
Master’s Thesis

Merge of models: an XMI approach

Antonio Martini
Department of Computer Science
Faculty of Engineering LTH
Lund University, 2010

ISSN 1650-2884
LU-CS-EX: 2010-28

 

Merge of models: an XMI approach

Antonio Martini

Supervisor: Lars Bendix

Department of Computer Science

Faculty of Engineering LTH

Lund University, 2010

1

2

Abstract

Lately industries has been increasing the use of Model Driven Architecture, creating

models to auto-generate code. Nevertheless, the environment is not yet mature enough to

support adequately the parallel work of the developers, especially when they modify the same

artifact simultaneously and they need to merge their changes, resolving possible conflicts.

Moving from a code centric development strategy to a model centric one showed that former

textual-based merge tools do not work appropriately with models. Models are serialized using

the standard XMI, a language which creates documents containing structured data: thus the

comparison of text lines is not the best choice anymore. Newer model merge tools are not

precise enough either. Moreover, all of them are oriented towards interactivity, which means

that the developer has to follow the entire merge process, conflict by conflict, instead of

creating an “ad hoc” solution for the whole set of connected changes. In this thesis we analyze

the feasibility of an environment independent process which is able to perform the merge of

two modified XMI files produced throughout a simultaneous change of their common

ancestor. We present a 5-step process and an algorithm which, produces a valid XMI file but

only under certain restrictions, due to the inhomogeneity of the given XMI artifacts. The

provided merge solution includes annotations, alternatives and warnings to represent all

changes, conflicts, XMI syntax violations and some contex-related problems. We rely only on

the information extracted from the syntax of XMI itself, without any additional information

about model semantic. The output can be analyzed and elaborated subsequently by the

developer or by further tools in order to provide the final merge.

3

4

Table of contents

 1 Introduction 7

 2 Background and context 9

 2.1 Context 9

 2.2 XMI 12

 2.3 Model serialization using XMI 14

 3 XMI merge process 18

 3.1 Requirements 19

 3.1.1 Match 19

 3.1.2 Changes detection mechanism 20

 3.1.3 Conflict, violation and context related change detection mechanism 21

 3.1.4 Avoiding loss of data 21

 3.1.5 Symmetry 22

 3.2 Merge process 23

 3.2.1 Change detection 23

 3.2.2 Conflict detection 26

 3.2.3 Change interpretation 31

 3.2.4 Merge rules 38

 3.2.5 Creating the batch merged file 40

 4 Merge algorithm 47

 5 Discussion 51

 5.1 Results 51

 5.2 Related works 54

 5.3 Further research 56

 6 Conclusion 58

5

6

1. Introduction

Parallel working of several developers gives many advantages in a software development

process, but it causes also problems: among them, as Babich says [2], there is double

maintenance. To avoid this problem, developers often have to integrate their works with the

latest version to be able to release their own version which includes the previous changes as

well. This work is called merging process: the developer mainly has to find changes among

his own version, the last version on the repository and, in case, the common ancestor. Often,

his changes conflict with those added by others, so these conflicts have to be resolved. This

task (the merging process) is quite important and hard to be done, so it should be carried out

frequently and carefully [8]: consequently, it requires a set of tools to be well performed.

In the code centric development, we find a lot of good text-based tools which help

managing the merge task. Lately, industries are increasing the use of Model Driven

Development, creating models to auto-generate code. Nevertheless, the environment is not yet

mature enough to support adequately the parallel work of the developers. Unfortunately,

moving from a code centric development strategy to a model centric one showed that former

textual-based merge tools do not work appropriately with models [4]. In fact, models are

serialized using the standard XMI: a language which creates documents containing structured

data. Therefore, the comparison of text lines is not the best choice anymore, as a little change

at the syntax and semantic level could correspond to several changes on the text level.

Consequently, we need a more sophisticated solution in order to find, compare and resolve

conflicts between model files, changing for example the granularity of the unit of comparison

[12] from the text line to the node of a tree. Model merge tools are not precise enough either,

since they have some problems such as detecting too many false positives and false negatives,

or not merging considering the smallest possible element [6], but just raising a conflict if the

same top level object is modified (too coarse granularity of unit of comparison). Moreover,

they are all oriented towards interactivity, which means that the developer has to follow the

entire merge process, conflict by conflict. Furthermore they have to choose “on the fly”

among (probably) wrong alternatives provided, instead of looking for the connections

between them, creating an “ad hoc” solution [7].

The aim of this thesis is to investigate the feasibility of a merge process for models using

only the XMI serialization. We take three XMI files representing three models (the common

7

ancestor and the two changed versions) and we provide a new file representing a merged

XMI. First of all, the merge algorithm should find all the changes and should detect the

highest possible number of conflicts among them (in order to avoid false negatives), but it

also should detect conflicts “to the bottom”, which means that there is a conflict when the

same smallest possible thing is changed (in order to avoid false positives). Moreover, we

would like to represent the information about all changes of both modified versions in the

merged file. So all the non-conflict changes have to be present and highlighted in the merged

file. In case we have a conflict between two changes, it could be resolved by ignoring one of

them: in such a situation, we would like to know which change was ignored and why. In case

we have an unsolvable conflict, we should represent both possible alternatives in the merged

file.

