) of the files and their common ancestor (CA) to find what changes
have been made in the two versions and apply these changes to a copy of the
CA. If there are any changes in the two versions that contradict each other, then
there is a conflict. In text-based development the merge tools most often check
if changes have been made on the same lines, in which case the two options are
represented in the file one after the other. The developer can then choose one of
them or make a new solution, either manually or by help from the merge tool.

There are two problems which make it impossible to use text-based merge
tools for models. First, because of the structure of models, two changes in
two different parts of the file can very well be in conflict due to references and
moves in the model.2 Secondly, since models are serialized in XMI there is no
possibility to merge like this for models, lest the files should become invalid and
impossible to open in model editors. The merge tool needs to apply changes and
represent the options for the developer when there are conflicts with the XMI
syntax in mind to not break it. This will pose problems as conflicting changes
can’t be naturally represented in accordance with the XMI syntax.

There are a few things that distinguish different merge tools from each other.
The one described above is a state-based 3-way merge, meaning it compares
three files, the two versions and their CA, which are in a certain state. There is
an alternative to the state-based approach — the operation-based approach
[8] — which relies on the editor to record the operations that have been made
on the files so that the sequences of operations from the different versions can
be merged into one sequence of operations which then later is used to create the
merged file. This approach is further discussed in 6.2.

There are also differences in how merge tools handle conflicts, where a lot of
tools (especially model merge tools) require interaction from the developers,
forcing them to take care of conflicts during the merge process, before a merged
output can be created. The alternatives in conflicts are often presented for the

2There are similar problems in text-based merging too, where two changes on different
lines are incompatible.

13

2.3. ALGORITHM OVERVIEW CHAPTER 2. BACKGROUND

developer to choose one or the other, and there is a problem of in many cases
not being able to create an own solution. Moreover, the developer is often forced
to take care of the conflicts in a certain order, decided by the tool. Since there
often are a lot of connections between changes in models, it poses a problem for
the developer to take care of conflicts when he’s not having an overview of all
the changes done to the files. This can lead to files which may be syntactically
correct, but not logically and semantically correct. This is a major drawback,
especially since the developer might think that the merge is okay, because the
files can be opened in the editor.

The traditional way of merging, which was described for text-based merge
tools above, creates merged output files in which all the changes are made and
the conflicts are represented, so the developer can take care of them after the
merge process is over. This is called a batch merge, and is not yet that well
spread for model merge tools. A reason for this is the apparent problem of
representing conflicts in a syntactically correct way in models. The advantage
that you get from this way of merging is that the developer can get an overview
of all the changes that are done in the two versions and where they are in
conflict to better understand how to solve them. It also gives the developer
the flexibility of choosing when to take care of the conflicts, while other tools
require the developer to be active throughout the whole merge process, which
can be long and complicated, before there is a merged output.

2.3 Algorithm overview
We will be looking into the work done by Martini in [10], where a state-based
3-way batch merge algorithm for models serialized in XMI was presented. The
goal was to create a merge algorithm which is independent from both the model
type (such as UML, Ecore, etc.) as well as the editors used (which the operation-
based approach is dependent on). The choice was made to merge on the XMI
level to stay independent from the model type, and therefore no semantics from
the model could be used, but only the semantics extracted from the XMI struc-
ture. Staying independent from the editors meant only using information taken
from the files themselves. This also meant that the delivered output should not
be specifically designed for a certain model type or editor.

Martini’s merge algorithm consists of five parts, which will be briefly de-
scribed here. They are change detection, conflict detection, change interpreta-
tion, merge rules definitions and change application. Figure 2.5 shows the flow
of the algorithm.

Change detection is the act of extracting changes done in the two different
versions, with respect to their CA. This procedure was created by first
analyzing how the XMI model can be changed, defining different kinds of
changes, their nature and how much of the model they cover as well as
what is needed to represent them. Secondly, it was shown how to compare
the model in the new version with the one in the CA by traversing them
in a certain order to catch all the changes.

Conflict detection is done by comparing the changes in two versions to see if
they change the same item in the model, and if so, if it is done differently

14

2.3. ALGORITHM OVERVIEW CHAPTER 2. BACKGROUND

Figure 2.5: The merge process.

in the two versions. Because of the nature of the different kinds of changes
the comparison is done in an order dependent on the types of changes.

Change interpretation is an in-depth conflict detection analysis of changes
that are not in a direct conflict, but indirectly could lead to either viola-
tions of the XMI syntax or probable context issues. This is done by once
again comparing changes with each other to see if they affect each other
and break the syntax, or if they are sufficiently much connected to each
other to be causing some kind of context related problem.

Merge rules definitions describe how to best take care of conflicts, syntax
violations and context related problems. The solutions presented are to
discard one or more of the changes in conflict, and/or to give the developer
a warning about the situation, always with the requirement to not lose any
information in mind.

Change application is the part that describes how to apply the changes to
the copy of the CA to create the merged output. An analysis of the order
in which the changes need to be applied to the model was done, making
sure that there are no problems when applying later changes. Sugges-
tions on how to represent annotations in the model, such as warnings and
alternatives in conflicts, were also presented.

In his final algorithm, Martini combined the conflict detection, change in-
terpretation and merge rules definitions parts to take care of all the conflicts

15

2.3. ALGORITHM OVERVIEW CHAPTER 2. BACKGROUND

and syntax violations at the same time. He presented a concise algorithm which
gave a good overview of what should be done, and generally in which order to
do so.

This thesis will supplement Martini’s work, theoretically as well as an em-
pirically. First, we will further analyze the changes that can be made to the
XMI model to cover all possible combinations of changes that can be done to
both one and two versions of a model, which, as we will see, was not done in
Martini’s work. We will also introduce a new type of change, which was consid-
ered of lesser importance to Martini, but which we will show makes a difference,
and which we will include in our analysis and algorithm. Our structured anal-
ysis will also give the outline for a test suite that will try to cover all possible
combinations of changes.

Secondly, since Martini didn’t have time to implement and test his algorithm,
we will do so in this thesis and present both the problems that were encountered
during implementation and the results of the testing. The algorithm presented
in this thesis will be more detailed and easy to follow and will describe exactly
which version of the model information should be taken from and in what order.

16

Chapter 3

Analysis

In this chapter we will analyze the models and create a requirement specification
which will be used in the next chapter where we will design the algorithm. This
is the basis of our whole thesis, and we will introduce new terms and vocabulary
that are needed to understand the rest of the thesis.

First, some basic requirements which will affect our later analysis will be
presented (3.1). After that we will analyze and describe changes on the model,
their attributes and types (3.2). We will then cover the combinations of changes
that can be done in one version (3.3.2) as well as in two versions (3.3.3), which
will present the different types of conflicts and syntax violations that can appear,
and we will analyze how to best deal with them (3.4). Then we will analyze
the problems in the actual merging process where changes are applied, such as
conflict representation (3.5). Lastly, we will analyze how to arrange a test suite
for testing of the merge tool (3.6).

3.1 Initial requirements
Here we will present a few requirements that we need to satisfy in order to create
the kind of merged output that we wish to have. We will strive to satisfy these
requirements as we analyze the model throughout this chapter, and requirements
based on this chapter will be presented in 4.1.

The most basic requirement we have is that both the input and the output
files should be XMI valid. If the input files are not valid, they can’t be
guaranteed to be processed correctly; if the output files are not valid, the user
won’t be able to open them in their editor. Thus, changes that in combination
create syntax violations should be handled in a way that these are removed.

To be able to compare versions of the same model with each other, the
elements in the model need to make identified to be sure that the correct parts
are compared. We need to be able to match the elements of one version to their
corresponding elements in the other version (given that they exist). This can
be done either by using computationally expensive and error prone algorithms
which match the models by traversing them and comparing the different parts,
or by giving every element an ID in which case we match by the IDs. In the
rest of the thesis we will assume that every node in the model tree has an
ID to represent them, both for the sake of comparison and to be able to have

17

3.2. CHANGES CHAPTER 3. ANALYSIS

references, which depend on IDs.
When a developer looks at the merged output he needs to be able to get

as much information as possible about the changes that have been made and
the conflicts that are present. Therefore, we require no loss of data from
the merge. This requirement can be split into a few parts. First, the tool
should be able to find all the changes made in both versions to not lose any
change. Secondly, in cases of conflicts or syntax violations, we need to keep all
the data that represent the different options presented in the two versions for
the developer to work with. Thirdly, we should inform the developer about the
changes that have been made which were not in conflict with any other changes,
simply for him to be able to consider the impact they make on the whole merge.

We also require symmetry of the merged output. The output should always
look the same if the input files are the same, even if the two versions are in
different order. The changes in the versions should therefore always be presented
with the same amount of priority, since we can’t know if one version is more
“correct” than the other.

3.2 Changes
To be able to thoroughly and correctly examine how to compare the models and
find conflicts and violations we need to understand what kinds of changes that
can be made on the models, what differentiates them from each other and what
information we need to describe them.

First we will introduce some characteristics and vocabulary of changes to be
used in later discussion. Then we will specify the attributes of changes that we
need to represent them correctly and differentiate between them. Using these
we will then discuss the different types of changes and their interaction.

3.2.1 Change characteristics
There are two kinds of changes that can be made on a model. Models consist of
nodes and properties, so we can have changes that pertain to either one of them;
structural changes are changes made to the nodes and the structure of the
model and data changes are changes made to the properties, which contain
all the data in the models [1]. Properties have no structural nature since they
contain only a simple string. They can only affect one part of the model and are
therefore called simple changes. Nodes, on the other hand, have child nodes,
who themselves can have child nodes, and a change on a node can affect all the
nodes under it. If, for example, a node is deleted, all the nodes under it are
also deleted. Changes like these are called composite changes because they
compound many changes of the same type on many nodes.

As we can see, different kinds of changes affect different areas of the model.
There can be two changes (one in each version) made on the same node without
them being in conflict, because they are changes of two different properties. At
the same time two changes on two different nodes can be in conflict because
one of them covers many nodes, including the node the other change is made
to. We need to localize the changes as deeply as possible to see exactly which
parts that are affected to make the changes as independent as possible. Each
change will cover a certain “area” of the model, which will be their units of

18

3.2. CHANGES CHAPTER 3. ANALYSIS

comparison (UC). UCs are presented in Oliviera, et al. [11], and are defined as
“an atomic element used for conflict computation. Conflicts occur when two or
more developers concurrently work on any part of the same unit of comparison”
(p. 3 [11]). In normal text-based merge tools the UCs are the lines, and in the
case of XMI we have the nodes and properties, the nodes having their subtrees
as part of their UC.

If two changes in different versions affect the same UC we have a conflict, and
since we don’t have any conflicts in one version one could draw the conclusion
that UCs of changes made in one version can not overlap, meaning that any
item in the model is never directly affected by more than one change. This is
true in most cases, but we will see some special cases in 3.3.2. We need more
information about the change types before we can discuss those.

We want to extract from the models all the information we need about
the changes to be able to compare them later without needing to access the
model again. This is because it’s easier to look for conflicts if we have all the
information already at hand and because we want to separate change detection
and conflict detection parts of the algorithm as much as possible.

3.2.2 Change attributes
Here we go through the attributes we need to represent a change, why we need
them and what they mean. We will see that there exist some extra attributes,
but these are specific for each type of change and will be presented under their
respective section in 3.2.3.

The version that a change is made in is the first, and most obvious attribute.
A change can only be in conflict with a change in the other version, since
we use XMI valid input.

The position of the change is used to (partly) describe the UC of the change.
Since every change is made to a specific node, the ID of that node is used
to represent the position of the change.

The type of a change simply states the type of change that has been made,
for example a deletion of a node or an update of a property value. We
discuss the types further in 3.2.3.

The name of the property is a further specification of the UC of the change, to
point out which property the change is on. This attribute is only needed
for the data changes.

The value of the property is also only needed for the data changes and simply
provides the new string value of the changed property. It’s needed for
comparison and application, but what the string actually contains is of
little concern, unless the property is a reference, in which case there is a
connection to another node which we need to take into consideration.

These attributes are of the nature that when we look at them from the first
to the last one we get an increasing accuracy of where the change has taken
place and what it entails. First we get to know which version the change is in,
then the node in that version, then the type, which decides if we need to go
deeper, then the property and lastly the value of the property. If we compare

19

3.2. CHANGES CHAPTER 3. ANALYSIS

two random changes, this is the order we would go about to see if they are in
conflict, because the way we analyze the later attributes depends on what the
earlier ones are. For example, knowing that two changes are changing properties
with the same name would be of little help for finding out if the changes are in
conflict if the changes are in different nodes, or in the same version.

An additional aspect of the position attribute is the position in order of a
node among its parent’s child nodes. This is needed to be able, e.g. in the case
of an addition, to insert the node at the correct position in order. Similarly,
we need to be able to insert properties at the correct position in order among
the properties of a node. This can’t be easily represented by e.g. using the
index number of the node or property, for various reasons, and this is discussed
further under Order management in the end of 4.2.4.

There are also a couple of other attributes that we want for each change.
These are not describing the change as the earlier ones, but are of a more
practical nature.

ID We decide to have an ID for each change. This will be used in 3.5 where
we need to refer to specific changes.

Application As we will see in 3.4, some changes will not be applied in the end.
This attribute says if the change is to be applied, and its default value is
true.

We will discuss the attributes more in 3.3.1.

3.2.3 Change types
We will now go into more detail about the different kinds of changes. We
will discuss the structural changes first and then the data changes. Nodes can
be changed by adding, deleting or moving them. Properties can be changed

Figure 3.1: The different types of changes.

20

3.2. CHANGES CHAPTER 3. ANALYSIS

by adding, deleting or updating them. Both nodes and properties can also be
reordered. See figure 3.1.

Looking at the structure of the XMI model we can deduce that these are
all possible types of changes. Except adding or removing any item (node or
property), we can only change an item’s value or position. A property can only
have its data value updated since its name identifies it, and renaming a property
would be equivalent to deleting the property and adding a new property with the
new name. A node doesn’t have any value to be changed, but it has structural
connections to other nodes above and under itself and to its properties. Above
we can change the parent, which is the act of moving the node. Below, we have
the child nodes and the only way to change the structure of the child nodes
without changing their connection to their parent is changing their order. The
same reasoning applies to the changing the order of the properties.

Node addition

Will henceforth be referred to as NA. See figure 3.2.
An NA is a composite change which describes the addition of a node and its

subtree. The UC of the NA contains all the parts of the model that have been
added due to the NA. This type of change is quite safe in terms of conflicts,
since the subtree didn’t exist in the CA.

Which kinds the elements that are added are and what they contain doesn’t
matter much, except in two cases. The only types of elements that can be
added in an NA that has any direct connection to other parts of the model
has to do with references. First, and most important, we can add a reference
property, which will be analyzed closer in 3.3.1. These references should be
saved for later comparison with other changes. Secondly, we can add a node
that is referenced to from another node in a different subtree. Given the fact
that this node is added in the version V, we know that it doesn’t exist in CA
and therefore whichever reference that is made to it must have been created in
V. Thus we will find this new reference later, and it doesn’t need to be saved
at this moment. We can’t actually even know of its existence by simply looking
at the elements in NA, so we don’t have a choice in the matter anyway.

To keep track of the UC of the change correctly we need more than the ID
of the added node, however. If a subtree has been added, there is the possibility
that other nodes have been moved under it. The UC of the NA should not
include these nodes because they were not added by the NA, and therefore we
need to keep track of the roots of the subtrees that have been moved under an

Figure 3.2: A node addition. The UC of the NA does not include the node moved
under it or the referenced node.

21

3.2. CHANGES CHAPTER 3. ANALYSIS

added node in the NA. This can be done with an additional attribute, a list
of the IDs of these nodes. We will need this information to make sure that we
apply the change correctly.

Node deletion

Will henceforth be referred to as ND. See figure 3.3.
An ND is much like an NA, it is a composite change that describes the

deletion of a node and its subtree. Contrary to NAs, with NDs we lose a lot of
information that is in the CA, which makes it a change type that can end up in
conflict with most other kinds of changes.

The only change that can be made under an ND in the same version is a
move. We need to keep track of the nodes that have been moved from the
deleted subtree to some other part of the model. Just like with NA, we can do
this by adding a list of the IDs of these nodes as an additional attribute. We
will need this information when we compare changes later in 3.3.3.

Figure 3.3: A node deletion. The UC of the ND does not include the node that is
moved from under it.

Move

Moving a node is the act of changing its parent. It is a composite change, but not
in the same manner as adding or deleting a node. Moving a node only changes
the path from the model root to the root of a subtree,1 not the structure under
it or its ID, which means that it doesn’t directly affect the subtree, not even the
root node of the subtree. It is still a composite change, because it does move
the whole subtree, not just the root.

Since moving is the change of position of a node, a move has two positions.
As we will be discussing a lot about positions of changes relative to each other,
we introduce two different terms to specify which position we mean. The move
source (MS) is the position of the node in CA, and the move destination (MD)
is the position of the node in the new version. See figure 3.4a.

The UC of a move is a bit difficult to define. While the only thing that
is actually changed in the model is the edge from one node to its parent, it
affects the whole subtree, and we would therefore like to include the whole
moved subtree in the UC. As with NAs and NDs, there are cases where further
changes to the moved subtree leads to that not the whole subtree is moved to
the new parent, like when there is a deletion or a move of a node from a moved

1And therefore the path from the model root to every node in that subtree.

22

3.2. CHANGES CHAPTER 3. ANALYSIS

(a) A move of a subtree. The
UC of the move does not include
nodes that have been added or
moved under it.

(b) Nested moves. This
is not possible with the
chosen XMI serializa-
tion pattern.

Figure 3.4: Moves.

subtree. Likewise, nodes that are added or moved to the subtree are not either
part of the UC of the move. Also, for moves we need to save the IDs of the
root nodes of the subtrees that are not part of the UC. Since the moved subtree
will be present in both the changed version and CA, making any type of change
under a moved node is possible, not just moves as under NAs and NDs.

Moves can not pertain to properties, as moving one property from a node
to another one would mean deleting it from the source node and adding a new
one to the destination node. This is because a property does not have an ID of
itself, but relies on the ID of the node and its name for identification. Having
properties with the same names in different nodes is not only possible, but
also extremely common. The normal node move change could however not be
represented as a deletion and an addition as it would mean that changes made
under the moved node would not be noticed and only incorporated as part of
the newly added subtree. Therefore we need this type of change.

Because of the way we have chosen to serialize the model, a certain node
type can only exist at a certain depth from the model root.2 This leads to that
nodes can not be moved vertically, the only way to move a node is laterally, to
a parent at the same level as the previous parent. This makes it impossible to
make nested moves, where you need to be able to move to other levels for it to
be possible. An example is if you in one version move a node X under another
node Y, and in the other version move Y under X, see figure 3.4b. We will see
more advantages of this serialization pattern later.

Property addition

Will henceforth be referred to as PA. See figure 3.5a.
A PA is a data change which describes the addition of a property in a node.

Its UC is just the property in question. As the case is with NAs, PAs can lead
to a new reference, which we need to save for comparison with other changes.

Property deletion

Will henceforth be referred to as PD. See figure 3.5b.
2E.g. MOF classifiers and associations can only be child nodes of the root.

23

3.2. CHANGES CHAPTER 3. ANALYSIS

(a) A property ad-
dition leading to a
new reference.

(b) A property
deletion.

(c) An update leading to a
changed reference. Only the
value is part of the UC.

Figure 3.5: Data changes.

Just like PA, a PD is a data change. It describes the deletion of a property
in a node. This is probably the easiest change to take care of as it’s a simple
change with a small UC and it doesn’t lead to any added references.

Property update

Will henceforth be referred to as PU. See figure 3.5c.
A PU is simply an update of the value of a property. It can, like NAs and

PAs, lead to a new reference that we need to save. A PU only changes the value,
unlike PAs and PDs, which change the whole property. This means that the
only thing that is part of a PU’s UC is the value of the property.

Node reordering and Property reordering

Will henceforth be referred to as NR and PR. See figure 3.6.
As we’ve made a distinction between the addition (or deletion) of a node and

that of a property, we will make the same distinction here between reordering
child nodes and properties of a node, but present them together because of their
similar nature. There is, however, an important distinction between PRs and
the other changes pertaining to properties, and that is that PRs are not data
changes since they don’t affect the data of the properties.

We have covered the changes that are described in Martini’s thesis [10], but
we will look into how the change of order affects the model. Martini wrote that
“we do not need to consider child-node order” (p. 55) with the argument that
our model is not an ordered tree, like that of Lindholm [9]. We would, however,
not like to reject any changes in order that have been done, because we think
that if such changes have been made, there are a reasons for it, and we should
consider them. Changing the order of properties is not always possible with
some editors, but we do not want to be dependent on the editors.

We know that reordering child nodes or properties does not have any impact
on the final system product, just like the order of the attributes and methods
in a class doesn’t matter. But there will be a difference in the model which we
are working with. On the lowest levels, looking at the XMI and the model view,
such changes are seen directly. On higher levels, like in the class diagram of a
UML model, the changes are not always seen, but they can be. For example, the

24

3.2. CHANGES CHAPTER 3. ANALYSIS

order in which the attributes in a class are presented is the order the attribute
nodes have under the class node in the model.

The fact that the order of child nodes and properties does not have any
impact on the final system product is the main reason that these changes seem
to be considered less important. This leads us to wonder about how we should
prioritize this kind of change. If two child nodes are reordered in one version and
one of them is deleted in the other version, would that be considered a conflict?
One could prioritize NRs and PRs as less important, which would mean that
they could only be in conflict with a change of their own kind. However, we
can’t know that the change of order is something that’s not as important as
the other changes, and especially not for all possible cases. We will therefore
prioritize reorderings the same as other changes.

What do we consider as changing the order, then? If we add, delete or move
child nodes to or from a node it has an impact on the order of the nodes, but
it’s not because of an order change. Therefore we don’t want to consider the
changes in order that those changes impart when looking for NRs and PRs. If
a node has been added or moved under a node N in a version V, it has no order
position under N in CA, so it should not change the order because the other
child nodes of N could not relate to it in CA. In the same way, a node that is
deleted or moved from under N doesn’t have a position in V, and can’t lead to a
change of order. The same reasoning applies to property order changed by PAs
and PDs. PUs don’t change the positions of the properties, so they make no
difference. The child nodes or properties in the order representation will only
be the ones that belong to the node in both CA and V. These are the elements
that partly will be part of the UC of the change, as seen in figure 3.6. They are
only partly part of it because we only change the order and only need the IDs
or property names for that. The child nodes themselves and the values of the
properties are not affected or relied on,3 which means they’re not part of the
UC.

If only two out of 10 child nodes to a node change order, we can deem the
other 8 nodes as having nothing to do with the change. At the same time
there can be other order changes among the other 8 nodes. Would we want
to represent those as other changes? Doing so would complicate our algorithm

3NRs don’t change the paths of the nodes as moves do.

(a) Reordering nodes. Added, deleted and
moved nodes are not part of the UC.

(b) Reordering prop-
erties. Added and
deleted properties are
not part of the UC.

Figure 3.6: Reorderings. The numbers are the positions that the items had in the
CA.

25

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

extensively. We choose not to go into detail about how to analyze exact changes
in order that have been made to a number of child nodes or properties because
of the enormity of the amount of combinations of changes there can be. They
grow exponentially with the number of items in the list. Therefore we choose
to represent the order of the nodes or properties by a list of either the IDs of
the nodes or the names of the properties in the desired order. This can lead
to unnecessary conflicts later, but we decide not to prioritize this part of the
thesis.

3.3 Change combinations
This section will analyze and present the combinations of two changes we can
have on models, with both changes in one version or one change each in two
different versions. Combinations of three or more changes will be discussed later
in 3.4, because it will fit better after the analysis of how to manage conflicts and
syntax violations. This information will later be used for the change detection
and conflict detection parts of the algorithm, found in 4.2.2 and 4.2.3, as well
as for the test suite. It is also vital for us to know the inconsistencies that can
appear between two versions before we can deal with them in 3.4.

We will first present some prerequisites needed for comparing changes to
know how to do it and what we need to think of (3.3.1). In the next section we
go through change combinations in one version to see which are possible and
when (3.3.2). In the last section combinations of changes in two versions will
be analyzed to find when there are conflicts and syntax violations (3.3.3).

3.3.1 Prerequisites
Here we will discuss how two changes can differ from each other and describe
this in a structured way. We will then discuss the cases of references and moves
in more detail to use in the next two sections.

Attribute differences

We will be looking at combinations of two changes (C1 and C2). Because of
the massive amounts of combinations (even though there are only two changes),
we have taken inspiration from Grune [6] to present them in tables. To be able
to cover all combinations of two changes, we need to look again at the attributes
of a change, and see how they can differ.

Version Can be either V1 or V2, and since none of them is prioritized over the
other, we have only two choices; either the changes are made in the same
version or in different versions.

Position The changes C1 and C2 are pertaining to certain nodes (N1 and N2)
in the model, and these nodes can only be related to each other in three
different ways. If we start checking the paths to the changed nodes, going
from the root and down, we will see that the paths will either at some
point differ from each other or one or both of the paths will end. We thus
have three cases, the changes are in a) different subtrees, or in the same
subtree, in which case they can be on b) different nodes, with one being

26

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

Figure 3.7: Two changes can be positioned in a) different subtrees, in b) the same
subtree but in different nodes or in c) the same nodes.

located over the other (e.g. N1 over N2), or on the c) same node. See
figure 3.7.

Type Since there are plenty of different types of changes, this is what makes
the analysis extensive. We have eight kinds of changes,4 and both C1
and C2 can be any one of them, which means 64 combinations for each
combination of version and position. We will see, however, that many of
them fall away because of duplications and many are very similar.

Name For data changes, the properties changed can have either the same name
or different names. What the names are does not matter to us, just if
they are equal or not.

Value The same as for names, we can have the cases where the changes have
either the same value or different values. If the value is a reference we can
have other cases, which will be discussed below.

Order The new orders of two reorderings (NR or PR) made to the items of the
same node can be either the same order or different orders.

Order position For changes that lead to moving the same node to the same parent (MDs)
or adding the same property (PAs) to the same node, the position in order
can vary. They can either be the same position or two different positions.
Differences in order positions are not possible for items changed by other
types of changes (except reorderings), because they are on items that
already are part of the node in CA, so they will have the same positions.5

We will in our analysis go through every combination of these attribute
differences, splitting our analysis up into two sections where we look at changes
in the same version, and then at changes in different versions. Each of these
sections will be split into three parts where the three position combinations are
covered, and in those sections every combination of types, names, values, etc.
will be analyzed.

If we would have had models where we could not have connections between
two different parts of the model, and we could not move our nodes, just using
these attributes for checking if they’re locally (in CA) changing the same item
and in what way would be enough to find every conflict. Unfortunately, this is

4We sometimes split up moves into MSs and MDs because they have different locations.
5When we take other changes into account, and if no reordering has been done

27

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

not the case. Therefore we will discuss references and moves and their impact
in the following sections.

References

References play an important role in our analysis since they are the only means
by which we can connect two different subtrees of the model. This means that
changes creating, changing or moving references can affect parts of the model
outside the UC of the change. Changes in different versions that are connected
to the same references can therefore lead to syntax violations. As explained
when going through the change types in 3.2.3, the only three change types that
can lead to new references are NAs, PAs and PUs.

There is a syntax violation that can appear due to the creation of references,
and we will call it reference breaking, see figure 3.8. If a new reference
is created, the node that it refers to needs to exist for the reference to be
syntactically correct. Removing the node referred to therefore leads to a syntax
violation. We can deduce that only NDs can lead to the non-existence of a
node, since moving it doesn’t change its ID, just the path. And we can’t have
a PD or a PU pertaining to the ID property because it identifies the node and
can’t be changed. Deleting the property with the reference itself deletes the
whole reference and there’s nothing to worry about when it comes to breaking
the syntax. Thus, the only way to get a syntax violation because of a broken
reference is to create a new reference in one version and delete the node it points
to in the other version.

Figure 3.8: A reference breaking. The node that is referred to in one version is
deleted in the other version.

Moves and positions

We described the three possible position combinations of two changes earlier in
figure 3.7. However, we did not consider moves. If every node kept the same
position in V as they had in CA, there would be no confusion about where
a change actually took place, but since we can have moved subtrees in V, we
need to decide on which position to use. This needs to be cleared up before the
comparison can begin, and we need to remember this when we are discussing
combinations with moves.

If we consider the act of comparing CA with V to find changes we can, when
finding a moved subtree, simply compare it with the one in CA as it is, because
the only difference the move makes is that the parent of the moved node is
different (and the paths to the root from every node in the subtree is different).

28

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

When we are comparing a node in CA with its corresponding node in V, we
compare their parents to see if the node has been moved. If we then continue
to compare the descendants of the moved node, they will still have the same
parents, so there won’t be any problem. That the paths to the root are changed
makes no difference when looking for changes, unless we use the paths instead
of the parents for checking if a node has been moved in V. In that case we can
compare the moved subtree with the one in CA as if it was still in its original
position, keeping the same paths, but we won’t be doing that in this thesis since
we compare the parents to check for moves.

When we are comparing two changes C1 and C2 in two versions we will go
through the different position combinations and check combinations of change
types. We can see that in case c) in figure 3.7, it doesn’t make any difference
if or where the changed node has been moved, because the changes are still
in the same node. But a case a) can turn into a case b) and vice versa by
moving N2 to or from the subtree of N1. See figure 3.9. These are the only
cases where a position combination can change, because they both involve a
move change made to a node between N1 and N2 (or to N2 itself), separating
or bringing the two changes together. Since we rely on the move change we
end up with a combination of three changes instead of two, and we will deal
with such combinations in 3.4.3. In 3.3.3 we will therefore not consider these
combinations and stipulate that the positions of changes have not been changed
through moves, unless the comparison directly involves a move change.

Figure 3.9: A move can lead to that the position combination of two changes are
different in CA and V. Here from different subtrees to same subtree.

3.3.2 In the same version
Combinations of changes in one version are only analyzed to check which changes
are possible, so that we can make sure that we find them all. We won’t find
any conflicts or syntax violations here, because we rely on that the XMI in the
input files is valid.

We’ll cover the combinations by going through the three different position
combinations one by one. The analysis is presented in a structured way in table
3.1.

Same version, different subtrees

Case a) in figure 3.7. See table 3.1a.
If the changes are in different subtrees, then the UCs of the two changes

29

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

can never overlap.6 This leads us to conclude that every single combination of
change type, name or value is possible, as long as references are not considered.

We can have combinations where the creation of a new reference in one
subtree can lead to the impossibility of removing the node referenced to. These
are the combinations of an ND with an NA, PA or PU. This is a quite minor
notion, and it won’t affect the way we go through the model in the algorithm,
because the fact that it’s impossible to do some of these combinations doesn’t
make it impossible to make most of the combinations we’re looking for.

Same version, same subtree, different nodes

Case b) in figure 3.7. See table 3.1b.
If one of the changes (C1) is made to a node over the other change’s (C2)

node, we have combinations that are not possible.
If C1 is a data change (PA, PD, PU), its UC will never overlap the UC of

C2 because they only change the properties, so all combinations where C1 is a
data change are possible. The same goes for when C1 is a PR, for the same
reason, or an NR. As we’ve said, if an NR is made on a node N it is not possible
for the child nodes of N that are added, deleted and moved in the same version
to be part of that NR’s UC, but that doesn’t mean that they can’t exist under
N.

The case is similar for moves. We can have any type of change under a move.
Actually, any change that is below a move will be positioned to it the same way
both in CA and in V, which means that when C1 is a move it’s considered as
one type, while if C2 is a move we have to split it up into MS and MD (as seen
in the table), because they can be in different subtrees. This is a case where
the UC of two changes overlap, since we say that the UC of a move includes
everything it moves. This is only possible because moves only change the path
to nodes, and nothing else, which makes it possible to still identify and make
changes to the nodes that have been moved.

If C1 is an NA or an ND, it’s more problematic. We can’t have changes
made to an added subtree or to a deleted subtree. As we’ve already said, though,
we can have an MD under an NA and an MS under an ND, since they are not
part of the UCs of the NA or the ND. This also leads to the fact that we can have
any type of change positioned under an NA or an ND, but only in combinations
with a move. We have to also keep in mind that the MS and MD of a move
can’t both exist under the same NA or ND, since the node has to come from
somewhere that existed in CA and at the same time go somewhere that exists
in V.

Same version, same subtree, same node

Case c) in figure 3.7. See table 3.1c.
Since the composite changes NA and ND include the node in question in

their UC, no other change can be made on the same node at the same time. No
combinations with them are therefore possible, as seen in the table.

If we consider moves in this situation, we will realize that we don’t need to
worry about the difference between MS and MD since wherever the node has

6Presuming that both the MS and MD of a move are in different subtrees from the other
change.

30

C1 \ C2 NA ND MOVE PA PD PU NR PR

NA P P/NP1 P P P P P P
ND P P P/NP1 P P/NP1 P P

MOVE P P P P P P
PA P P P P P
PD P P P P
PU P P P
NR P P
PR P

(a) Change combinations in different subtrees.

C1 \ C2 NA ND MS MD PA PD PU NR PR

NA NP NP NP P2/NP3 NP NP NP NP NP
ND NP NP P2/NP3 NP NP NP NP NP NP

MOVE P P P P P P P P P
PA P P P P P P P P P
PD P P P P P P P P P
PU P P P P P P P P P
NR P4 P4 P4 P4 P P P P P
PR P P P P P P P P P
(b) Change combinations in the same subtree, but different nodes (C1 is above C2).

C1 \ C2 NA ND MOVE PA PD PU NR PR

NA NP NP NP NP NP NP NP NP
ND NP NP NP NP NP NP NP

MOVE NP P P P P P

PA SP NP NP NP P NP
DP P P P P

PD SP NP NP P NP
DP P P P

PU SP NP P P
DP P P

NR NP P
PR NP

(c) Change combinations in the same node.

Table 3.1: Possible combinations of two changes in the same version. The dark gray
areas are there to not duplicate combinations. Read 3.3.2 for detailed information.
1 NP if the NA/PA/PU creates a reference to the subtree of the ND.
2 Combined with one of these changes any change on the same row is possible.
3 NP if the move (both MS and MD) is made within the subtree of C1.
4 The node that the NA/ND/MS/MD pertains to isn’t part of the NR’s UC.