In the following sections, we will explain in details our context with respect to the model

merge problem, then we will deal with the characteristics of the XMI language, its structure,

problems and advantages when used to perform a model merge algorithm (chapter 2). In

chapter 3 we will describe the requirements of a correct merge and we will explain our

proposal of a 5-step merge process. Then we will show an algorithm to be implemented

(chapter 4). Finally we will discuss our results, comparing our work with related ones and

presenting ideas to improve the work and directions for further research (chapter 5).

8

2. Background and context

In this chapter we will contextualize our work presenting the general problem of

versioning and merging models. Then we list the approaches used and we explain why we

chose them over other existing solutions. Moreover, we will introduce XMI showing its basic

role in the model serialization. Finally, we will provide some details about serialization

patterns used by XMI in order to motivate some subsequent assumptions, and to make the

followings more comprehensible.

2.1 Context

Lately models are widely used both to design a product and to auto-generate code in

industries with the increasing use of Model Driven Development. Another powerful strategy,

in software development, is the parallel work of many developers, but it presents some

drawbacks which have to be handled: especially, the problem that Babich called double

maintenance [2].

As we can see in figure 1, two developers have simultaneously modified the same version

of an artifact: in this case, one of them has to commit his version on the shared repository, but

to avoid the discard of other changes, he needs to merge them with his modification (we

suppose to have a versioning tool which prevents simultaneous updates by forcing the

9

Figure 1: Merge of modelsv

developer to update his work). Since neither of them knows what the other developer has

modified, simultaneous changes may be in conflict. Thus, the developer who performs latest

has to perform what is called a merge, which means resolving conflicts. This task may be

very long and hard to carry out, so developers need tools to deal with it [5].

Then, if we blend together models and parallel working, we have the problem of

performing a merge on artifacts which are models. The aim of our work is to recognize

automatically conflicts and other violations caused by the simultaneous application of changes

on two artifacts and to show them in a merged file. This should help developers to carry out

the merge task.

Our approach does not use directly models as artifacts, since developers create them with

an editor, which has its own way to represent models within the tool itself. However, all tools

have to use a way to serialize models in order to save them. The serialization is performed

using a standard markup language called XMI (XML Metadata Interchange) [13]. This is very

important, because it implies that, theoretically, every model could be compared at the XMI

level. This is the reason why we choose XMI, i.e. to be independent from the editor (we will

see, though, that this is not completely true).

10

Figure 2: Models and XMI: we compare and merge at the XMI level

In fact, as we can see in Figure 2, every model is serialized as an XMI file and then

reloaded by the editor. We work on the XMI area, comparing 3 XMI files which represent two

simultaneous versions, which had changed the common ancestor, and the common ancestor

itself. The result is a new XMI file which should represent a new UML model, the merged

one.

The ultimate goal of this research is having a perfect merge on the model level. Our

approach is far from performing such a merge, but it consists of the production of a merged

XMI file obtained by looking solely at the information about the XMI syntax. This way, we

remain independent from the model type (such as UML, Petri's Net, SysML, etc. and their

versions) as well as from the editor. This means that we do not use any model semantic but

only the one we can extract from the XMI structure.

What we have just described is called a state-based approach. Working with XMI, we

could not consider the operation-based approach [10], since it relies on comparing two

sequences of operation performed simultaneously: such an information should be extracted by

consulting an editor which had recorded them. Instead, as we have said before, we want to be

independent from the editor.

Since we want to produce an XMI file as a result, we find it natural to work in a batch

mode [7]. This is an approach which has not been tested yet, since most works dealing with

model merging rely on interacting with the developer, suggesting correct alternatives and

providing (sometimes) a model valid merge. The problem with interactivity is that it makes

the task of merging long and it creates the necessity to be entirely followed by the user.

Furthermore, an interactive tool often forces the developer to choose his own order of

analyzing conflicts, which means choosing the right alternative in that order, following the

“path” selected by the tool. The problem in such an approach is that the developer cannot see

the whole picture: sometimes the right decision should be taken evaluating a set of problems

all together, because solving them one by one may result in discarding such a solution in order

to avoid the next problem. In other words, the user should be free to choose his own way to

analyze problems and then to find its own solution (that often is a completely new one, and

not an alternative between the previous two). The interactive approach has often the side

effect that the tool tries to provide solutions to all the conflicts or inconsistencies caused by

simultaneous changes. Instead, we would like to create a merged file in which we apply those

changes that do not cause inconsistencies (highlighting them), but we do not take decisions

11

about those which do. The main goal is not to create a perfect merge, since we think it is

impossible or at least very hard, especially taking into consideration only XMI. Instead, we

provide the user with all the information about changes, conflicts, inconsistencies and

context-related problems which could be used to perform the best solution by himself (or by

some other future tools, developed to elaborate the given result).

2.2 XMI

The XML Metadata Interchange (XMI) is an OMG standard for exchanging metadata

information via XML [13]. In other words, XMI is an XML dialect proposed to serialize

models. Every model instance (for example a UML model) is derived from its metamodel (for

example the UML metamodel). Moreover, we have another and more abstract metamodel

called MOF that should describe the other model metamodels (figure 3). To serialize a model

is used the scheme in the figure 4.