C1 = change 1
C2 = change 2
NA = Node addition
ND = Node deletion
MS = Move source

MD = Move dest.
PA = Property addition
PD = Property deletion
PU = Property update
NR = Node reordering

PR = Property reord.
SP = same property
DP = different prop.
P = possible
NP = not possible

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

been moved from/to in the model, it’s still the same node (which is why they’ve
been combined in the table). We can, of course, also not move the same node to
two different parents in the same version. To do that we would need to have two
copies of the moved subtree in different locations, which would mean that the
input file would not be syntactically correct. This makes a combination of two
moves impossible. We can however have any kind of data change or reordering
made on a moved node, for the same reasons as in case b).

Looking at the data changes (PA, PD, PU) we also need to consider the
properties that are being changed. We quite obviously can’t have two differ-
ent data changes on the same property in the same version, because they all
affect the value of the property, the smallest part of their UC, and it can only
be changed in one way from CA to V. Combinations of changes of the same
properties are therefore impossible. Any combination of data changes involving
different properties are however possible.

NRs can be in combination with any of the data changes since they don’t
change the same types of elements. For PRs we need to consider the types of
the data changes, though. As we’ve said before, properties affected by PAs and
PDs can’t be part of the UCs of PRs, which means that they can coexist in the
same node, as long as they don’t change the same properties. PUs, however,
only changes the value of the property, and not its name, which is what PRs
use to represent a property in its order representation, and the value is not part
of the PR’s UC. So we can very well both update a property and reorder it. In
this case, as opposed to the move case in the previous section, the UCs of the
two changes only seem to overlap each other, but in actuality they don’t.

3.3.3 In different versions
We will go through all combinations of two changes (C1 and C2) made by two
developers (D1 and D2) in two different versions (V1 and V2) to find all kinds
of inconsistencies that can appear because of them. In the next section, 3.4, we
will discuss how to best take care of these problems. This part of the thesis is
a very important part both for the algorithm as well as for the test suite, as we
strive to find every inconsistency there is between two versions.

First we will discuss the differences between conflicts, syntax violations and
context issues before we start looking for them. After that we’ll cover the
combinations by going through the three different position combinations one by
one. The analysis will be presented in a structured way in tables 3.2 and 3.3.

Inconsistencies

When we compare changes from two different versions we can get inconsistencies
of different types, and we need to explain their differences. These can only
appear when comparing two versions.

Conflicts appear if there are two changes in different versions made to the
same part (node, property, value). The only way two such changes can
keep from being in conflict is if the changes are exactly the same change, or
if one can be incorporated in the other because of their nature. In the cases
of the changes being exactly the same, this can still be seen as a conflict,
or at least a context issue, because we can’t know what the intentions of

32

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

the developers were when doing the exact same change. In our algorithm
we strive to represent the information needed to apply both options for
the developer, and when the options are the same we don’t need to see it
as a conflict and simply just apply one of the changes (which one doesn’t
matter since they are the same). This is because we would like to keep the
number of inconsistencies low, as they can lead to more inconsistencies,
as we will see in 3.4.2.

Two conflicting changes can’t be applied at the same time.

Syntax violations appear when two changes in different versions together vi-
olate the XMI syntax. Because we have XMI valid input files, applying
one change can’t cause a violation, but we must have two changes from
different versions that affect the same part of the model while not being
in direct conflict. These kinds of connections are only possible through
references (which we have discussed in 3.3.1), and reference breakings is
the only way that we have been able to find that only break the syntax
while not leading to a conflict.

Two changes that together create a syntax violation can be applied at the
same time, but they break the syntax.

Context issues are the hardest to analyze, because they are combinations of
changes that result in logic faults on a higher level, but do not break the
syntax of the output file. We can’t deduce much of what a developer
intended with a change just from the syntax of the model, and there are
many changes that may be made in completely different locations of the
model, but that still can create context-related problems. We have no way
of finding every single of these issues. This is one of the reasons that the
developer gets informed about every change that has been made in the
different versions, to help him find these issues himself. We do however
want to help as much as possible, and will therefore warn the developer
when we manage to find probable context issues.

Two changes with possible contextual relation can be applied at the same
time and won’t break the syntax, but could create logical faults.

These are the kinds of inconsistencies that we will try to find in the following
three parts of this section.

Different versions, different subtrees

Case a) in figure 3.7. See table 3.2a.
We can again conclude that there are no ways, except through references,

that two changes in different subtrees can affect each other. Reference break-
ings can happen if C1 is an NA, PA or PU and creates a new reference and C2
is an ND that removes the node referenced to. The changes are not made to
the same part of the model, yet they make the XMI syntax invalid.

As said in the previous section, combinations of two changes in different
subtrees can create context issues, but the changes are not close enough to each
other for us to be able to find and be sure of these issues. We don’t want to
warn about things that don’t have anything to do with each other, so we don’t
want to make any assumptions about changes being related contextually here.

33

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

Different versions, same subtree, different nodes

Case b) in figure 3.7. See table 3.2b.
If C1 is an NA it means that there is no possibility for C2 to exist under

it because the node and subtree that was added in V1 doesn’t exist in CA and
therefore neither in V2. Therefore, no change combinations with C1 being an
NA is possible.

In the case that C1 is anND we have many conflicts. This is simply because
a subtree can’t both be removed and changed at the same time. If we under
an ND in V1 in V2 either add a node, move a node under, add or update a
property or reorder child nodes or properties we have a conflict with the ND.
Should C2 instead be a deletion of a node or a property we can see that it can
be incorporated into the ND because it does the same thing, only to a smaller
part of the model. We decide to not look at this as a conflict because both of
the changes can be applied at the same time. This could however be a context
issue where D2 wanted to delete a part of the model and keep another, while
D1 deleted both of them in one deletion.

If C2 is an MS it has been moved from the subtree and is therefore not
deleted. We’ve said that a moved subtree under an ND is not part of its UC,
which is true if both changes are made in the same version, and that is not
the case here. Both these changes can be applied without breaking the syntax,
so there’s no conflict and no syntax violation. They could on the other hand
lead to a context issue, where D1 intended to delete the whole subtree and D2’s
move prevented this.

As we’ve discussed before, we need to consider the fact that subtrees under
the ND can in V1 have been moved somewhere else. If C2 is made to such
a subtree, there can not be an inconsistency with the ND. In the cases men-
tioned above, all C2 changes need to be done in the UC of the ND to create
inconsistencies.

When C1 happens to be a move we can have any type of change underneath
it without creating a conflict, because the move doesn’t affect the nodes in the
moved subtree. We will have probable context issues in each of these cases,
though. Any change made by D2 could be a change intended to stay where it
was, and D1 moved it. Just as in the case of NDs, these combinations count
only if N2 is in the UC of the move, meaning it isn’t moved from the moved
subtree. In those cases the change will make a probable context issue with that
move instead.

Just as in combinations of changes in one version, if C1 is a data change
(PA, PD, PU) or a PR, its UC will only be a part of N1 (the node that C1
pertains to) and therefore not affect any node underneath it. This means that
it can not be in conflict with any change C2 made to any node under it.

We can, however, have conflicts if C1 is anNR and C2 is a structural change
to one of the child nodes of N1. The NR’s UC includes the child nodes of N1
that exist both in CA and V1, which means that if C2 is an NA or an MD,
there won’t be any conflict because those nodes are only child nodes of N1 in
V2, and not in CA or V1. The nodes will however be very hard to insert in the
right position because the nodes have been reordered, and we have no way of
knowing where a correct position would be for the nodes, unless we analyze the
order more deeply (which we will not do in this thesis). The nodes are therefore
added at the end of the list to create a uniformity of how to take care of these

34

C1 \ C2 NA ND MOVE PA PD PU NR PR

NA NC NC/SV1 NC NC NC NC NC NC
ND NC NC NC/SV1 NC NC/SV1 NC NC

MOVE NC NC NC NC NC NC
PA NC NC NC NC NC
PD NC NC NC NC
PU NC NC NC
NR NC NC
PR NC

(a) Change combinations in different subtrees.

C1 \ C2 NA ND MS MD PA PD PU NR PR

NA NP NP NP NP NP NP NP NP NP
ND3 C NC/CI2 CI C C NC/CI2 C C C

MOVE3 CI CI CI CI CI CI CI CI CI
PA NC NC NC NC NC NC NC NC NC
PD NC NC NC NC NC NC NC NC NC
PU NC NC NC NC NC NC NC NC NC
NR NC4 NC/C5 NC/C5 NC4 NC NC NC NC NC
PR NC NC NC NC NC NC NC NC NC
(b) Change combinations in the same subtree, but different nodes (C1 is above C2).

Table 3.2: Possible combinations of two changes in different versions. The dark gray
areas are there to not duplicate values, and also shows impossible combinations. The
darker red areas indicate certain conflicts and the lighter red areas indicate context
issues or possible other inconsistencies. Read 3.3.3 for detailed information.

1 Syntax violation only if the NA/PA/PU creates a reference to the subtree of
the ND.
2 Improbable context issue between deletions.
3 These combinations take for granted that C2 is in the UC of C1, meaning C2 is not
in a subtree e.g. which is moved from under C1 in V1. Such changes never cause any
conflicts with C1.
4 If the NA/MD adds a child node to the node the NR is made on, there is no way of
being able to position it right in order, so they are put in the end.
5 Conflict only if the ND/MS is made to a child node of the node the NR is made on.

C1 = change 1
C2 = change 2
NA = Node addition
ND = Node deletion
MS = Move source
MD = Move dest.

PA = Property addition
PD = Property deletion
PU = Property update
NR = Node reordering
PR = Property reord.
NC = no conflict

C = conflict
SV = syntax violation
CI = context issue
NP = not possible

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

cases.
If C2 is an ND or an MS, those changes will in almost every case be in

conflict with a change in V1. In most cases with the NR (C1), because if there
hasn’t been made any other changes to N2 (the node that C2 pertains to) in V1,
it will be part of the UC of the NR. But if N2 is also either deleted or moved
in V1, C2 will be in conflict with that change instead, unless N2 happens to be
deleted (or moved to the same destination) in both V1 and V2, in which case
there is no conflict. We will cover those cases in the next section.

Different versions, same subtree, same node

Case c) in figure 3.7. See table 3.3.
If the changes are made to the same node there are a lot more things that

need to be checked, because in these cases the properties matter too. We will
however see that the change combinations with the structural changes are very
alike the ones in case b).

We also have cases where the changes are exactly the same except that they
are made in different versions. Because the changes are made on the same items,
they can be considered conflicts. As we have discussed in the beginning of this
section, however, we don’t see these cases as conflicts, because they are not
inconsistent with each other and we can apply one of them (which one doesn’t
matter). We will warn the developer about the fact that there have been made
two changes that are the same.

Just as in the previous section, we can’t have any changes in combination
with an NA because the node in question doesn’t exist in CA. We can’t have
two NAs of the same node either, because we rely on an ID system which gives
every newly created node a unique ID. If somehow we have the exact same ID
of two newly added nodes (say because D1 copied the node directly from D2’s
workspace), they could be the same change if the added subtrees are exactly
the same, but it’s probable that they are not. This would open up a whole new
area of possible conflicts, which we don’t want to have to consider. We therefore
stipulate that every node that exist in both V1 and V2 also exist in CA. If a
copy such as the one suggested above has been done, this algorithm will (try
to) add both subtrees which will break the XMI syntax.

If one of the changes (C1) is an ND, we once again have conflicts. If C2 is
a PA, PU, NR or PR we can’t apply them to the output file together with the
ND because the ND’s UC covers their UC and we have conflicts in all of those
cases. We also have a conflict if C2 is a move, since we’re trying to move the
actual node that is being deleted and not one of its child nodes or descendants.
If the other change is also an ND, they are the same change and we have no
conflict, but will inform the developer about this. If it’s a PD we don’t have a
conflict either, but we can have a context issue, like in case b).

In the case of C1 being a move we once again have possible context issues
because D1 moved a change that D2 made in a certain place. This is in case
the change didn’t pertain to the node as a whole (like NA and ND, whose cases
we’ve already covered), but part of it, like the data changes and reorderings.

When the same node is moved in both versions we have to look at the
destinations of the moves. If the moves are to different new parents, we always
have an inconsistency. However, it’s hard to say whether it’s a conflict or a
syntax violation. The same UC is clearly being changed in both versions, but

36

C
1
\

C
2

N
A

N
D

M
O

V
E

PA
P

D
P

U
N

R
P

R
SV

D
V

SV
D

V

N
A

N
P

N
P

N
P

N
P

N
P

N
P

N
P

N
P

N
D

SC
C

C
N

C
/C

I1
C

C
C

M
O

V
E

SD
SC

2

D
D

C
C

I
C

I
C

I
C

I
C

I

PA
SP

SC
2

C
2

N
P

N
P

N
P

D
P

N
C

N
C

N
C

N
C

N
C

P
D

SP
SC

C
C

D
P

N
C

N
C

N
C

N
C

P
U

SP
SC

C
N

C
D

P
N

C
N

C
N

C

N
R

SO
SC

D
O

C
N

C

P
R

SO
SC

D
O

C

T
ab

le
3.

3:
P
os
si
bl
e
co
m
bi
na

ti
on

s
of

tw
o
ch
an

ge
s
in

th
e
sa
m
e
no

de
in

tw
o
di
ff
er
en

t
ve
rs
io
ns
.
T
he

da
rk

gr
ay

ar
ea
s
ar
e
th
er
e
to

no
t
du

pl
ic
at
e
va
lu
es
,

an
d
al
so

sh
ow

s
im

po
ss
ib
le

co
m
bi
na

ti
on

s.
T
he

da
rk
er

re
d
ar
ea
s
in
di
ca
te

ce
rt
ai
n
co
nfl

ic
ts

an
d
th
e
lig
ht
er

re
d
ar
ea
s
in
di
ca
te

co
nt
ex
t
is
su
es
.
R
ea
d
3.
3.
3

fo
r
de
ta
ile
d
in
fo
rm

at
io
n.

1
Im

pr
ob
ab
le

co
nt
ex
t
is
su
e
be
tw
ee
n
de
le
ti
on

s.
2
P
os
si
bl
e
un

pr
io
ri
ti
ze
d
co
nfl

ic
t
be
tw
ee
n
po
si
ti
on

s
in

or
de
r
of

th
e
ad
de
d
it
em

s.

C
1
=

ch
an

ge
1

P
U

=
P
ro
pe
rt
y
up
da
te

D
P

=
di
ff
er
en
t
pr
op
er
ty

N
C

=
no

co
nf
lic
t

C
2
=

ch
an

ge
2

N
R

=
N
od
e
re
or
de
ri
ng

SV
=

sa
m
e
va
lu
e

C
=

co
nf
lic
t

N
A

=
N
od
e
ad
di
ti
on

P
R

=
P
ro
pe
rt
y
re
or
de
ri
ng

D
V

=
di
ff
er
en
t
va
lu
e

C
I
=

co
nt
ex
t
is
su
e

N
D

=
N
od
e
de
le
ti
on

SD
=

sa
m
e
de
st
in
at
io
n

SO
=

sa
m
e
or
de
r

SC
=

sa
m
e
ch
an

ge
PA

=
P
ro
pe
rt
y
ad
di
ti
on

D
D

=
di
ff
er
en
t
de
st
in
at
io
n

D
O

=
di
ff
er
en
t
or
de
r

P
D

=
P
ro
pe
rt
y
de
le
ti
on

SP
=

sa
m
e
pr
op
er
ty

N
P

=
no

t
po
ss
ib
le

37

3.3. CHANGE COMBINATIONS CHAPTER 3. ANALYSIS

we can still apply both the changes at the same time and not lose any data
because they are moved to different locations and thus don’t interfere with each
other. The problem is that applying both the moves would break the syntax
because there would be duplicated nodes with the same IDs. We will consider
this a conflict, but considering it as a syntax violation won’t change the way we
take care of it in 3.4. See figure 3.11a.

If the moves are to the same destination, the changes are not in conflict,
except that we also have the order position of the moved nodes to take into
account. How these are analyzed is again discussed under Order management
in the end of 4.2.4. If the child nodes’ positions of order are the same, we have
no conflict, but if they are not, we have a conflict. We can however deduce that
putting the moved node at a certain position in order among its new siblings
is most often not of as great importance as actually moving it under its new
parent. There is a conflict between the positions, but we will prioritize this
conflict lower than other conflicts because the order position is not the main part
of the change. We introduce these as lowly prioritized order position conflicts
in our analysis. This is not to be confused by the conflicts between moves and
NRs.

Let’s take a look at the data change combinations. We have two data
changes that pertain to a certain property each (P1 and P2). We can right
away state that if the two changes are made to two different properties there
can’t be a conflict. Thus any combination of PAs, PDs and PUs are possible
and never in conflict if P1 6= P2. The same goes for when C1 is a PR and C2
is a data change, and the PR’s UC doesn’t include P2.7

For the combinations of changes on the same property (P1 = P2), we need to
analyze a bit more. If C1 is a PA, the property doesn’t exist in CA, so it can’t
have been changed in any way in V2, only added. Combining PA with either a
PD, PU or PR is therefore impossible, but if C2 is a PA we need to go one step
deeper and check the value of the property. If the values are the same, C1 and
C2 are the same change (in different versions), if the values are not the same we
always have a conflict. In the case of two PAs we also need to (as in the case
of two moves of the same node to the same parent) compare the positions in
order. In this case we also need to know every PA or PD that’s been done to a
property of the same node to be able to compare the index values, because they
depend on those changes. If the positions are the same, we have no conflict; if
the positions are different, we have a lowly prioritized order position conflict,
as in the case of MDs to the same parent.

The same reasoning as with PAs can be made in the case of two PUs on
the same property; same value equals same change (which we will warn about),
different values equals conflict. We can also apply both a PU and a PR on the
same property because they don’t interfere with each other, and thus we can’t
have a conflict between them.

As for PDs, we always have a conflict when a node is deleted in V1 and
updated or reordered in V2. But should the property be deleted in both V1 and
V2, it’s the same change.

Because an NR affects the child nodes of a node it can’t be in conflict with
any data changes or PR to the same node, because they affect the properties.
This only leaves the cases of comparing an NR with an NR and a PR with a

7Meaning they don’t affect the same properties.

38

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

PR. We compare the items (child nodes or properties) in the order lists for the
changes to see if they are the same or different order. If they are the same, the
changes are the same; if they are different the changes are in conflict. However,
if D1 fixes the order in one way, it might be a natural way to order the items,
which means that it’s more probable that D2 has changed it in the same way
than in some other random way. But since there is only one way to do it the
same way and many different ways to do it differently, it’s still not that probable
that the order changes are the same.

It’s also important to point out that the elements in the lists in many cases
aren’t the same due to deletions and moves in either V1 or V2. For the case
where there are deletions and moves in V1, they will end up in conflict with the
reordering in V2, as pointed out before. Those items don’t have any position
in V1, so we will only compare the items that are connected to the node in
question in both V1 and V2, and the other nodes will get the positions that
they have in the version where they were not deleted or moved, given that they
weren’t so in both versions.

3.4 Conflict management
We now know the different conflicts, syntax violations and (some) context issues
that can appear when comparing two changes, and why and when they can
happen.8 In this section we will analyze how to manage these inconsistencies
as well as possible while trying to satisfy our requirements (3.4.1) and what
problems the solutions in turn can lead to and how to deal with those (3.4.2).
We need this to make sure that all the cases of change combinations are covered.
Lastly, we will analyze combinations of more than two changes and how they
can be split into combinations of two changes (3.4.3).

This section is very important, because it shows how to deal with conflicts
and syntax violations, which is a central issue in merging. It will also show
how our analysis covers every combination of changes, in case we deal with the
inconsistencies we get in a certain way. Information in this section will be used
in later sections dealing with problems when merging and for the test suite.

3.4.1 Resolving inconsistencies
Now, the question is, how do we deal with the conflicts and syntax violations
presented in the previous section? As we’ve said in 2.2, we want to represent
them in the output file so that the developer can fix them himself in the best
way. We need to supply the developer with all the information needed for this
task, so in accordance with our requirement of no loss of data, the conflicts and
syntax violations will be taken care of in a way that all the info needed for either
of the options is present. This will lead to problems with the representation of
this information. We will discuss this further in 3.5.2.

When encountering a possible context issue we will, however, apply the
changes and only warn the developer about it. This is because we can’t be sure
that what we find actually is a context issue (we will leave that to be decided
by the developer) and because the changes can be applied without breaking the
syntax. Thus, we do not need any solution for the cases of possible context

8Inconsistencies were described in 3.3.3.

39

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

issues, but we will still present them in the following sections, because they can
be put in certain groups, and we want to present all the inconsistencies in every
group.

The inconsistencies (conflicts, syntax violations and context issues) that we
have found can be grouped as follows:

• Node deletion inconsistencies

• Move inconsistencies

• Property conflicts

• Order conflicts

The two top groups include most of the conflicts that include at least one struc-
tural change, while the two bottom groups cover the conflicts pertaining to a
certain node.

We’ll go through these groups and analyze how to deal with them while
still protecting our initial requirements in 3.1, that the output should be XMI
valid, that no data should be lost and that the output should not depend on
the order of the input files. In our solutions we will choose to not apply certain
changes, but that doesn’t mean that we won’t take them into consideration later
in the continued comparison between changes. If a change is in conflict with
one change, it can still be in conflict with or create a syntax violation together
with another change, and we do not want to miss these inconsistencies.

Node deletion inconsistencies

These are the most common and simplest inconsistencies and they appear when
a subtree has been deleted in one version and changed in some way in the other
version.

These are the changes in V2 that can lead to inconsistencies in combination
with an ND of the node N in V1:

• A PA, PU, NR or PR in the ND’s UC, an NA or MD in the ND’s UC
(not including N), a move of N or an NR which N is part of all lead to a
conflict.

• An NA, PA or PU that creates a new reference that points to N9 leads to
a syntax violation.

• An MS in the UC of the ND (not including N) can lead to a context issue.

• A PD in N or an ND or PD on a descendant of N can lead to a context
issue.

The only thing that we need to know to represent an ND is its node and
that it’s to be deleted, and which nodes under it that have been moved from
the subtree. To be able to represent the changes that are in conflict with it
we, however, need the deleted subtree. A simple way to give the developer all
information needed about both changes is simply to not apply the ND, and put

9Or one of N’s descendants in the UC of the ND, but this is not possible according to the
serialization pattern since only child nodes of the root can be referenced to.

40

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

Figure 3.10: Node deletion inconsisencies. Every change in V2 is in conflict with the
ND in V1, except the NA which creates a syntax violation. This figure doesn’t cover
all the cases. The developer is warned about the discarded ND.

a warning on the node that was to be deleted saying that it’s in conflict with the
changes in or references to its subtree. The non-deletion of a subtree can only
lead to more information for the developer, and there is no risk for duplicated
nodes in the model since every move from the was-to-be-deleted subtree is still
applied.10

We refrain from applying the ND in each of the cases that lead to a conflict
or a syntax violation. See figure 3.10.

Move inconsistencies

Moves mostly lead to probable context issues, but there are cases that are more
serious.

These are the changes in V2 that can lead to inconsistencies in combination
with a move of the node N in V1:

• A move of N to a different destination leads to a conflict.

• An NR whose UC includes N leads to a conflict.

• An NA, ND, MS or MD in the UC of the move (not including N), or a
PA, PD, PU, NR or PR in the UC of the move can lead to a context issue.

In the first case, we can’t apply both of the moves, because it breaks the
syntax. There are a few solutions possible. One is to change the IDs of all the
nodes in one (or both) of the subtrees, which would only lead to more possible
conflicts with references, etc. This is not a preferred solution. We could also
apply one of the moves and warn the developer that it could have been moved to
another destination. However, this goes against our requirement of symmetry,
where the applied move would have a much better chance of being used than
the other move. The solution settled for is therefore to not apply any of the
moves and inform the developer that the subtree was moved to two different
positions in the two versions. See figure 3.11a.

The second case makes us choose between moving the node to another par-
ent or reordering it under the same parent. The move seems to be of greater

10Given that they themselves are not in conflict with some other changes.

41

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

(a) Conflict between two moves. None of the moves are applied.

(b) Conflict between a move and an NR. The move is not applied.

Figure 3.11: Move conflicts.

importance, but we have no way of knowing this. If we want to be consistent,
however, we would choose to not apply the move as we didn’t apply the ND in
a similar conflict before, so that’s what we will do, as shown in figure 3.11b.

We refrain from applying the moves in these cases.

Property conflicts

These are the conflicts that appear when we make changes on the same property
in both versions. We can’t have any syntax violations here, because we need
a to combine a data change with a structural change for a new reference to
become incorrect.

The combinations of changes on the same property that lead to conflicts are
the following:

• A PD in one version and a PU or a PR in the other version.

• Two PAs with different values.

• Two PUs with different values.

In the first case we reason the same as we did with conflicts with NDs,
applying the PD would lead to losing data, thus we choose to not apply it and
apply the PU or PR instead. There will be a warning about the PD that was
not applied. We refrain from applying the PD in this case. See figure 3.12a.

The second and third cases are a lot harder to deal with. We have two
changes of the same type, either PAs or PUs, and both of them have the same

42

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

(a) Property deletion conflicts. Both of the changes in V2 are in conflict with the PD
in V1.

(b) Property addition and update conflicts. We need to represent the options for the
developer in M.

Figure 3.12: Property conflicts.

priority to be applied. This situation is different because we have new values
in both changes and thus we need to represent both of them at the same time.
Let’s deal with the PUs first. In this case the property already exists in CA, so
there is an old value that could be used while we somehow represent the options
of the new values in a way that doesn’t break the XMI syntax, which we will
discuss further in 3.5.2. We refrain from applying any of the PUs in this case,
and inform the developer about the choices of new values. See figure 3.12b.

If there are two PAs the property does not exist in CA and we can’t let it
keep its old value while not applying any of the changes. In this case we can
choose to not apply any of the changes, in which case we have the problem of
representing not only the value of the property, but the property itself in our
options. Added to this, if we do not insert an added property at its position it
leads to that the positions of the later insertions are off. We therefore want to
add the property, and when doing so we need to choose a value for it. Since we
don’t know what kind of property it is, we have no way of knowing which kind of
value is needed to not break the syntax, and can therefore not choose a default
value, say an empty string. We therefore choose to make an infringement on the
symmetry requirement, where we either can choose to apply the change from
V1 or the one from V2. We apply one of the PAs and inform the developer about
the other choice. See figure 3.12b.

Keep in mind that even if these values are in conflict with each other, we
still need to find syntax violations they might lead to also. If the values of the
PUs or the value that wasn’t chosen in the PA conflict would have led to syntax
violations because of them being references to deleted subtrees, that doesn’t
mean that the syntax violations aren’t still there, even if they are not explicitly
represented. The developer needs to be able to choose one of the options without
it creating a syntax violation.

43

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

Order conflicts

This is the least important group, covering the reordering changes and other
changes where only the order is in conflict.

The order conflicts include the following combinations of changes:

• Two NRs with different order on the same node.

• Two PRs with different order on the same node.

• Two moves of the same node to the same parent, but at different positions
in order.

• Two PAs of the same property to the same node, but at different positions
in order.

For the two first cases, the simplest and easiest way to deal with them is to just
keep the original order and inform the developer that the order of the child nodes
or properties were changed in certain ways in the two versions. The developer
can then choose a compromise between the orders, and in case there also are
added nodes or properties, to see if they have been inserted in a proper position.
Refraining from applying the NRs or PRs could never lead to loss of data or a
syntax violation. We refrain from applying any of the reorderings, and keep the
old order in this case. See figure 3.13a.

In the third and fourth cases the changes are in conflict, because they are
not wholly the same change. However, the position in order of a new child node
or a new property is a lot less important than the actual moving or adding of
them. If we were to claim a conflict on this matter and strictly want to stick
to our requirement of symmetry, both the changes would be prevented from
being applied, which in turn would lead to more possible conflicts or syntax

(a) Reordering conflict. None of the reorderings are applied and the old order is kept.

(b) Order position conflict. One of the positions is chosen, the developer is informed
about the other option. Possible other PA conflict is representable.

Figure 3.13: Order conflicts.

44

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

violations (in the case of the changes being moves). We instead propose a small
infringement on this requirement and apply one of the changes, and inform
the developer about the other possible position in order. Choosing one of the
positions is also needed to make it possible to represent a conflict between the
new values of two PAs of the same property. This conflict is much more needed
to be presented to the developer than the conflict between positions in order.
Therefore, we choose to apply one of the two changes and inform the developer
that the item was inserted at a different position in the other version. See figure
3.13b.

3.4.2 Inconsistencies due to resolved inconsistencies
When we fix inconsistencies by not applying certain changes, it can lead to fur-
ther conflicts and/or syntax violations with other changes. We therefore need
to analyze if resolving inconsistencies the way that we presented in the previous
part can lead to more inconsistencies.

Let’s start by briefly discussing two changes that are exactly the same.
We chose to apply one of them (they are identical anyway), which in no way
could lead to a conflict or syntax violation with other changes in any of the
versions, because the change is made in both versions, so they can be applied in
combination with every change in both versions. We have no possible conflicts
or syntax violations.

The conflict that moving the same node to different parents led to was
resolved by not applying the moves. This means that the old parent of the
moved node needs to exist so that it can continue being the parent. The only
way a node can become non-existent is if it is deleted in either V1 or V2. It
makes no difference if it’s moved or reordered. We have a possible conflict with
an ND.

In the same manner as the previous case, the conflict of reordering and mov-
ing the same node in the different versions was solved by not applying the
move. In this case, however, it’s not possible that the old parent was deleted,
because the NR pertains to that very node. We have no possible conflicts or
syntax violations.

The conflict that appears when updating the same property with dif-
ferent values is solved by not applying the updates and keeping the old value
of the property. The only problem this can lead to is that the old value is an
old reference. This could be to a node that has been deleted in either V1 or V2,
creating a reference breaking. We have a possible syntax violation together with
an ND.

Adding the same property with different values leads to a conflict which
is taken care of by applying one of the changes. This could never lead to a newly
created conflict or syntax violation since no old value is applied. We have no
possible conflicts or syntax violations.

When deleting and updating or reordering the same property we de-

45

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

cided to not apply the PD and warn about it. In the case of it being in conflict
with a PU, the property gets the value the PU gives it, which can’t lead to any
new conflicts or syntax violations. Giving the new value removes the value that
we wanted to remove with the PD anyway. We have no possible conflicts or
syntax violations.

In the case of a PD in conflict with a PR, removing the PD leads to that
we can have an old reference that points to a node that is deleted in the other
version. We have a possible syntax violation together with an ND.

When we encounter conflicts between two reorderings we simply decide
to not apply any of them. Not applying these could never lead to that the
model changes in a way that would lead to conflicts or syntax violations. In-
stead, it actually means that we are able to insert new items at the appropriate
places. In fact, if the reorderings are PRs, and the PR in V1 is also in conflict
with a PD in V2, not applying the PRs would make it seem like the PD could
be applied because the PR isn’t in conflict with it anymore. But we won’t do
that, because D1 still reordered the property D2 deleted for a reason. We have
no possible conflicts or syntax violations.

The conflicts that appear when deleting a subtree with a PA, PU, NR
or PR in its subtree or a move or reference to its subtree or an NR
that includes the deleted subtree, are taken care of by not applying the ND. If
the ND was in V1, there can’t have been made any other changes on the UC
of the ND in V1. The subtrees moved from under it are not part of its UC
and make no difference in this case since those moves will still be applied. The
subtree will look exactly the way it does in V2, and the only thing that can be
part of the UC of the ND and be connected to any other part of the model is a
reference, either added in V2 or deleted in V1, but reappeared. In either case
it can’t be in conflict with anything except another ND of the node a reference
points to. If that happens we could either warn about it or again solve the con-
flict by not applying the ND. This means that we can have a chain of discarded
NDs, but the probability of that happening is minimal, and we choose to do
it this way because we want to keep the solutions uniform. We have possible
conflicts with NDs.

As we can see, we can only get conflicts and syntax violations with NDs, and
these are again solved by deciding to not apply the ND. We will use this in-
formation in the next section where we analyze combinations of more than two
changes.

However, we also need to analyze if it’s possible that resolving two different
inconsistencies could lead to a new inconsistency. Because of the requirement to
not lose any information, resolving inconsistencies in most cases leads to more
information, and seldom to less information.11 We can see that giving more
information never could lead to inconsistencies.

In our solutions we have chosen to not apply certain changes. Not applying
NDs or PDs leads to more information. Not applying moves only leads to losing
the new paths, which can’t create an inconsistency with the solution of another

11When we give the developer the information through annotations (see 3.5), it’s not directly
part of the model, and thus in a sense it’s less information connected to the model.

46

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

inconsistency. When we try to represent the two options in the cases two PAs
or two PUs are in conflict some of the values won’t be part of the model, but
this can’t either lead to new inconsistencies.12 This leads us to conclude that
there can be no new inconsistencies due to solving two different inconsistencies.
We will use this fact in our discussion in 3.4.3.

Solving inconsistencies can only lead to new inconsistencies in combinations
with other changes, and not with the results of solving other inconsistencies.

3.4.3 Combinations of more than two changes
Here we will analyze combinations of more than two changes in the two versions
and prove that most of those cases can be split down into cases of two changes
and/or a combination of a change and a conflict solution.

As we know, there are only two versions that are being compared, and we
need to have at least one change in each of the versions to get inconsistencies.
We can have, as seen in the previous section, combinations where two changes
create an inconsistency which is resolved and creates a new inconsistency with
another change. What we are looking for here, however, are three or more
changes that together create an inconsistency where any two of those changes
do not already create an inconsistency.

We need two changes that are in the same version to affect the same part
of the model. If we look back at our analysis of combinations of two changes in
one version in 3.3.2, we can see that in most cases when the UCs of the changes
don’t cover the same parts of the model they’re possible, and if they do cover
the same parts they’re not possible. The exceptions are references, which affect
parts outside of the UC, and moves, which can cover the UCs of other changes
with their own UC.

If we for a moment disregard references and moves we can see that without
them there is no possibility of having three changes in two versions that affect
the same items, and therefore create an inconsistency, because the UCs of two
changes in the same version can’t overlap. This, of course, is based on the syn-
tax that we have in models, and it doesn’t mean that we won’t end up with
changes that contradict each other on a higher level. It’s impossible for us to
find all kinds of context issues, so even if a merge goes through without any con-
flicts or warnings, it doesn’t mean that the output looks the way it’s supposed to.

Looking at the references, they consist of two ends; a property and a node
in a different subtree. If we in V1 have a change that creates a new reference we
can in V1 also have another change that changes the node that the new refer-
ence points to. Remember that the reference is actually just the ID of the node,
so the change on the node has to affect its ID to be connected to the reference
change in the same version (an update of another property in the node referred
to makes no difference). The only types of changes that can affect the ID of a
node are NAs and NDs. There is no possibility to have a data change on the ID
property, since it identifies the node. Moves don’t affect the IDs, they just move
the nodes, and since references always point to child nodes of the root, those
nodes can’t be moved anyway. Obviously, we can’t have an ND on the node that

12It could if the PUs pertained to the ID of a node, but such changes are not possible.