12

Figure 3: 4-layers metamodel hierarchy [17]

Unfortunately, whilst here it seems to be a set of standards to define the serialization of

models, in real implementations we do not have all this homogeneity. In fact, we have several

versions of XMI, where the 2.x are radically different from the 1.x series. Moreover, we could

have different files which are serialized using different patterns. These XMI problems,

together with the fact that we have different versions of metamodels as well (for example we

have several versions of the UML standard) and the different modeling tool vendor

implementations, lead to a huge incompatibility between different XMI serialized models, as

mentioned also in [15]. This means that we cannot just take three XMI files and compare

them to have a result. This is a great obstacle to the realization of a useful merge result based

on the XMI syntax. Therefore we are forced to take an XMI specification (the 2.0), choosing a

pattern of serialization (even though we proposed a preliminary solution that covers all of

them) and work on the assumptions we could extract from those. However, many

considerations and assumptions we make here (with right adjustments), could be put in

practice as well, once a stable standard will be provided. We have also some proposals for the

extension of such a standard to support the important task of merging files.

13

Figure 4: 4-layers metamodel and XMI [14]

2.3 Model serialization using XMI

We will now describe how XMI serialize a UML model in order to make the rest of the

work more comprehensible. Since every XML document is structured as a tree, the

serialization patterns create an XMI tree in which elements are described by the model in the

following picture (figure 5):

The root of the XMI file could have several child-nodes: we are interested principally in

the model sub-tree. Everything about the logical part of the model is placed here, where other

elements placed out of this sub-tree are concerning tool-oriented descriptions and we will not

analyze them since we do not know anything about the tool (including the layout, that we do

not consider). For this reason, in the followings, when we mention root, we refer to the model

node (the root of the model description) and not to the root of the whole file. Furthermore,

there are some special tags of XMI such as the documentation and the extension ones which

allow tools to put their own data about the model beside the logical model without interfere

with the meaning. That is a very useful feature of the XMI specification, that allows us to

consider only the logical model (which we are interested in) without having to find it, since it

is kept separately and clean from other things. As we will see in the section §3.2.5, the

extension tag could be useful to implement a valuable feature for merge, that is the

highlighting of annotations.

Given that every child-node of the root represent a classifier or an association in the MOF

metamodel, we have the main problem of choosing the pattern of serialization: in the

specification we can choose to represent every MOF classifier as a separate child-node of the

root or we can nest classifiers as a child-node of the child-node and so on, representing their

composition characteristics: this way, if we have a classifier C' which has a composition link

14

Figure 5: XMI description [13]

with another classifier C, we will find C' as a child-node of C. Instead, with the former

representation, every classifier is a different sub-tree of the root, and the composition link is

represented by a reference (we will speak about these later) or an association (which will be

another sub-tree). The latter representation is more useful for our purposes, since we can state

that every sub-structure of the root is a different MOF classifier or association, and, as we will

see, we can take advantage of this information to make useful assumptions in the merge

process. In fact, if we know that every sub-tree of the root is an entity, we can deduce that all

entity moves are performed by references instead of moving sub-trees. This avoids a lot of

possible move situations that we do not need to consider. For example, a refactoring will

rarely change the tree structure, since the links between entities are expressed by references.

Furthermore, we are sure that a node of the same level will not be moved to another level,

since it represents a specific kind of feature: for example, a second level node will be an

attribute or a method, but it could not be a multiplicity. Besides, note that choosing one or the

other way to serialize is equivalent, since it does not change the meaning of the model.

Moreover, we use some examples which were created following this pattern. For these

reasons, we will work principally using this pattern, then we will find a general solution that

could involve also the other way of serialize MOF classifiers.

As showed in figure 6, every class is represented as a first-level node, e.g. we can call it F.

Then, every feature F' of such a class, like attributes or methods, are represented as children

15

Figure 6: Serialization meanings

of F. Again, every feature of these F', like the parameters of a method, is nested into the node

F' as its sub-tree and so on. For a class diagram, which is the type of diagram that we studied

in most examples, the average depth is five levels (it also depends on the tool). Features that

are not meant to be nested, like the name of a class, are represented as XML properties of the

node (that could also be a node without ID). Since we could create a misunderstanding, we

decided to speak about properties regarding XML (and so XMI), in those cases in which we

speak about attributes to refer, for example, to the attribute of a class in the domain of models.

Every property belongs to its node and it is not related with any other node, since it describes

a characteristic of that specific node: this assumption will be used later to state the

independence between properties (apart from references, that are described in the followings).

It is important also to mention that we consider XMI values as properties: in fact, having a

property of the form p=v where p is the name and v is the value, or having a node (without an

ID) tagged n containing the content c means the same thing to us: p is the same of n (the name

to recognize the property) and v is the same of c (the value of the property). The only

difference is in the format of them: an XML property could not be very long and structured,

where the content of a node could be (since XML is a markup language, the node content is

represented as everything between the start tag and the end tag: it could be almost everything,

whereas the value of a property is just a string and has a restricted format). However, for our

purposes, we consider them like two properties p and p' with the values v and v'.

A very useful mechanism provided by XMI is the property ID (which enable us to create

global and local identifiers). This way, every node could have a property that uniquely

identifies it, every node is reachable without relying on its path from the root (as we will see

in the merge process, this mechanism is very important). The ID is very useful also for

matching the trees we want to compare. Here we have a new problem with the serialization

patterns: in fact, the ID is strongly recommended but it is not compulsory (you can save your

XMI without IDs). However, this is not so frequent in practice so we assume to work with

IDs. Moreover, we have seen that some tools (like Rational Tau) have not kept the same ID in

the same node of two different versions (see matching problems in §3.1.1).

Furthermore, there is another type of property defined by the XMI specification: the

reference. This property contains as value the ID of another node in the document (or in

another document. However, we will assume that we have the whole model in one file: it does

not change anything, since we can easily parse the two files separately and build the entire

16

XMI tree). This is a way to represent a concept like the type one: as we can see in figure 6, if

we have an attribute a of the type T (that must be another Class or Datatype of the model and

so another MOF entity and consequently a sub-tree of the root), inside the node which

represents such an attribute we will have a property whose value is the ID of the Class named

T. A reference is also used in the Association Ends of an Association to link the two classes

involved in the described relationship.

17

3. XMI merge process

We will now present the merge process. We will state some requirements and desired

features that we would like to be satisfied in a batch model merge, and we will see which one

of them is possible to satisfy (entirely or partially) using XMI. We will show how such a

process could be divided in five logical parts which could be studied and implemented

separately. These parts are: change detection, conflict detection, interpretation, merge rules

definition and changes application.

18

Figure 7: 5-steps merge

3.1 Requirements (analysis)

In order to produce a correct merge, there are some requirements that have to be satisfied.

We need three matched XMI trees, then we have to find changes and conflicts among them.

The most important requirement in the result is the complete lack of loss of data.

3.1.1 Match

First of all, we have 3 files and we have to compare them.

This means that we have to recognize the same element (for each of them) in all files, in

order to find changes among the 3 different versions. This operation is called match. Every

element needs an identifier to be recognized, and XMI provides a mechanism to handle this

(see §2.2).

There are two ways to use it for matching: if the ID of a given element is kept equal when

a new version is saved by an editor, in all versions we will have the same ID for the same

element and we already have a match. Otherwise, we need an algorithm which recognizes

similarities among the elements of the different versions and which states, on the base of

some sort of mechanism, when we have two elements that are the same. At this point we have

a problem: existing mechanisms often recognize elements using their similarity, so it is less

probable to recognize an element with an important amount of changes. In a merge process,

we also have to find all changes. These two concepts lead us to the conclusion that the more

changes are present in an element, the less probable it is that a similarity-based mechanism

recognizes the element, the more information we lose for the merge. To conclude, it is useful

not to match with a mechanism that uses similarity for comparison, if we want to use the

match result to find changes (like in a merge algorithm). There are several works dealing with

such a match algorithm, both tree and graph based ones, and there are also a couple of works

about specific XMI matching [3]. Matching often is a very computationally complex task, and

in some merge algorithm it is often the cause for their failures [11]. We decided to concentrate

our efforts on other issues and challenges concerning the XMI merge, for two main reasons:

the matching problem is a well explored field of research, its analysis could be very expansive

(could be itself the topic for a thesis) and there is a simpler way to handle the problem

concerning XMI context. Thus, for the next part, we assume we have an already set of

matched files (by their ID).

As explained in chapter 2.3, a generic node is composed by its properties (XML attributes)

19

and its child-nodes, which are again composed by properties and sub-nodes, and so on. The

leaf-nodes are composed only by properties. We rely on the fact (according with XMI) that we

have a unique identifier for each node of the model tree, which means that we reach a node

just from its ID and it is independent from its structure position (like the path from the root).

Inside every node, we have a set of properties that have a unique name, valid only within the

scope of the node they belong to. That means that to reach them we need to reach the node

before, so they are node-dependent: to reach them we will refer to the node name plus their

literal name. For example if we have a property p which belong to the node X we will refer to

it as X.p.

3.1.2 Change-detection mechanism

Once we have three matched XMI trees, we can look for changes among them. Since we

know that both the modified versions V1 and V2 are derived from the common ancestor CA,

we need only to compare each version Vx with CA in order to understand which changes

were performed to obtain Vx. This way, we would be able to apply all the changes on CA in

order to have a merged file with all the changes.

We have to choose a way to localize changes, and we would like it to be as fine as

possible, in order to recognize as many independent changes as possible. For example, if we

choose classes to localize changes, every change concerning that class will be represented as

“class C changed”. Thus, suppose that a developer d has changed the class C modifying the

name of a method m, and a developer d' has changed the same class modifying the name of an

attribute a. Clearly, the changes are not related (or maybe they are in a more semantic way,

but it could be analyzed later), that is they do not affect each other. However, considering both

of them as “class C changed”, we have exactly the same change affecting the same element,

the class C, while we would prefer to consider the method and the attribute as different

elements. In other words, we need a unit of comparison [12].