47

3.4. CONFLICT MANAGEMENT CHAPTER 3. ANALYSIS

we refer to in the same version, because then the XMI would be invalid in the
input file. This leaves the creation of a new node as the only change that has a
direct connection to the creation of a new reference in the same version. Since
the node then doesn’t exist in CA, there is no possibility of making any changes
on it in V2, and we can’t make any changes on the parent, because that’s the
model root. Even if we could, that change would be in conflict with the NA
first, and not with the reference and the NA in combination. We therefore can’t
find any three changes that in combination lead to inconsistencies, even if we
also involve references.

Let’s then take a look at the impact moves have. If we consider the changes
which UCs can be affected by moves, it’s only composite changes, because they
are the only changes that encompass more than one node. If a non-composite
change, a change that only pertains to one node, is moved it makes little differ-
ence in the comparison between that change and other non-composite changes.
As for references, we can’t move nodes referred to, and nodes with newly created
references can in combination with moves only create context issues.

Moves were discussed in 3.3.1, where we mentioned that a case a) can turn
into a case b) and vice versa by having a move of N2 to or from the subtree of
N1, which makes a combination of three changes (C1, C2 and the move). We
want to try to find cases where the UCs of these three changes cover the same
item, and see what happens in those cases. C1, the change on N1 in V1, has to
be a composite change (NA or ND) to affect N2. In the case C1 is an NA, the
move has to be to the subtree of N1, and it can only be in made in V1, because
the subtree doesn’t exist in V2. Because of this, neither the move nor C2 is part
of the UC of C1, which we need it to be. If C1 is an ND, C2 can be made in both
versions, but always in the same version as the move, because we can’t have a
change that isn’t a move under an ND in the same version. Because we need
the UC of the ND to cover C2, N2 has to be located under N1 in CA. Because
of this the move has to be made from the subtree and in V2. As for the change
type of C2, it has to be a type that lets the changed item(s) exist in both CA
and V2, and have the same path to the root (otherwise the move’s UC wouldn’t
incorporate C2). Deletions, additions and moves don’t allow this, so the only

Figure 3.14: The only case where a part of the model is covered by the UCs of more
than two changes. The value of the property P is covered by the UCs of the three
changes. There is a probable context issue between the ND and the move, so the user
is warned that the moved node was not deleted. The PU could also be an NR or a PR.

48

3.5. MERGING CHAPTER 3. ANALYSIS

types that C2 can be are NRs,13 PRs and PUs. These are the only cases where
a part of the model is covered by the UCs of more than two changes, and the
only thing that we get is a probable context issue. See figure 3.14.

But even though these three changes cover the same parts of the model, we
still can see that the ND and the move create this probable context issue by
themselves, as discussed in 3.3.3. This does therefore not count as a combina-
tion of three changes that creates an inconsistency.

We can only have inconsistencies depending on two changes in different ver-
sions or depending on one change and a solution to an inconsistency between
two other changes. There is no combination of three or more changes that create
just one inconsistency where that inconsistency isn’t created by just two of those
changes.

3.5 Merging
This section deals with how we want to represent different aspects of the merge
result. We will discuss change annotations, warnings and alternatives and how
to represent these in the merged file. The part of the algorithm that deals
with merging is presented under 4.2.4, where among other things the order of
application is discussed.

3.5.1 Annotations
As we said in 3.1, we do not want to lose any data, and we are not able to
find every contextual issue that exists. One change can thus be in an indirect
conflict with another one without the merge tool being able to find it, as it
can only be discovered by the developer. We therefore need to be able inform
the developer about all changes made to the model through annotations. This
information can then be used by the developer when making a decision how to
deal with the merge.

We want to make one annotation for each change that is applied. They will
have to be connected to the node they are made in since we can’t connect them
solely to a property, so there could be many annotations on one node. Note
that annotations will not be made for changes that are not applied. They will
be presented through warnings instead, see 3.5.2.

All the annotations include the ID of the change, the information of which
type of change that has been made, as well as which version the change was
made in. Any old values that exist are also presented. Any other information
that needs to be put in the annotations and the positions of them differs between
the types of changes that exist. We go through the change types below.

NA Connected to the root of the added subtree, saying it has been added.
We do not need to inform about subtrees that have been moved into the
subtree, because the moves will be annotated themselves. We don’t need
more information than this.

13Given that the reordered nodes are all in the subtree, and it’s not made to the root of the
subtree.

49

3.5. MERGING CHAPTER 3. ANALYSIS

ND Since the node is removed, we connect this annotation to its parent and
save in the annotation the whole UC of the ND as it was in CA. If any
other changes would have been made in the UC in the other version there
would be an inconsistency presented instead.

Move This annotation is most easily connected to the root of the moved sub-
tree. The ID of the old and the new parents need to be presented. Con-
necting an annotation to the old parent could prove impossible if it has
been removed, so we choose to not do that.

PA, PD, PU Connected to the property’s node. The name of the property as
well as the value is presented. In the case of PUs, both the new and the
old values are presented.

NR, PR Connected to the node in question. The order in CA as well as the
new order is presented.

How to practically apply these annotations is discussed in 3.5.3, but first we
will talk about inconsistencies.

3.5.2 Warnings and alternatives
When inconsistencies are found we want to give the developer warnings, which
are depicted as warning signs in the figures in 3.4.1. We’ll discuss what to inform
the user about for each of the inconsistencies, first some general attributes and
then some more specific ones.

First, the type of inconsistency will be shown to the developer, not only if
it’s a conflict, syntax violation or context issue, but also which of those types.
Each inconsistency will be given an ID for it to be identifiable and referred to.
There should also be a brief explanation of what has caused the inconsistency
as well as what has been done to fix it, if anything. Optionally we can have a
grade of its importance and significance.

Every inconsistency is a combination of two changes, one in each version,
and the IDs of the two changes need to be part of the warning to connect them.
Both, only one or none of the changes may have been applied so that they are
present in the merged output file, and the different cases have been discussed
thoroughly in 3.4.1. Many inconsistencies of the same type all connected to one
certain change can be combined and presented together to save space by putting
more than two IDs in the warning, but this is just a presentational optimization
and not required.

Let’s first cover the node deletion inconsistencies. The conflicts and
syntax violations due to an ND are resolved by not applying it, and we can
therefore connect the warning to the node the ND pertains to. In the cases
where resolving inconsistencies leads us to not apply an ND we also do it this
way, and the ID of the resolved inconsistency is used. In the cases of the context
issues, the ND is applied, and we opt to apply the warning to the parent of the
deleted node instead.

As for the move inconsistencies, we can connect all of them to the node
the move pertains to, whether or not the subtree has been moved. The context
issues can be combined. All property conflicts and order conflicts can be
connected to the nodes they pertain to.

50

3.5. MERGING CHAPTER 3. ANALYSIS

3.5.3 Representation approaches
We’ve now discussed what information we would like to put in the annotations
and warnings, but we still don’t know how to do this practically in the model.
There are at least a couple of options to do this, which we will discuss here.

First off it could be done by using comments in the model. There are
different kinds of comments that can be inserted, XML comments14 or special
kinds of comments for different model types, such as the comment elements in
UML. The advantage of using the latter type of comments is that often they are
shown in the editor, but we can’t use this if we want to be independent from
any model type. As for the XML comments, they are generally not seen in the
editor, but only when looking at the code. There is also the possibility that the
XML comment tag isn’t accepted by the editor the model is opened in . One of
the disadvantages with any kind of comment is that they can be confused with
other comments. This can be solved by having a certain character sequence in
the beginning of the comment to identify it as an annotation for the merge tool.

In XMI there is an element type that can be used for our purposes, which is
the extension element. The extension element is used for putting additional
information which is necessary for different tools into the model, without af-
fecting the model itself. An extension element can have two properties, which
are optional; extender, which is used for identifying the tool that created the
extension so that only our tool will use the information in the extension, and
extenderID which is an ID used by the extender.

The extension element itself can be put in different locations in the model. It
can either be nested in the model, put directly as a child node to the node that
the additional information belongs to, or as a child node to the XMI element,
outside the actual model, in which case the ID of the node the information
belongs to can be put in the extension. We would prefer to use the latter
way, both to easier find the extensions and to not clutter up the model. It is
important to realize that the “additional information does not need to follow the
XMI serialization rules; it can be represented using any legal XML elements”
[5] (p. 117). This gives greater freedom of how to represent the information we
need.

Using extensions doesn’t solve the problem of showing the information to
the developer, but it can help out a lot if a tool which shows the annotations
in the model is made. This tool could be a stand-alone program, but it would
be much more preferable if it was a plug-in to the editor used by the developer
so that he can use the editor he is used to when making the changes. This
again makes us depend on the editor, but since there is no standardized way
in XMI to do what we want, we don’t have many options to choose between.
A proposed solution to this problem is presented by Bendix et al [4], where a
meta-model for merged models is discussed, which would make it possible to
represent inconsistencies in a standardized way. This is discussed further in 6.2.

A solution to the problem of representing annotations and warnings is very
important to find for this algorithm to work in a good way, or else the developer
has to deal with the warnings by looking at them on the XMI level, which in
most cases is an environment that is not well known to him. It is however much
preferred over using text-based merge tools for models.

14Where the syntax is: <!-- This is a comment -->.

51

3.6. TEST SUITE CHAPTER 3. ANALYSIS

3.6 Test suite
In this section we will discuss how a test suite that makes use of our previous
analysis can be created to cover all the change combinations that can occur.
First an overview of the test suite will be given before the test cases are discussed.
We will discuss the implementation of this test suite briefly in 5.3.

3.6.1 Overview
What we would like to develop is a test suite that can be used not only for this
merge algorithm, but one that can be used as a basis for test suites for merge
tools of similar types. Creating a test suite that covers every possible change,
and more importantly every possible inconsistency, that can occur when merging
XMI files requires using black box testing since it should be usable with different
kinds of merging tools. To be able to use white box testing you need access to
the code and every white box test suite is developed for a certain program. We
can presume that all merging tools will use an original file CA and two versions
of that file V1 and V2 and from these three files they will create a merged file
M. This is the common ground that the tools have and therefore we need to use
these files as our basis to create the test suite. We can let the tool being tested
take in the three files and create a result which we compare with a file with the
desired output.

There is however a problem that arises when we consider the merged file M.
As long as we have changes that aren’t in conflict with each other it’s fairly
simple to decide how to change M, since you only need to apply the changes.15
But when we encounter inconsistencies there is no standard way of dealing with
them or of representing the two alternatives of a conflict in a single file and
therefore the merged file will have to be specially created for the tool to be
tested. Alternatively, the different kinds of inconsistencies could be flagged in
the merged output files to make them usable for the test cases for every test
suite. This will then however only test the detection of the inconsistency and
not the way it has been dealt with.

The way of dealing with the inconsistencies not only affects the merged out-
put, but also the possible combinations of changes that lead to further incon-
sistencies, which needs to be taken into consideration. The analysis of changes
and combinations of them in this thesis gives a very good ground to do this
further analysis.

For merge tools that don’t give a batched output, but where the developer
needs to deal with the inconsistencies during the merge, the analysis in this
thesis can still be of good use for a test suite that tests that all kinds of initial
inconsistencies are found and that all the changes are found and made. For
every combination of changes that do not lead to any inconsistency of any type
these merge tools work like batch merge tools, as they apply all the changes
without needing the developer to make any choices. The test cases with such
change combinations can be used for testing these kinds of merge tools.

15When considering the change itself and leaving out annotations to inform the developer
about the changes.

52

3.6. TEST SUITE CHAPTER 3. ANALYSIS

3.6.2 Test cases
In this chapter we have covered the different changes and combinations of
changes that can be made to models. These lay out the foundation for the
test cases that need to be created for the test suite. We can put the test cases
in different groups depending on their nature, as presented below.

• Single changes in one version

• Combinations of changes in one version (table 3.1)

• Combinations of changes in two versions (tables 3.2 and 3.3)

• Change combinations that lead to inconsistencies due to resolving incon-
sistencies

In these cases it’s important to be able to prioritize combinations, as there
are a lot of them. For example, the cases where there is an inconsistency are
of greater importance than the ones without, and changes in one version in the
same subtree are more likely to create trouble than changes in different subtrees.
Test cases for making sure that the annotations and warnings are correct are
also important.

Other than these there are some other things that could be good to test.
For example, when testing to find moves, make sure to test moves made both
forwards and backwards in the model.16 Also, when the last child node of a
node is removed, the parent node should be represented on one row and not
two, as shown in figure 3.15.

There are also things that can go wrong when thinking of how the algorithm
has been implemented. For example, Martini instructed to traverse moved sub-
trees in the Model Comparer after the rest of the model because moves were
found by comparing their paths.17 A critical case to test would then be to see
if changes in a subtree moved from a subtree that has already been moved were
found, that is, if the moved subtree found when going through the moved sub-
trees also was checked for changes. As the algorithm has been changed, the need
for this test case is gone. This proves to say that some test cases depend on
the implementation, and as the implementation can be made in many different
ways, we can’t think of all of these cases.

Figure 3.15: When removing the last child node of a parent node, any remaining text
nodes have to be removed too.

16Dealing with both the case when the MS is found first and the case when the MD is found
first.

17This was discussed in 3.3.1.

53

Chapter 4

Design

In this chapter we will design the algorithm using the information acquired
from the previous chapter. We will present the requirements that we need to
cover while doing this. The overview and architecture of the algorithm will be
presented before delving deeper into the details of each part of it. These parts
will discuss how to find changes and inconsistencies and how to apply these,
and how these things are done in the right order for it to work.

4.1 Requirements
This section summarizes what was analyzed in chapter 3, as the result we needed
to get from that chapter was all the cases that needs to be covered in terms of
finding changes and inconsistencies and how to deal with them. These are the
requirements that we need to satisfy when making our design and our imple-
mentation.

We still have our initial requirements of having XMI valid input and output,
having unique IDs for every node in the model, having no loss of data and
having symmetry, meaning no higher priority on one of the new versions and
that the output files should look the same whichever order the input files are put
in. We have, unfortunately, had to break this requirement at times because in
certain situations it’s impossible to satisfy it,1 and in other situations satisfying
it would make us lose data and break the syntax2, and we prioritize not doing
that.

An important requirement is that we want to find and represent every single
change that has been made in the two different versions. Which these are is
analyzed and discussed in 3.3.2 and shown in table 3.1.

We also have the requirement of applying the changes in the output file as
they were and at the correct positions (also in order), as long as they are not
part of an inconsistency with another change.

The next requirement is to find all the inconsistencies that appear between
changes in two different versions.3 These are extensively analyzed and discussed

1Like when adding two different items at the same position in the two versions, as will be
presented in 4.2.4.

2Like when we choose to apply the value of one of two conflicting PAs.
3Not all context issues, but the probable ones.

54

4.2. ALGORITHM CHAPTER 4. DESIGN

in 3.3.3 as well as 3.4.2, and shown in tables 3.2 and 3.3.
We also have the requirement of dealing with the inconsistencies in the way

that is presented in 3.4.1, which is important, as our analysis of combinations
of multiple changes partly hinges on the way we deal with the inconsistencies.

This leads us to think about the requirement of being able to represent all
the inconsistencies in the merged output file, as discussed in 3.5.2. This is a
hard requirement to satisfy, as what we need to represent is not representable
naturally according to the XMI syntax.

4.2 Algorithm
Here we will present an improved version of Martini’s algorithm in detail. The
whole analysis chapter was a foundation for us to be able to write this section.

4.2.1 Overview and architecture
We have discussed the overview of the algorithm before in 2.3, but we will go
into details a bit more here. We need to understand what information we need
to be able to go through the different parts of the algorithm.

The architecture of the merge tool is based on the pipes and filters pattern
[7], which takes input data and leads it through a filter which changes the data
in a certain way and creates the output data. There are three different parts
of the algorithm, each one a filter changing the data; the Model Comparer, the
Change Comparer and the Change Applier. They are not dependent on each
other more than on the output from one part changing the input in the next
part. The three parts will be covered in detail in one part each of this section.

Figure 2.4 showed the parallel work between developers D1 and D2 and how
their changed models were taken as input into the merge tool and how the
merged output looked. In figure 4.1 the actual steps in the merge algorithm are
shown for the same input files. This will be used as an example in the discussion
below.

We have the two versions of the same XMI file and their CA,4 and we want
the output to be a merged XMI file. What’s needed from these files is the
actual model part of the XMI, so the files need to be parsed so that we can
get model representations that are traversable and easy to get data from. An
already existing API for models is preferably used for this. Before we can do
this we need to check if the input files are XMI valid. This can be done by using
a third party algorithm that is trusted. It is important to remember that the
files should be validated depending on the version of XMI that is used for them,
and also that the correct serialization pattern is used.

Once these models are obtained, each version paired with the CA will be sent
into the Model Comparer which will detect all changes made in the version in
question. These changes contain almost all the information needed to find every
single possible conflict and syntax violation in the next part of the algorithm.
The only thing more that is needed is a data structure that keeps track of all
the new references in the model. This is the output from the first part. In our
example an NA and an ND is found in V1, and in V2 an NA and a PA is found,
as well as the reference added by the PA being saved.