Furthermore, we need a mechanism to describe changes in order to analyze, compare and

apply them. In the example above concerning class C, we do not explain exactly what we

have to apply in the merged file. We should be able to recognize the nature of the change (e.g.

deletion, addition, update, move), which part has been modified (e.g. the name of the class,

the value of the attribute, etc.) and how (e.g. the name of the class is now “D”, the value of an

attribute is now 3 instead of 5, etc.).

20

3.1.3 Conflict-, violation-, and probably connected change-detection mechanism

When changes are detected, we need to compare them.

We could have changes that are incompatible, because they cannot be represented on the

same file. In this case we have a conflict. For instance, suppose a developer d modifies an

element E and another developer d' deletes it: how can we represent an element updated and

deleted at the same time? Obviously, if we apply the deletion, we will not see any update on

it, since we cannot see it at all. On the contrary, if we can see the update, clearly we can see

the element E, so we lose information about its deletion. Another example could be if we

change simultaneously the value of the same property p from 2 to 3 and from 2 to 4. How can

we represent p that has both 3 and 4 value? We cannot. In the examples above the conflict

derives from the fact that the same unit of comparison has been changed. Thus, we cannot

apply both changes at the same time. Nevertheless, we have to highlight them in order to

make sure that developers can manage it. A very important requirement to find all conflicts, is

to define carefully a unit of comparison. The more coarse it is, the more false positive

conflicts we find.

Furthermore, we could find that two changes (placed in different changed versions), when

represented together in the merged file, could break the validity of the XMI syntax, while

separately they did not. We speak about violations: we should detect those changes and we

should report them.

Finally, we have changes which are not directly related and which together are not

breaking the XMI syntax. However, changes could be close to each other. Probably, even

though we cannot say exactly, they are related when we consider the model-metamodel (for

example UML or any higher constraints system like OCL). It would be useful if the user was

warned about a probable relationship (at a higher level) between two changes.

3.1.4 Avoiding loss of data

We should make sure that all information about every modification (of both versions) with

respect to the common ancestor is present in the merged file.

We can represent the information about mergable changes simply by applying them.

Moreover, it would be useful to highlight where exactly the changes are applied to enable the

developer to localize them easily and to verify them.

In the case of those changes which could be merged but which would violate the syntax

21

(like XMI syntax), we have to make a decision. We can either choose simply to apply such

changes which, however, would result in an invalid XMI file or we can discard one or both of

them to obtain a valid XMI file. In the latter case we have to report all the information

regarding the changes and also not having performed it (them).

In the case of those changes which could be related on a higher level (that we have no or

little knowledge about), we should apply them and insert a warning about the fact that they

could be related.

In the case of conflicts we cannot apply the related changes because they are not

simultaneously representable, so we need some sort of mechanism to represent both

alternatives. To do that, we have two options. We can apply one of the changes (but which

one?) and create a mechanism to represent only the one we have not applied as an alternative

to the change we performed, or we can represent both alternatives with the mechanism used in

the case of non performed changes. In the latter case, we can decide to leave the original

solution of the CA and then connect the alternatives to it, or we can omit the whole interested

element.

3.1.5 Symmetry – even if we perform the same merge several times, we should always

obtain the same result, that is to say, the outcome should not depend either on the order of

detection, on the management of changes or the different order of the input versions. For

example in the Lindholm merge [11], a conflict is resolved by choosing the solution proposed

on the first loaded version: this means that if we have loaded the version V1 and V2 we will

have, in the merged file, the V1's solution of the conflict. Contrarily, if we have loaded the

version V2 before, we have its solution in the merged file. We would like to avoid this kind of

results.

22

3.2 Merge process

In the followings we describe a possible way to perform a merge process based on XMI

which satisfies the previously mentioned requirements. We divide the merging process in five

major logical steps, which could be studied and implemented as distinguished sub-topics. We

begin detecting changes (step 1), then we compare them each other to find unsolvable

conflicts (step 2) and we interpret them to recognize violations and possible context-related

problems (step 3). The fourth step (4) consists in defining a set of merge rules to handle the

previous problems and in the last one (step 5) we create the merged XMI file.

As we will see in the algorithm explanation part, the order is important because one step

requires an output from the previous step: however, sometimes it could be practically

convenient to anticipate the task of a step as soon as we have a partial output from the

previous step.

3.2.1 Change detection:

First of all, we have to identify the changes between the common ancestor and the

changed versions. As said on the requirements part, we need to localize and explain changes.

23

Figure 8: Some examples of changes

As explained in §2.3, a generic node is composed by its properties (XML attributes) and

its child-nodes, which are again composed by properties and sub-nodes, and so on. The leaf-

nodes are composed only by properties. Every node has many contents (sub-nodes and

properties). We can state that a node is changed if and only if one of its contents is changed: a

sub-node or a property can be added, deleted or updated (as in figure 8). Moreover, we take a

property (or rather its value) as the smallest atomic element that could be modified, as we

cannot split its value in more parts. Later, speaking about the conflict detection, we will

discuss a particular case in which we prefer to relax this constraint.

Then, we can encounter the case in which a node X is changed because one of its property

p or one of its sub-node Y is changed. We could represent a property change writing [X, up(p,

op())] which means that the property p of the node X is changed: op could mean del for

deletion, add for addition and up for update. For updates, we would like to specify some more

details: the reasons will be clear in the next section on conflicts §3.2.2. Thus, we could write

[X,up(p, up(v'))], which means that p is updated with the value v'. Furthermore, a property

could also be a reference (see §2.3). In this case, having that it is used as a mechanism to

point among nodes, we can describe the change of the value of a reference property r as [X,

up(r up(Y→Z))], which means that r is now pointing to Z instead of Y.

If a sub-node is changed, we can write the propositions [X, up(Y, del)] or [X, up(Y, add)]

respectively if we are updating the node X by deleting or adding a node Y from (to) the node

X. Both these propositions mean that all their sub-elements are deleted or added.

Consequently, we call them composite changes. If a sub-node Y is modified, we should

describe further its modification, exactly as we did for the parent node X. That means that we

could have the sequence [X, up(Y, up(...))] until we reach a leaf, where we will have a

property change. In other words, this statement represents the path from the root to the

changed property.

I would also like to introduce, at this point, the move change. Even though we can

consider the move change as two different operations of deleting a content from a node and

adding the same content to another, this representation will be useful later, when speaking

about change interpretation and conflict detection. First of all, we cannot recognize a property

move, since a property is node-related (as explained before, we could have two properties

with the same name in two different node, and they are identified by the ID of node to which

they belong plus their name). In fact, a property only describes the node to which it belongs,

24

and moving it just means creating a new one. Differently, nodes could be moved from a

parent-node to another. In this case, we do not have to replace the existing representation (add

+ del) but we can represent the change as a new proposition: [Y, move (X,Z)]

means that a sub-node Y is moved from the parent-node X to the parent-node Z. Obviously, a

move is a composite change. The move can cause a problem with the mentioned approach of

change detection. In fact, we identify a moved node Y by its path from the root: moving it

means that the path has changed, but we should recognize changes in the node Y even if it is

the child-node of X in the version V1 and that of Z in the version V2. In fact, it is still the

node Y with the same identifier, so it will be the same MOF object. To do this, when we find a

move, we should repeat the change detection on the moved sub-tree, considering Y as it has

not been moved: this way we can flag changes with respect to the CA contained also in moved

elements. For example, consider the node Y, moved from X to Z in the version V1, and

consider the property p belonging to Y. Suppose that the developer d has moved the node Y

and has changed the property p. Before recognizing the move, the node Y has not been

compared with its namesake in the CA, so we do not know that p has been changed (in fact

we have recorded only that a node Y has been deleted and another node Y has been added).

Once we know that Y has been moved, we can compare the moved Y (in the version V1) with

its namesake in the CA, because now we know that it is the same node. Thus, we know that it

has been changed because its property p has been modified. How should we record this

change? We use the path in the CA, and not the new one (the one in V1), because, in the

conflict detection part (as we will see in §3.2.2), we will compare p with its namesake in V2

and we will have a change on the same element if its path is the same. For this reason, we will

write the change as […X, up(Y, up(p, op(...)))] with X instead of Z (the node under which Y

has been moved).

Finally, since we have to specify in which modified file we found a change, we should

include in the above statements also the version: the statement will be of the form Vx[stm],

where Vx is V1 or V2 and stm has the form described above. We can refer to changes by

assigning them an arbitrary (but univocal) id.

Note that this representation of changes avoids infinite propositions, since it is constructed

over the MOF tree structure (see §2.3) provided by XMI and not over a graph. This

representation has more benefits which will be described later.

25

3.2.2 Conflict detection.

Now we have to find conflicts among changes.

As we said in the requirements part (§3.1.2 and §3.1.3), we need to find a unit of

comparison (we will call it UC) which should be as fine as possible. We could take the

property as UC. In fact, we stated before that we consider it (or rather its value) the smallest

atomic element that could be modified. We have a conflict when the value of the same

property is changed (see Figure 9 where the value of the property “name” has been changed in

“y” and “x” simultaneously), since we cannot represent two values simultaneously.

Furthermore, if we delete a property and we update it simultaneously, we have a conflict too,

because we cannot represent the updated value and the “lack of property” at the same time. In

case we have an added property p to the node X in the version V, it could create a conflict

only if in V' we add or modify the same property p (inside the same node X). In this case, we

have a conflict, exactly like when we have updated the same property. Otherwise we have no

conflict between the properties. In all these cases, we detect a conflict on the property p of a

node X, that will be managed later, and we can mark it.