4We will deal with just one file to make it easier to explain.

55

F
ig

u
re

4.
1:

T
he

m
er
ge

pr
oc
es
s.

T
he

in
pu

t
fi
le
s
C
A
,
V
1
an

d
V
2
ar
e
va
lid

at
ed

an
d
pa
rs
ed

to
cr
ea
te

m
od
el
s
th
at

ar
e
pu

t
th
ro
ug
h
th
e
th
re
e
pa
rt
s
of

th
e

al
go
ri
th
m

to
cr
ea
te

th
e
m
er
ge
d
ou

tp
ut

w
hi
ch

is
se
ri
al
iz
ed

ba
ck

to
X
M
I.

56

4.2. ALGORITHM CHAPTER 4. DESIGN

The two sets of changes and references are the input to the Change Comparer
which compares them to find inconsistencies. It revises the changes; removes
changes to resolve inconsistencies and change them when needed. It also creates
warnings and options that need to be represented in the final product. The
merged set of changes and the set of warnings and options is the output. Since
the ND in V1 and the PA in V2 are in conflict, the ND is marked to not be
applied, and instead a warning is added.

Into the last part, the Change Applier, is sent the parsed model of a copy of
the CA and the combined changes from the Change Comparer. V1 and V2 are
also used as input so that items can be put in the right position.5 The changes
and annotations are applied in a certain order to make it right. The output is
simply the merged model, which is serialized to the file, creating the merged
output file for the whole algorithm.

There are other ways and orders of comparing models and changes and ap-
plying changes. An optional approach is to simultaneously go through the two
versions and compare them with the CA and as changes are found compare
them with how the other version looks and in the merged output file apply the
change if possible, and a conflict solution if there’s a conflict. For changes that
are already applied and later are found to be in conflict with other changes,
they can be revised.

The approach used in this thesis has a few advantages to this approach.
Firstly, the different parts of the merge algorithm are taken care of in separate
parts of the program, instead of all at once, which makes design and implementa-
tion of the algorithm easier. Secondly, because of the complexity of the possible
inconsistencies it’s much preferred to try to find them first after all changes are
found, just as it’s preferred to apply changes first after all inconsistencies are
found, so as to not make any work needlessly (like revising applied changes).
Finding the changes that are applied and that possibly are in conflict with a
newly found change is also a problem if they’re not saved in a data structure
where they can be easily accessed, which they are in our approach.

4.2.2 Model comparison
Here we will discuss and decide how we in the Model Comparer go through CA
and a version V and compare them to find all the changes made in V. We need
to make clear which of the models we get what information from, so as to not
get confused. For this means every time we refer to an item in CA it will be
called CA<item>, and V<item> for an item in V.

The changes that are found are preferably stored in data structures where
they can be gone through in the next part depending on their type of change.
So we can have an array for every change type. The references should be stored
so that we can get every reference to a certain node when we want that, so a
map with the node ID as key and a list of the changes that create the references
to that node as value works well.

The model consists of nodes which we want to compare with each other.
Because of the recursive structure of the model (nodes with properties, having
child nodes with properties, etc.) we can create a method that compares two

5The reason for this is discussed later in the end of 4.2.4.

57

4.2. ALGORITHM CHAPTER 4. DESIGN

corresponding nodes, and then recursively call this method for each of the child
nodes that exist in both CA and V. This method will be called the node com-
parison method. We start the algorithm at the root of both the models, CAroot
and Vroot, which are easy to find and from which there are paths to the whole
model. For the nodes that have been added, deleted or moved we need to take
other steps which we will go into below.

This part of the algorithm, as it was presented in Martini [10] (p. 47),
didn’t go into any details about how to go through the two different models,
and is presented in a way suggesting that all the nodes in the models should be
analyzed in the same way, despite them being able to exist in one or both of the
two models. Looking for new references isn’t completely covered there either.
And as we’ve discussed before in 3.2.3, no consideration was given to finding
reordering changes either.

We have already validated the files before parsing them and calling theModel
Comparer. It is however not enough that the models themselves are XMI valid,
but we should check and compare the root of the models with each other to make
sure that it is actually different versions of the same models that are being used
as input. This can be accomplished simply by checking and comparing the ID of
the root nodes. If everything is in order, the comparing method can commence,
otherwise the algorithm will be stopped.

Comparing properties

The first thing that will be done in the method is to compare the properties of
the nodes. This is because these contain the only actual data of the node, and
it is a natural place to start. We also want to make these comparisons before
we make recursive calls of the method for the child nodes. We could take care
of them after the recursive call, but we choose to do it before, because the flow
of the program is easier to follow and implement if the recursive call is made in
the end of the method.

Now, we need to find the properties that exist in both CA and V to be able
to compare them, but we can’t be sure that they are in the same order. We
can go through each CAproperty from the first to the last and try to find a
Vproperty with the same name. If it doesn’t exist, we have found a PD, which
we store. If it does exist, we compare the values of the properties; if they are
different we store a PU, if they are the same nothing has changed. After all the
CAproperties have been checked, we can go through the Vproperties that are
left and store PAs for each of them. In the cases of PUs and PAs being found
we will check if they are new references, as discussed below.

As for finding PRs, this can be done as the CAproperties are gone through.
For each Vproperty that is found we can compare and see if the index value
is higher than the last one, in which case there has been no change of order.
But if it’s lower we have found a PR, because the Vproperty was thus found to
be located at an earlier position than a property that in CA was located at an
earlier position, see figure 4.2. The names of the properties that exist in both
CA and V will be put in a list that can be used to create the order lists for
the properties should the order of the items differ from each other and we find
a PR. The PR can be stored first after all the CAproperties have been gone
through.

58

4.2. ALGORITHM CHAPTER 4. DESIGN

Figure 4.2: Comparison of the order of properties or child nodes of a node in CA and
in V. When two lines cross each other, like those of item 3 and 4, there is a reordering.
Items 2, 4, 3 and 5 are part of the reordering.

Comparing child nodes

After comparing the properties, we will compare the child nodes, which is the
only thing left of the node to compare after dealing with the properties. De-
pending on the outcome we will do recursive calls of the node comparison method
on them, or something else.

The comparison is done in a similar way as comparing the properties. For
each CAchild we try to find a Vchild with the same ID (we need an API that
supports this). If it doesn’t exist, we have found an ND which will be stored. If
it does exist, it can have the same parent, in which case there is no change, or a
different parent, in which case we have found a move, which we will store. After
going through every CAchild, we go through the remaining Vchildren and check
if they exist in CA, but under another parent. If they don’t we have found an
NA, which we store. If they do exist we have found an MD, which we choose to
not store. This is because the MS corresponding to the MD will either already
have been found or will be found later (depending on in which direction the
move was made), and we decide to store the moves when we encounter their
source.

We find NRs in a fashion similar to how we find PRs, except that moved
nodes are also part of the nodes that aren’t represented in the order.

Traversing the model

The child nodes will be dealt with differently depending on how they fared in
the comparison. If there has been no structural change made to the Vchild,
the node comparison method is simply called recursively. The subtrees that
are moved in V will be traversed as discussed in 3.3.1, just as if they were not
moved, using the node comparison method. The nodes exist in both CA and
V, and the change of parent for the node that has been moved is already found.
The fact that the subtree is in a different part of the model won’t affect the
further comparison since we check for moves by comparing the parents of the
nodes and not their paths to the root.

For the nodes that are added or deleted we will call different methods. Since
the subtrees of these nodes only exist in one version, the only changes that can
be found in them are moves. For every ND we can call another recursive method
which traverses the CAnodes and that only tries to find corresponding nodes in
V. For every Vnode that exists we have found a move and will store this, and
the ID of the moved node will be stored in the NA to show that its subtree is
not part of the ND’s CA. For these Vnodes we will deal with them as discussed

59

4.2. ALGORITHM CHAPTER 4. DESIGN

above, by calling the node comparison method. The NAs are dealt with in a
similar manner. Every Vnode in the subtree is traversed using another simple
recursive method to find corresponding nodes in CA. However, when a move
is found in this case it is not stored because it’s an MD and not an MS, and
we have chosen to store moves only when we find their MSs. Just as with the
NDs, the IDs of the moved nodes are stored in the NA to describe its CA. In
the method for NAs we will also look for new references, as discussed below.

As for the traversing order, we choose to go through the model in a depth-
first order. It gives the advantage of easier coding with recursive methods.
Using depth-first order we can choose to simply make a recursive call of the
node comparison method every time we find that CAchild’s corresponding node
Vchild is not deleted or moved. The downside to this is that for every level
we go deeper we still need to keep track of the nodes above, their order and
which ones that haven’t been traversed. Instead we could go through all the
child nodes (but not their child nodes) and find all structural changes and NRs
before we go deeper.6 This way we don’t need to store that much information
during the traversal.

Finding new references

We have discussed how to traverse the model and find all the changes, but there
is one thing left to do that is very important, and that is to find all the new
references in the model.

First we will deal with the problem of identifying a reference property when
we encounter one. Since we have a requirement to not be dependent on any
model type we can’t check if the name of the property is one of the names of
reference properties for that type of model. We have a couple of choices in this
situation. Either we can give the opportunity to the user to provide the names
of the reference properties (which could be an error prone solution), or we parse
the values of the properties and compare with the format of UUIDs, of which we
require the IDs to be. There are also cases where a property can contain multiple
references that are simply put in the same string after each other with a space
between.7 We need to take this into consideration when looking for references.
The possible problems that can appear due to the possibility of representing
multiple references using only one property have not been analyzed very closely.

As we know, only NAs, PAs and PUs can create new references. These can
be checked for when going through the models looking for changes. Whenever
a PA or PU is found the value can be checked, and in the method for going
through added nodes we can go through all the properties to check for references.
Remember to not check the ID property, since it’s of the correct format but not
a reference.

There are also the cases where not applying NDs, PDs or PUs could lead to
the reappearance of references that existed in CA but not in any of the changed
versions. These can either be checked during the traversal of the model when
looking for changes, or looked for later in case they are needed, to not do any
work in vain. If saved, these references should not be put in the map with the

6Note that this is a combination of depth-first and breadth-first order, but it’s still mainly
depth-first.

7The reference properties memberEnd and clientDependency in UML2 can have multiple
references represented in this way.

60

4.2. ALGORITHM CHAPTER 4. DESIGN

found new references, because they are not new references. They can be stored
in the changes to which they belong, where they come into use in the next part
of the algorithm.

4.2.3 Change comparison
Here we will discuss the comparison of changes in Change Comparer. The order
in which we decide to go through the different types of changes usually doesn’t
make any difference, because we won’t be removing any changes from the lists.
If we find an inconsistency, the change that won’t be applied will just be marked
as such, so that we can find other inconsistencies depending on that change.

Below we go through the different kinds of inconsistencies and how we go
about to find them, in the order they are presented in 3.4.1. The order these are
dealt with only matters in one case; we need to find and deal with any conflicts
between two NRs and between two PRs before we find any other, because the
outcome of this makes a difference when comparing MDs and PAs, as we will
see.

When searching for these inconsistencies, for different types of changes we
will compare V1 with V2 first, and then V2 with V1. That is, go through the
changes of one type in one version first, and then the other. Doing it like this
makes it easier to code, but leads to a few cases we need to be cautious about,
as follows.

Two changes of the same type made on the same item don’t need to be
found and dealt with twice, whether they are the exact same change or not.8
We therefore only need to look for these kinds of combinations by going through
the list of changes from one of the versions, otherwise we might get two warnings
for the same thing or break the code by fixing something that is already fixed.

For combinations of changes that are on the same item but where the changes
are of different types,9 we will simply only cover them when going through one
of the types of changes, and not the other (given that the combinations are
possible in the first place).

In the case we have two changes that are identical (except for the version),
we not only want to compare them only once, but it’s important to make sure
that we in the next part of the algorithm only apply this change once, and
not try to do it twice. Therefore one of the changes can be marked to not be
applied, it doesn’t matter from which version, since the changes are the same.
It is as usual still kept for further comparison. We will also change the version
of the change that is to be applied to show both versions, so that the developer
knows that it’s made in both versions. This is what will be done for any pair
of changes that are identical. Alternatively, we could introduce a new attribute
for changes, dealing with identical changes. This attribute would have default
value null, but once an identical change is found, it could be used to point
them at each other.

When we look for inconsistencies below we will do it in a way that all changes
that create a certain type of inconsistency with a certain change will be found
at the same time so that an inconsistency only needs to be stored at one point
and doesn’t need to be updated later when a new inconsistency with the same

8Like two moves of the same node, or two PUs on the same property.
9Like a PU and a PD on the same property.

61

4.2. ALGORITHM CHAPTER 4. DESIGN

change is found. Examples of these are multiple changes being in conflict with
the same ND, or multiple changes under a moved subtree creating context issues.

Since Martini [10] didn’t consider the change of order as a change, his al-
gorithm lacks the consideration of this, both the problem of adding items in
their appropriate position and conflicts with reordering changes. This part of
the algorithm (p. 48) is also presented in a way that is hard to follow in detail.
No comment has been made as to how to deal with changes that are the same,
and new inconsistencies that appear through resolving other inconsistencies are
only covered a little bit.10

Finding node deletion inconsistencies

The lists of NDs are gone through one version at a time, and for each ND on a
node N in V1 (vice versa for V2) we look for any NAs, MDs, PAs, PUs, NRs or
PRs that have been made in the UC of the ND in V2, if N is part of an NR in V2
and if N itself has been moved.11 Also, new references to N are looked for, but
only in the case that N is a child node of the model root, because references can
only be made to those nodes. Any of these cases leads to the ND being marked
not to be applied and the creation of a warning mentioning all the conflicting
changes, which we store in a data structure containing warnings.

Remember that we need to make sure that we only check the UC of the ND
and not the whole subtree of N. Either we have saved the IDs of the nodes moved
from under N in V1, or we check for them at this point in the algorithm. It is
however easier and faster to use saved IDs, and moves are not that common.

When finding an ND that is to be discarded, we can check for any old ref-
erences that pop up. Either this has already been done and the references are
stored in the change, or we can check the models again.12 These references can
be added to the map of new references. This is because they are now liable to
make a syntax violation with other NDs in the same version that the discarded
ND existed. This is what will be done for any discarded change that contains
old references.

We also look for the cases where there are MSs or other NDs among the descen-
dants of N, or PDs in N’s subtree (including N). In each of these cases we create
a context issue warning which we store. The NDs and PDs are also marked as
not to be applied, since they can be incorporated into the ND above them, and
can’t be applied after that ND has been applied.

Left is then only the case where there’s NDs made on the same nodes in both
versions. To find these we only need to go through the list of NDs of one of the
versions. In these cases the changes are the same, and they are dealt with as
discussed above.

10In the case where the old value of two conflicting PUs leads to the old value being used,
and if it’s a reference to a deleted node, the ND is then discarded.

11How to find these changes easily is discussed in 5.2.
12To check the models we need to have them as input to the Change Comparer.

62

4.2. ALGORITHM CHAPTER 4. DESIGN

Finding move inconsistencies

The whole list of moves in one version can be traversed and compared with the
moves in the other version to find all the combinations of moves which are made
on the same node in the two versions. If we find such a pair and they are moved
to different parents we have found a conflict. The moves are marked to not be
applied and we create a warning.

If the moves are made to the same parent, we don’t have a conflict, and the
two changes are marked as the same change as explained above. But we still
need to do a comparison of the positions in order that they have. First of all,
if there is an NR13 made to the new parent in either of the versions, the order
of the child nodes in the two versions are different and we can therefore not
compare the positions. We will therefore not do that in this case, but use the
position in the version with the NR. In the case both versions have NRs made
to the parent, the position depends on what happened with the comparison
between those two changes.14 If the NRs were the same, then we can continue
the comparison, because the order will be the same, just as if there were no NR
at all. If they are not the same, however, we can’t make any comparison and
we end up needing to put the moved node last in the list.

If there is no NR,15 the child nodes have the same order and we can make
a comparison. There are a few ways to make this comparison, and we will
discuss those further in 4.2.4. When the positions of the two items have been
acquired, and they are the same, then the moves are exactly the same, and
nothing more needs to be done, since the changes are already marked as being
the same change. If the positions are different, then one of the positions is cho-
sen and a warning is created to inform the developer about the other possible
position.

Every move from both versions needs to be gone through to check for NRs
to the parents of the MSs in the other version. If such a conflict is found, the
move is marked to not be applied and a warning is created and stored.

For every move of a node N in one version we check in the other version for
any NAs, NDs, MSs or MDs made in the UC of the move (not including N) and
any PAs, PDs, PUs, NRs and PRs made in the UC of the move (including N).
If one or many of such changes are found, a warning connected to N is made
informing the developer about all the possible context issues found.

Finding property conflicts

We go through all the PDs in one version at a time and look for PUs and PRs
made to the same properties in the other version. For each such occasion the
PD is marked to not be applied and a warning about this is made. Remember
that there can be made both PUs and PRs to the same property, and there’s
only need for one warning even if a PD is in conflict with both a PU and a PR.
Important is also to not forget to check for two PDs of the same property to
mark them as the same change.

13Which the moved node can’t be part of, so there is no conflict in any of the versions.
14This is the reason those conflicts had to be dealt with first.
15Or if there are two NRs and their orders are the same.