But what happens if someone deletes a node? In that case how can we use the property as

unit of comparison to find a conflict? Having the UC as the property, we could add a change

for every property that belongs to the deleted node and say that it was deleted: note that, this

way, we split a change like [X, del] in many changes like [X, up(p, del)] for those properties

26

Figure 9: Some examples of conflicts: an addition of a node as a child of
another deleted node and the update of the same property.

which belong to X, while for those that belong to a sub-node Y we have many changes of the

type [X, up(Y, up(p, del))] and so on for every sub-node. Since we could have many

properties, this way we create an explosion of changes. Moreover, and more importantly, we

lose the information about the fact that the original change was on X and not on a sub-part of

it. In fact, the whole node X was deleted, which means that, due to the hierarchical structure

of XMI (§2.3), we should consider the deletion of an element with all its description, and not

as a collection of many changes. Thus we should link the two changes as conflicting ones:

deleting a node X and updating one of its sub-parts at the same time. Clearly, the situation is

even worse when a node X is deleted and a new node Y is added under it (Figure 9).

In our solution we prefer a dynamic UC to find conflicts, rather than a fixed one. Since a

model in XMI has a hierarchic structure, we can use an approach like the one explained in

Asklund [1]. We can compare the parent node and, if we have a conflict, we can go deeper

until we find the conflict on the smallest node content. Consider a node X as the root of a sub-

tree of the model node (which we do not take in consideration). If we have two simultaneous

modifications within it, we will have two changes of the type Vv[X, op(...)] and Vv'[X,

op(...)] (where “op” could be any possible change, v and v' are the changed versions, the order

is irrelevant). If we do not have such changes beginning with the same node X as prefix, we

can assert that we do not have conflicts inside the node X and all its sub-nodes, due to the

construction of the changes (for the moment we ignore moves). Instead, if we have such

changes, we can go a step deeper examining them. With one step, we mean that we consider

the next sub-node on the node-path described in the change. At a certain point, we could find

that the two changes could be exactly the same to the end: in this case we do not have a

conflict, the two changes are equivalent. Otherwise, we could have several type of

differences:

• two different nodes were modified, so we have two changes of the form Vv[...X,

up(Y, op(...))] and Vv'[...X, up(Z, op(...))]: in this case we know that whatever are the

changes, they involve two different nodes (and then two different sub-trees), so we can

deduce that we will not have any conflict between these two changes: in fact, they are

not placed in the same part of the tree, and they cannot involve the same element.

• the same node is changed. Then we can encounter the following cases:

◦ it has been changed with the same operation in both versions. If it is a deletion, we

have reached the end of the proposition and the two changes are identical (as we

27

said before, there is no conflict because the changes are equivalent). We cannot

have two additions of the same node (as assumed in §2.2). There remains the case

in which the same node is updated: we have to go ahead with one more step

deeper.

◦ It was changed with two different operations: they could be only a deletion and an

update. In fact, we cannot have the same node both added and changed with

another operation, because adding it in the version Vv, means that it did not exist

in the CA, so it could not be modified in any way in the version Vv'. Thus, in the

remaining case in which the same node has been both deleted and updated, we

certainly have a conflict. In fact, a deletion of the node X in Vv is conflicting with

any other change that could be represented by an update change of X in Vv'. We

do not need to check deeper, we know that there is a conflict between these two

changes and we have to manage this conflict.

◦ A property is changed and another sub-node as well. We have the same situation in

which two different sub-nodes are modified. Two different parts of the tree is

modified, thus there is no conflict.

◦ Two different properties are changed. Like in the previous case, there is no

conflict.

◦ The same property is changed. We manage this situation as described at the

beginning of this chapter: in fact, we always have a conflict.

In other words, we have analyzed every pair of changes and we have decided if they are

conflicting or not: the method is complete, since the above explanation itself contains the

proof that it covers every case of a possible conflict (without considering moves). More

explanation could be found in the discussion chapter.

This way of finding conflicts, allows us also to add an interesting feature. In fact, due to

the fact that it is based on the depth of the structure and not on a fixed UC, once we find an

update/update conflict on the atomic value of the property, we can follow the idea of “going

deeper”. We can do this by running another specific type of algorithm on the value, which

could be a long text or structured in a different way from XMI. In fact, considering the

XMI/model field, it is possible (§2.2) for a property to be an XML tree itself, or a slice of

code. For both of them, it could be extremely useful to delegate the task of finding more

conflicts to another and more appropriate algorithm (already existent), since once these new

28

conflicts are found, we have two advantages: if there are real conflicts we provide the user

with a more detailed merge, whereas if there are no conflicts, we have eliminated a false

positive. How to integrate such an algorithm is not discussed in this thesis.

We asserted that the described conflict detection is complete: however, we did not

consider the move changes. We left it as last issue, because it is not a change like others, since

it consists of two different changes already analyzed, and because, as said at the beginning of

this chapter, using a serialization pattern instead of another could avoid moves.

However, considering moves, a conflict can occur in two cases: if the same node is moved

in different places simultaneously, or in the case that we have two particular nested moves.

We can represent the latter problem in the following way: a node X is moved under (in the

sub-tree of) the node Y in Vv, and another developer moves the node Y under the node X in

Vv'. Clearly, there is a conflict, since we cannot represent the node X as both the progenitor

and the descendent of Y at the same time. However, the move cannot raise conflicts with other

changes, as it is independent from them. In fact, we can have moves only involving nodes, not

properties (because they are node-related). Thus, applying the move before or after another

change, does not change the result. In other words, changes as deletions, additions and

updates modify the information contained in the elements, while a move simply changes their

place. For a more detailed explanation, we can analyze the cases:

• move/add: a node has been added in the moved sub-tree. Adding a node before or after

the movement of a higher-level node does not change the result.