63

4.2. ALGORITHM CHAPTER 4. DESIGN

To find all the cases of PAs and PUs in different versions made to the same
properties we again only need to go through one list. Every time two PUs of
the same property is found, the values are compared and the results (same or
different) lead us to either mark both changes as not to be applied or mark
them as the same change. In the case they’re different and the old value is an
old reference it needs to be added to the map of new references, as done with
references in discarded NDs. For two PAs with the same name we deal with it
the same way as with PUs, except for the old reference part.

There is also the fact that we just as with moves of the same node to the
same parent need to compare the positions. This is done in a similar way as
done for the moves, again with the need to check for reorderings (one or two
PRs) on the node the PA is in.

Finding order conflicts

The only conflicts left to discuss how to find are the ones between two NRs or
two PRs. These are simply found by going through the list of NRs and PRs in
one version to find a change of the same kind in the other version pertaining to
the same node. In these cases both the changes are marked as not to be applied
and a warning is created.

Remember that we need to find and deal with these conflicts before we deal
with the other inconsistencies, because of the possibility of the result being of
need when deciding the position of an item that is added to a node by either
two MDs or two PAs.

4.2.4 Change application
Here we will discuss how to best apply the changes that we need to do onM, the
copy of the CA. Unlike Change Comparer where we can look for different kinds
of inconsistencies in any order we like, we need to apply some of the changes
in a certain order, to make sure that all changes are appliable. We also need
to deal with the problem of adding new items into lists in the correct position,
and validation of the merged output.

Change type application order

What we start out with in this part of the algorithm is M and all the changes,
options and warnings that need to be applied to M. Some of the change types
need to be applied in a certain order, but not all of them. The structural changes
and the data changes don’t depend on each other at all during application, since
no structural change removes any node that is used when applying the data
changes. Within the two groups there is a preferred order, which is presented
and explained below. This is the order we have chosen:

NRs We will start by applying all the NRs, because if a new node is to be added
as a sibling to the reordered nodes, its position is in the new order.

NAs Next we apply the NAs. This is because we can’t apply moves to added
subtrees before those subtrees actually exist in the model.

Moves Once all the subtrees are added we can apply all the moves.

64

4.2. ALGORITHM CHAPTER 4. DESIGN

NDs We can only apply the NDs after we have applied the moves since we don’t
want to delete any subtrees that should be moved from the subtrees that
are deleted.

PRs The PRs need to be applied before the other data changes of the same
reasons NRs need to be applied before the other structural changes. PRs
can however be applied before all the structural changes too.

PAs PAs need to be applied before PDs to make it easier to position items in
the right order.

PUs These can be applied whenever, as long as it’s after the PRs.

PDs These can be applied whenever, as long as it’s after the PRs and PAs.

The changes within a certain change type can be applied in whichever order we
would like; top-down, bottom-up, any random order.16 Contrary to this, Martini
[10] suggested applying the moves and NDs simultaneously in a bottom-up order.
According to his text we should “apply first the changes in the lower nodes,
so that their paths are not changed by higher level node moves or deletions”,
because otherwise “we are not able to reach [them] by [their] path[s]” (p. 40).
This is not needed, however. We don’t need to preserve the path to a certain
node to access it, since we can easily access it by its ID. To be able to apply
any change we only need to make sure that the node exists.17 This of course
means that we need to use an API which supports finding nodes by their IDs,
but we have to have this in Model Comparer when comparing nodes anyway, so
we take this for granted.

For each of these change types we choose to apply V1’s changes first and
then V2’s. This will in most cases not break our requirement of symmetry, since
applying one change usually isn’t affected by having another change applied
before or after it. There are however some cases where changes are affected by
earlier changes, and we can’t satisfy our requirement of symmetry. That is when
we add different items at the same position in different versions (combinations
of NAs and MDs or of PAs). In these cases we need to choose to put one item
before the other, because they can’t be put in the same position. We have a
couple of choices in how to do this, as follows.

First, we can choose to just apply the changes in the order they are gone
through. Since we’ve chosen to apply the changes from V1 before the changes
from V2, the V2 items will then be positioned before the V1 items.18 If there
should be many added items in a row, all the items from V2 is put before the
ones in V1.

Secondly, we can choose to apply the items in alphabetic order, comparing
the names or hash values of the items. This way the requirement of symmetry
will not be broken, as the items will be put in the same order independent on
the order of the input to the algorithm.

16Unless the second method under the section Order management below is used.
17And/or the new parent if the change is a move or an NA.
18Since the V1 items are pushed forward to higher index values by the insertion of the V2

items.

65

4.2. ALGORITHM CHAPTER 4. DESIGN

Applying changes

How to actually apply the changes to the model and how hard that is depends
mostly on the API that is used and what possibilities that are given in terms
of accessing and changing the model. Most of the changes that need to be done
are not difficult in any way, like putting a new value on a property or removing
a subtree. How to do this will not be discussed further in this thesis.

A part of the actual application of changes, however, is the application of
the annotations that inform the developer about the change. Since we in the
annotations want to be able to represent the old values, the ones before the
changes, the easiest way to apply them is while applying the changes themselves
because we have access to the old values at this time. The information that
should be given in the annotations is discussed in 3.5.1.

Warnings can, unlike annotations, be applied after all the changes have been
applied. This is because the information needed for them should already be
acquired and saved at the time the warning was created.

When applying NAs we also need to think about not copying the whole sub-
tree from V to M, but only the UC of the NA, which doesn’t include subtrees
that are later moved to the added subtree. If we don’t do this we might get du-
plicated nodes in the model, which isn’t allowed, and depending on the API that
is used, this would lead to different things happening, like the new duplicated
node not being applied, or the old one being moved automatically, or allowing
the model to have duplicated nodes. We do not need to worry about this when
applying NDs since the moves have already been applied before them.

We also need to take the order positions into account, which will be discussed
below.

Order management

There is still the problem of how to find where to put new items19 in a list when
their positions depend on other changes. We can handle this in a few different
ways, which we will discuss here.

The first method is the simplest way, which is just to not care about the
positions and put every new item at the end of the list, in which case we lose
the positions and the items are put in the order they are dealt with, breaking
our non-loss of data requirement and also our symmetry requirement. If the
order of items is not a high priority when implementing the merge tool, we can
choose to implement this solution first and deal with more important issues
before taking care of this issue. This method is not actually a solution to the
problem, which we will try to deal with in the following methods.

The second method is to make use of the index values of the changes made
to the list. If we have an addition of an item in V1 and no other changes are
made in either version, the item is inserted at the index value that it had in V1.
Every deletion (or MS) at a lower index in V2 will lead to that the index value
of the addition in V1 becomes lower, and every addition (or MD) at a lower

19We will henceforth use this term to refer to items (nodes or properties) added to a list
through NAs, PAs or MDs.

66

4.2. ALGORITHM CHAPTER 4. DESIGN

index in V2 leads to it becoming higher. We can check all the changes to the
same list and figure out the new index value of the new item like this.

However, it’s not just that simple. All changes are not made at the same
time, and for every change the index values of the siblings change, so we have
to decide in which order the changes are to be applied for us to be able to know
the correct index values for them to be put in. We need the right position at the
right time. We will have to decide the order of applying the different types of
changes, which version’s changes to apply first and if we should apply changes
on items with lower index values or higher index values first.20 If this method
is used, the index values should be calculated after all inconsistencies are found
and before changes are being applied, between Change Comparer and Change
Applier. This is because we can get discarded deletions and moves, and MDs
and PAs not put at a certain position, which makes a difference for the index
values of later items.

Using this method leads to a very strict order of application, and complicated
calculating methods, but it works. That is, until you consider moves. A move
should be made in one step. Removing a node from its parent first and then
adding it to its new parent later after some other changes have been applied is
complicated. This is because the subtree that is being moved will not be part of
the model and therefore not accessible during the time the subtree is removed
from its old parent but not yet added to its new one. We can make sure that we
don’t access the subtree to apply any other moves before the subtree is added
again by applying all the moves in a top-down order to fix this problem. If we
consider the other way around where a moved node is added to its new parent
before it’s been removed from its old parent we also have a problem. We can’t
have duplicates of nodes in the model since we rely on their IDs to access the
nodes, so this way is not recommended. If we were to add a subtree to a new
parent we must remove it from its old one before and thus we would need to
replace the old subtree with a new node that is there just to not change the
index values of its siblings. When the algorithm later reaches this node, it will
simply be removed. If we were to use not only the ID of a node to access it, but
also its path, the identification of a node wouldn’t solely rely on the ID of it
but also its parents, in which case we could distinguish between two nodes that
actually are the same. But using an approach that relies on the paths to the
nodes that we access would lead to other problems, as we’ve discussed above.
Additionally, most APIs would not allow duplicated nodes in the model at any
time, since it breaks the syntax.

As we can see, this method is not a simple one and there are a lot of things
that need to be taken into consideration, and if there is something done wrong
somewhere it can ruin later change applications. We will therefore discard this
method in favor for the next one.

The third method lets us take care of the problem without using the in-
dex values, but we will have to revisit the models of the two versions, and not
just use the copied CA model, to be able to make it work. This is the reason
that V1 and V2 are shown as input to Change Applier in figure 4.1.

A new item is put in a certain position in order among the siblings in the
same version, and it’s only in regards to these items that the new item has a

20This is in case both the change types and the versions are the same.

67

4.2. ALGORITHM CHAPTER 4. DESIGN

position. As we discussed in 3.2.3, we can’t rely on the previous or next item,
because they could be deleted or moved in the other version. But we can rely on
all the items in the list in the same version, and should all of these be deleted or
moved, then the item doesn’t have a specific position in the list. We therefore
need to know which of the items in the same version that are in the list, and
not deleted or moved in the other version, or for that matter, not yet added.

Every single time we add a new item we need to compare the items that are
in M with the ones in the version the item was added, and add the item at the
appropriate location. This way we don’t rely on having to calculate positions
beforehand, and we don’t have the same problem with the moves. We also make
sure that when adding many new items at the same position, like when adding
a lot of properties to a node without properties, they will end up in the correct
order. This is always true, no matter which order they are applied.

Validation of merged output

The very last thing that needs to be done as part of the merge is to validate
the merged output to make sure that it follows the XMI specification. Unless
something is wrong with the merge tool, or some case is not covered, this step
should always go through without any problems.

68

Chapter 5

Implementation

This chapter will describe the implementation of the algorithm and the test
suite. We will discuss the choice of the API used when implementing the merge
tool. We will also bring up the problems that appeared during implementa-
tion and how much that actually was finished of the algorithm, as well as the
implementation of the test suite.

5.1 Choosing API
The algorithm was decided to be implemented in Java, but an API for the
parsing and manipulation of the models also needed to be chosen. There were a
few alternatives, although some of them either were not extensive enough, didn’t
exist anymore (like XMI Framework and JOB) or were not for free (like Rational
Rose and Rational Software Architect). The choice in the end was between DOM
(Document Object Model) and EMF (Eclipse Modeling Framework).

DOM defines a standard way for accessing and manipulating XML docu-
ments, which means that it’s not explicitly created for manipulating XMI doc-
uments, and thus we would need to be more careful to not break any syntax
specific for XMI and not just XML as a whole. DOM provides an easy way to
parse and traverse the model and get access to and change its content. What
it doesn’t provide, however, is a way to access the nodes in the model by using
their ID.

EMF provides an extensive framework for creating models which can be used
to generate Java code. There are many different parts of EMF which concentrate
on different things, e.g. EMF Compare which is EMF’s own tool for matching
and differenting models. Because of the size of EMF, it is very complicated, and
it’s not exactly meant for traversing and accessing data in arbitrary models, but
to work with specific models in Eclipse. However, EMF supports XMI directly,
and most importantly, it has the possibility to access nodes in the model by
using their IDs. These are the reasons that we chose EMF as the API, even if
it took a long time to learn and understand.

The things that were most irritating when working with EMF was the trouble
with traversing and accessing data in the model. To simplify, each node in the
model was represented by an AnyType object which had two FeatureMaps, one
for the child nodes and one for the attributes. Getting an element out of the

69

5.2. ALGORITHM IMPLEMENTATIONCHAPTER 5. IMPLEMENTATION

FeatureMaps based on the name of the element was not possible, but had to
be done by the index value, and getting the value of an element taken out of
the FeatureMap was not possible either, but had to be done at a higher level.
This could be worked around by going through the FeatureMaps and putting
the data in our own data type for easier access later.

5.2 Algorithm implementation
In the first stages of this thesis the idea was to implement and test Martini’s
algorithm [10] to show that it could be implemented and what kinds of problems
that would appear. The overview of that algorithm was presented in 2.3. As the
implementation went on, things that were not taken into consideration in the
algorithm appeared, most prominently order changes and the need for keeping
the order, and the differences between NAs and PAs, and NDs and PDs. Some
changes were made in the design and incorporated in the implementation.

After most of the implementation was done, the analysis for finding all the
change combinations was started to create a foundation for the test suite to be
implemented. As that analysis went on, more things were discovered, such as
the way of looking for a move by comparing parents rather than paths (which
changed the way of traversal in the Model Comparer), how to compare the order
of items, and which inconsistencies that can lead to further inconsistencies, etc.
As time didn’t allow for further changes in the implementation (or for a full
implementation in the first place), the finished product was not implemented
exactly the way it has been presented in the analysis and design chapters.

One of the biggest challenges during implementation was to try to find a
way to put annotations and warnings in the model and to represent parts of the
model in them without them being part of the model itself. This proved to be
too difficult and time consuming, and thus it was not implemented in the end.
EMF does not at the moment directly support the usage of extensions, which
made it a lot harder.

Another hard challenge was to make sure to keep the position in order of
items added. This was not prioritized highly, and due to time restrictions a
proper solution was not implemented and new items were added at the end of
the lists instead.

During the implementation, it was necessary to be able to easily find all the
changes in the subtree of a certain node.1 To make this easier, a ChangeTreeNode
class was implemented, which could be used to construct a model which is struc-
turally a copy of the model, a change tree, but that only includes the root paths
to the nodes that had changes made to them. Every ChangeTreeNode can point
to multiple changes in the lists of changes that are stored. This way, the sub-
tree of a ChangeTreeNode include references to all the changes that exist in the
subtree of a change pointed to in that ChangeTreeNode. This meant that there
was no need to go through every change to check their paths when looking for
changes in a subtree.

While the Change Applier that was implemented couldn’t represent the an-
notations and warnings, the Model Comparer and the Change Comparer worked
well, and merged output which followed the rules stated in Martini’s thesis could
be created, although without annotations.

1When checking for ND and move inconsistencies.

70

5.3. TEST SUITE IMPLEMENTATIONCHAPTER 5. IMPLEMENTATION

5.3 Test suite implementation
The test suite implementation that was made was not complete as the imple-
mentation of the algorithm and the analysis of the test suite was prioritized
higher. The implementation involved the tedious work of creating the CAs,
V1s, V2s and Ms for every test case, which was done by using UML models.

Because of the amount of the test cases and the lack of time, only some of
them were created. These included around 20 cases of finding and applying
changes and combinations of changes in one version, as they are the first and
easiest cases to deal with. A handful test cases for inconsistencies, such as node
deletion conflicts, move conflicts and property conflicts, were also implemented.
In all of these cases no annotations or warnings were applied.

During the implementation, white box testing for the different parts of the
algorithm were made, which tested them part by part. This made it easier to
know if the different parts worked as they should by themselves. As not the
whole algorithm was implemented, not all parts of it could be tested by black box
tests. And this did not only apply to the parts that were not implemented (such
as applying new items in the right order), but since the annotations for changes
and warnings for inconsistencies were not implemented, the proper target models
for the merged output could not be created satisfactory to test what was needed
in all cases.

For example, if a test for finding conflicts with an ND was made, and multiple
changes are put in the UC of the ND, then the merged output file should not
have the ND applied. But this does not mean that all the conflicts between the
ND and the other changes were made. The changes could be made one by one
in different test cases, but then the combining of inconsistencies of the same
type into one inconsistency for easier representation in the merged output file
would not be tested.

The final test suite implementation that was made covered all the basic cases
of finding changes and applying them, but it did not cover enough combinations
of changes to say much about how well covering the implementation of the
algorithm was. Most of the combinations that lead to inconsistencies were not
implemented, but the test cases that were implemented all passed.

71

Chapter 6

Discussion

In this chapter we will discuss the work made in this thesis. We will summarize
the results that have been achieved throughout the thesis, and which of the goals
that were accomplished and which were not. The limitations of the algorithm
will be discussed, as well as what use the analysis of this thesis can be of for
further research and for other merge tools.

Some work of interest made by other people, which are related to that of this
thesis, will then be discussed. Lastly, we will summarize and present further
research that can be made in this area.

6.1 Results
The algorithm presented in this thesis is a state-based 3-way batch merge algo-
rithm for models serialized in XMI. It takes two versions of the same model and
their common ancestor and compares them on the XMI level to find changes
made in the two versions and compare these versions to find any inconsistencies
of any kind between them. All changes are applied on a copy of the common
ancestor, which becomes the merged output. Also any inconsistencies are rep-
resented in the merged output.

The goal with the thesis was to use Martini’s thesis [10] as ground and further
analyze and implement his algorithm to find out if it can be implemented, if it
is correct and how well-covering it is. If any of these areas were not up to par,
they were to be fixed through further analysis and design.

The implementation of Martini’s algorithm was done as part of this thesis,
and although it was not completed, it was possible to implement without any
bigger problems, except the one mentioned below. Martini’s algorithm showed
to be work in the cases it covered, but there were many cases that were not
covered. These were found and taken care of through further analysis.

We have made a thorough analysis of what differences there can be between
changes and what types of changes that can be made to a model. The things
that can differ are the version, the position, the change type, the property name
and value, and some other minor things. The change types are additions and
deletions of both nodes and properties, moves of nodes, updates of values of
properties and reorderings of the child nodes or properties of a node.

To make sure that the algorithm was well covering, every single combination

72

6.2. RELATED WORK CHAPTER 6. DISCUSSION

of changes in one version of the model were gone through to find all the changes,
and every single combination of changes in both versions of the model were gone
through to see if they were creating any types of inconsistencies together, and
decisions were made as how to deal with those inconsistencies. Every conflict
and syntax violation possible has been mentioned and dealt with in this analysis.
We did also find probable context issues, which can be further researched to find
more on higher levels for specific model types, but no merge tool will probably
ever be able to catch them all.

The restrictions of the algorithm are not that many. The files that are used
as input have to be XMI valid and versions of the same model, all nodes in
the model have to have an ID unique for the model and the models have to be
serialized in a way that no nested entities are possible.

The main problem that lies ahead is that of presenting the information about
the inconsistencies to the developer, and representing it in the file without break-
ing the XMI syntax and without interfering with the rest of the model. Given
the importance of being able to merge models, and the complexity of doing so,
a standard for representing alternatives in XMI could be created by OMG, but
at the moment no such functionality is planned to be introduced.

The analysis and design that has been presented in this thesis can be of good
use as reference for further work on model merge tools and test suites for model
merge tools of any kind, as the type of algorithm used can differ greatly, but the
types of changes and change combinations still are the same on the XMI level.

6.2 Related work
As mentioned many times earlier, this thesis is largely based on Martini’s mas-
ter’s thesis [10], which is summarized in 2.3. The algorithm that Martini de-
veloped was well analyzed and presented, but not completely covering all cases.
Since it is the foundation for this thesis, the algorithms look very similar with
some additions and changes in the algorithm presented here. Those changes
have been discussed in more detail in 5.2 and 6.1.

In Bendix et al. [3] the jump from using traditional development to using
model-driven development (MDD) and the problems it brings are discussed, as
well as the experiences of making this jump in Ericsson. Different ways of work-
ing with models are described, where the model centric development is being
used at Ericsson, where the code is generated from the models and not the other
way around.

The experiences of using MDD in Ericsson were positive, as it made it easier
for project participants to understand the system and to handle complexity, etc.
But the use of version control with models proved to be a problem, as we know.
The teams would either have to choose programming instead of modelling, or
deal with the version control problem in another way. Solutions have been to
make excessive planning in order to serialize work to prevent conflicts, to make
manual merges with the model editor, or even to use text-based merge tools and
later make manual edits of the models in the file representation of the model,
at the XMI level. The algorithm presented in this thesis could be of great help
in such a situation, even in its current state without being able to represent
annotations and warnings in the models.

73

6.2. RELATED WORK CHAPTER 6. DISCUSSION

The paper brings up many problems that have been encountered, and wishes
for the future from the developers’ point of view.

The algorithm in this thesis uses a state-based approach, and the other ap-
proach to model merge is the operation-based approach. In the operation-based
approach [8], the algorithm relies on the editor to record the operations that
have been made on the files so that the sequences of operations from the differ-
ent versions can be merged into one sequence of operations which then later is
used to create the merged output file.

Having access to the change operations that have been made to the models
and not just the final states of the models, there is surely more that can be de-
duces as to what intentions the developers had with certain changes. If we for
this thesis would have had the actual recorded changes instead of finished state
changes, the change combination analysis would have been different, but there
are still many things that would be similar. As such, the results that are reached
in this thesis could be of use for developers of operation-based merge algorithms.

In Barrett et al. [2] the authors try to remove one of the major drawbacks
that comes with operation-based merging, which is the tight coupling between
the tool performing the merge and the recorder (editor) tracking the changes
made to the models. This is done in three steps: (1) abstracting away differences
between change recorder outputs; (2) reconstructing modified models from the
change logs; and (3) incorporating change history into the models themselves.

In their paper the authors present how they have incorporated this idea into
their model merge tool Mirador. They have created a change record structure in
which any type of change record objects (changes recorded from different change
recorders) should be able to be represented. The structure contains interfaces
so that recorder-specific classes can be implemented to deal with the way that
records are represented for certain change recorders. Though this means that
there needs to be implementation made for every type of recorder format, it’s
still better than having to deal with all of them in different ways. This is a step
towards making a standard for change recording.

The authors have also created a system in Mirador which gives the user the
opportunity to choose how to match the elements in the models, where many
different matching strategies can be used at the same time creating an overall
score computed with a weighted distance function. The strategies – which may
be externally supplied – and their weights are chosen by the user at start-up. In
this thesis we have fully relied on the IDs of the elements for matching, which
is a limitation. A feature such as this could be of use for the merge algorithm
presented in this thesis too, if it’s reliable enough.

If state-based and operation-based merging is compared, it’s not as much
two completely different approaches as it is a simpler and a more complicated
approach. In the state-based approach the operations are not available, but
in the operation-based approach the states are always available, meaning that
there is more information available. The questions to be asked when choosing
between the two approaches should be if the state-based approach is enough,
and if it’s worth the extra space and programming and computational effort to
follow an operation-based approach. With the operation-based approach there
is also the risk of being dependent on specific tools, which the paper in question
tries to erase.

74

6.3. FUTURE WORK CHAPTER 6. DISCUSSION

The main thing that separates this algorithm from other algorithms is the fact
that it is a batch merge algorithm. In Bendix et al [4], the different problems
that batch merge tools face are presented and discussed. The paper focuses on
what can be done for creating a standard for dealing with these problems.

The creation of a meta-model that would allow representation of any type
of extra information needed for merge tools (alternatives, warnings and anno-
tations) to be possible is discussed. This meta-model would be used for the
merged output, and then “the subsequent conflict management phase can be
used to gradually bring the merge result in a state that it conforms to the orig-
inal meta-model” (p. 4), which can be done with a conflict management tool or
editor that uses the special merge meta-model. With a new meta-model, XMI
syntax violations can be present as long as the syntax of the new meta-model
is not broken. This would help make sure that any merged output that con-
tains inconsistencies of the type that breaks the XMI syntax are not put in the
repository, since they need to first conform to the XMI meta-model.

Other issues that are discussed are change and conflict mark-up, alternative
representation and rich alternative proposal, which are related to annotations
and warnings in this thesis. Violation handling is also discussed, as it also has
been in 3.4. The proposed solutions for the issues all make use of the proposed
merge meta-model, and would then possibly be handled better than they have
been in this thesis. However, how this meta-model would look like in more detail
is said to be a wide open question.

6.3 Future work
There are plenty of things that aren’t totally covered in this thesis, into which
more work can be put.

As discussed when introducing reordering changes, it was decided to in the
UC of the NRs and PRs include all the items that are part of the node in both
the CA and in V. To not get unnecessary conflicts we would like to not cover
items that aren’t actually reordered. For this we need a deeper order change
analysis, to be able to recognize exactly which items it is that are reordered,
which is a very complex problem. Again, we don’t know actually how common
reorder changes are, and it might not be worth putting too much effort into this
area.

When we started discussing the merge algorithm in 4.2.1 we said that we would
deal with just one file to make it easier to explain. If the model is spread
over multiple files, the algorithm should work, assuming that we actually take
that into consideration and parse all the files needed to create the model. If
there are any connections between models, that’s a harder problem to deal with.

We have taken a certain stance in this thesis when it comes to what we con-
sider possible context issues. There are some cases that might be considered
context issues that we have chosen not to. If two different properties in the
same node are changed in two different versions, that might be significant, but
we can’t be sure about that at all. Changing two different child nodes of the

75

6.3. FUTURE WORK CHAPTER 6. DISCUSSION

same child might also have some significance, but that could also depend on the
depth from the model root those changes are made. It’s a difficult choice to
make whether we should just inform the developer or warn him, because giving
too many warnings might overwhelm the developer, and as such we need to
make a call when enough is enough.

Throughout this thesis we have been taking for granted that we’ve used a certain
serialization pattern so that we don’t have to deal with nested entities. If we
were to cover the other serialization pattern, it would present the risk of
nested moves and moves to other levels of the tree. It leads to fewer references,
but at the same time with nodes of the same kinds being allowed to be put
at different levels there are also possibilities of having references to nodes that
are not child nodes of the root. Changing the serialization pattern shouldn’t be
too hard, and with that the importance of this is lowered, but it can still be
considered.

There are possible inconsistencies depending on property values that
can be found. Imagine the situation where you have a class node which has
an attribute node, a class with an attribute. The attribute node has a prop-
erty value="123", and its type property points to a String datatype. In V1
the type is changed to point to an Integer datatype, but in V2 the property
value is given the value "abc" instead. In the merged file the class will have
an Integer attribute with the value "abc", which is not semantically correct.
This is probably not a common problem and is probably easy to find too, but
it might be interesting to look into.

As mentioned in 4.2.2, we could actually have multiple references in one
property, where the IDs of the nodes are put after each other in the string,
separated by a space character. This was discovered quite late and has therefore
not been incorporated enough in the analysis. This will complicate the algo-
rithm further. These kinds of references are not uncommon and should be dealt
with.

The fact that these kinds of reference combinations are possible leads us to
think that there could be other anomalies which we haven’t covered in this
thesis. This is a very complex area, and as things have been found while working
on this thesis it feels like there could be more things to take into consideration.
A thorough insight on XMI and different kinds of models is needed to be able
to find them all.

As stated above, there are a lot of cases where we don’t actually know how
common certain changes and combinations of changes are. We can analyze and
discuss why certain changes should be more common than other, but there is
also the possibility to actually get some statistics on the most common
changes and inconsistencies. The merge tool could save the amount of dif-
ferent kinds of changes and inconsistencies that occur to give a better view of
which parts of the algorithm to prioritize and put effort into. Such information
would be very appreciated. Feedback from people working with merging models
by using text-based merge tools would also give a good picture of what is most
needed.

76

6.3. FUTURE WORK CHAPTER 6. DISCUSSION

The algorithm that we have introduced creates a merged output file where
we have a lot of annotations and warnings represented by using comments or
extensions, as discussed in 3.5.3. There are still problems with the exact repre-
sentation of annotations and warnings, and this could be further analyzed
and implemented to show the annotations and warnings graphically in a stand-
alone program or plug-in for an editor.

Annotations and warnings are used for the developer to see changes made
and so that he can deal with the merge process easier. While they are not di-
rectly part of the model itself, they are still in the file and if they are sent in
to the merge tool again they would still be there. Now, they can of course be
removed by the merge tool before the new annotations are applied, but creating
a program for removing annotations1 after the merge process is done would
be a better solution, because then they are not committed to the repository.

Different configurations of this merge tool could be further developed. Giv-
ing the developer more opportunities, like choosing one of the input files to be
the master version,2 or to just compare the two versions and get a list of the
changes and inconsistencies as output, etc.

The possibility of using different matching strategies [2] can also be
added. This would mean that the algorithm wouldn’t have to satisfy the re-
quirement of having unique IDs for every element in the models.

While we expect the developer to deal with inconsistencies and warnings and
such before committing the files to the repository, there is of course cases where
this is not done right and we end up with inconsistencies in the repository and
then get input files containing inconsistencies sent into the merge tool.
This scenario can also appear when a developer has updated before committing
and ended up in a complicated merge process with inconsistencies and then
again updated before all the previous problems are fixed. Since the output from
the merge tool is syntactically correct, having a file with inconsistencies as input
would work, but it would add more possible problems in the merge process, as
we will see below.

The easiest way to deal with this is to simply check the file beforehand if it
contains any inconsistencies, and if it does, inform the developer about it and
stop the merge. This is what what we have done while the merge tool is still in
its experimental phase.

The other way is to allow inconsistencies in the input file and deal with the
problems that occur. What would happen then if we get conflicts with con-
flicts? That is, changes that are in conflict with an inconsistency that hasn’t
been resolved. We can for example have a PU on a property which has already
been given two different values, or a move of a node that has been moved to two
different parents. There are plenty of cases where the new change can be the
same as one of the earlier changes or provide a new value or parent. Should the
new change be merged with the earlier conflict or should it be a new conflict with
the conflict, and how would that be represented? Which of the inconsistencies
can new changes actually be in conflict with? Can one type of inconsistency
create another type of inconsistency in combination with a new change? There

1One could also include this in the tool or plug-in being implemented.
2Always choosing the alternative in the master version in case of conflicts.

77

6.3. FUTURE WORK CHAPTER 6. DISCUSSION

could be a need for a lot of work on this area, since it’s fairly complicated.

Lastly, there could be made a more complete implementation of both the
algorithm as well as a test suite. There are still parts that were not implemented
and that could pose more problems that we have not found. A complete imple-
mentation could also be tested by end users to get feedback on the usability of
and need for this kind of merge tool.

78

Chapter 7

Conclusions

Given the structure and details of the analyzed algorithm presented in Martini
[10], this thesis tried to improve it by further analysis and by implementing
the algorithm to see if it’s possible to implement and to find the problems that
appear when doing so.

There are a few restrictions on the tool, which include XMI valid input files,
unique IDs for every node in the models and a serialization pattern that only
allows a certain type of node at a certain depth from the root node, which makes
sure that there are no nested moves. We have also tried to make the algorithm
independent from both model type and editors.

We have analyzed the XMI model to find every type of change that can be
made on it and every part that can be changed. The change types are additions
and deletions of both nodes and properties, moves of nodes, updates of values of
properties and reorderings of the child nodes or properties of a node. The last
of these were not discussed in Martini’s thesis, but have been introduced here.
Each of these changes have attributes that can differ from one another. These
are the version the change has been made in, the position it has in the model,
the change type, the property name and value (if a property is changed), and
some other minor things.

Looking at these attributes we have managed to thoroughly go through every
combination of these changes to make sure that we find every change in the
models and every case of conflicts and syntax violations that these combinations
can lead to, as well as many probable context issues. We have also discussed
why any conflicts or syntax violation that appears due to a combination of
three or more changes always only depends on two of those changes. That is,
only combinations of two changes (one in each version) lead to inconsistencies.
How to handle these conflicts and syntax violations has also been addressed,
and is done by choosing to not apply one or both of the changes in conflict.
The problems that can occur due to not applying some changes have also been
analyzed and taken care of.

The design in this thesis is presented in more detail than in Martini’s, and
deals with how exactly to traverse the models and how to apply the changes so
that the nodes and properties end up in the right order.

Most of Martini’s algorithm was implemented, and worked. We didn’t man-
age to solve the problem of representing change annotations and warnings in
the model without breaking the XMI syntax and without interfering with the

79

CHAPTER 7. CONCLUSIONS

rest of the model. This lead to that the algorithm was not finished. The test
suite that was to be implemented was not finished either, although the analysis
that was done for the algorithm made a very good basis for it.

We hope that the analysis made in this thesis can be used as a foundation
for further work in the same area. In the end, there is no easy way to deal with
the problem of trying to keep the algorithm model type and editor independent,
and there is a need for a standard way of representing the information needed
for merged models.

80

Bibliography

[1] Asklund, U., Identifying Conflicts During Structural Merge, Nordic Work-
shop on Programming Environment Research, Lund, Sweden, June 1-3,
1994.

[2] Barrett, S. C., Chalin, P., Butler, G., Decoupling Operation-Based Merging
from Model Change Recording, ACM/IEEE 13th International Conference on
Model Driven Engineering Languages and Systems, Oslo, Norway, October
3-8, 2010.

[3] Bendix, L., Emanuelsson, P., Collaborative Work with Software Models –
Industrial Experience and Requirements, in Proceedings of the Second In-
ternational Conference on Model Based Systems Engineering – MBSE’09,
Haifa, Israel, March 2-6, 2009.

[4] Bendix, L., Koegel, M., Martini, A., The Case for Batch Merge of Models
– Issues and Challenges, in proceedings of the International Workshop on
Models and Evolution – ME 2010, Oslo, Norway, October 3, 2010.

[5] Grose, T., Doney, G., Brodsky, S., Mastering XMI: Java Programming with
XMI, XML, and UML, Wiley, New York, 2002.

[6] Grune, D., Concurrent Versions System, A Method for Independent Coop-
eration, IR 113, Vrije Universiteit, Amsterdam, 1986.

[7] Jalote, P., A Concise Introduction to Software Engineering, Springer, 2008.

[8] Koegel, M., Herrmannsdoerfer, M., von Wesendonk, O., Helming, J.,
Operation-based Conflict Detection, IWMCP ’10, July 1, 2010, Malaga,
Spain.

[9] Lindholm, T., A 3-way Merging Algorithm for Synchronizing Ordered Trees
— the 3DM merging and differencing tool for XML, Master’s thesis, Dept.
of Computer Science, Helsinki University of Technology, 2001.

[10] Martini, A., Merge of models: an XMI approach, Master’s thesis, LU-CS-
EX: 2010-28, Dept. of Computer Science, Lund University, 2010.

[11] Oliviera, H., Murta, L., Werner, C., Odyssey-VCS: a flexible version con-
trol system for UML model elements, in proceedings of the 12th Interna-
tional Workshop on Software Configuration Management, Lisbon, Portugal,
September 5-6, 2005.

[12] OMG, MOF 2.0/XMI Mapping Specification, v2.1, 2005.

81

	Cover
	blank
	Report