• move/up: a move cannot be performed over a property. On the contrary, updates

always end in a property change. Again, modifying a property before or after a move

yields the same result.

• move/del: the only problem could be if we delete the same node that is moved. Note

that this is not causing a conflict, since the deletion of X is just a part of the entire

complex change of moving X, that consist in deleting X and adding it again. If we do

not delete the same X that we move, we could have two cases:

◦ the deletion involves a higher-level node Z. We can apply both changes without

conflicts, since X does not belong anymore to the sub-tree of Z.

◦ the deletion involves a sub-node of X. In this case, again we can apply both

changes regardless of which one comes before.

In all these cases, we could insert a warning because we suspect that the two changes

29

could create problems, but this is an interpretation issue (and will be discussed later).

We have proved that the move is independent from other changes, and it could not raise a

conflict with them. However, considering the move change, we could be able to avoid some

false positive and some false negative connected with the previous conflict detector. In fact,

consider a node X: if it has been “moved” (and not only deleted) in Vv, it results as deleted

with respect to the CA. Then, if in Vv' we have that X was updated we have a delete/update

conflict. This is a false positive, because the node exists (it has been just moved) but its path

has been changed and the previous detector fails to recognize it. Moreover, for the same

reason, if we have some updates in the sub-tree with root Xv, they will not be confronted with

the same sub-tree with root Xv', which means that we do not find the conflicts (because we do

not compare them, having that we consider them as different nodes), so we have a set of

possible false negatives.

These are problems which derive from the use of the path-strategy applied to find

conflicts without considering the move change together. As explained before in this chapter

(and in §2.3) moves are not so frequent or we can be sure to not have them at all, especially

using a certain pattern of serialization, so we could accept such an inconvenience (when it is

really marginal) and we could decide to use the detection method described above.

However, considering the move changes, we can modify the conflict detection process

by adding some control. In fact, we can just ignore the conflict raised by a delete/update

(where the delete is the non recognized move) on a node X because we know that X was

moved and not deleted, avoiding this way to mark a nonexistent conflict. Furthermore, we can

use the whole process of conflict detection described before to compare the sub-tree with root

Xv (moved) with Xv' (updated): this is possible, because we have the same node ID thanks to

which we can associate them. This way, conflicts are discovered also if the path is not

identical. In the end, we can handle moves and discover conflicts anyway. However, there are

some problems of interpreting and representing moves and conflicts, which have to be

discussed later (§3.2.3 and §3.2.5).

30

3.2.3 Change interpretation.

Once we have found conflicts, we have to find other problems among changes, like

violations of the XMI syntax or probable context issues. We put them together because they

both need more information at a higher level (like considering the metamodel, running a

validator or deducing some complex operations): in other words, we have to interpret them.

We will now explain the method that we used: as we discussed at the beginning of this chapter

and as we will see in the algorithm explanation, the order of these steps is not strictly decisive,

which means that it could be better, sometimes, to perform merge rules before the

interpretation. Thus, sometimes it might seem reasonable to refer to a merge rule that could be

already performed or we know for sure that it will be. Finally, this part is not strictly required

for a batch merge [7], but it could be seen, studied and implemented as an independent task to

be carried out after a batch merge (whose result is a merged file that may not be XMI valid

and model-semantic valid).

The interpretation part of finding XMI syntax violations could be performed using an

XMI validator on the entire file once it has been merged. We preferred to perform such a job

taking previously detected changes as input, and analyzing them to discover only the

violations that could be caused by them. Furthermore, as explained in §2.2 and §2.3, we could

have different XMI versions and serialization patterns, so it could be hard (or even

impossible) to perform a validation that covers every possible output file. Thus, we worked on

the serialization patterns described in [9] and in the specification of XMI 2.0 [13].

The context-related interpretation cannot be precise. We have only a small amount of

information deduced by the MOF structure and serialization pattern about such a context

(§2.3). That is merely enough to warn about hypothetical problems. Moreover, the problem of

finding relationships between changes is still an open issue in research which could be very

complex to explore, as also mentioned in [7].

In the assumptions we required to have a set of valid XMI as input. Thus, we know that a

change itself cannot cause a violation, otherwise the changed version should be invalid as

well, and that is not possible. Therefore, we have to explore those cases in which a set of

simultaneous changes could together break the validity of XMI syntax. Summarizing, we say

that we have a violation when a change affects another change, not directly, but breaking

the validity of the result of the other change (or vice versa).

We said (in §3.2.2) that a property change is independent from another property change.

31

This is true and it holds in the XMI syntax until we consider references. In fact, a reference r

is a property whose value is the ID of another XMI node X: in other words, r points to X

(§2.2). This is the source of a set of possible violations: in fact, in a valid XMI file, we cannot

have a reference pointing to a node which does not exist. For this reason, every time a node is

deleted and a reference to it is updated/added, we have a violation (Figure 10). To handle this

situation, we have two choices: we can leave the violation (having an invalid XMI) and warn

the user about the problem (that could be detected later with a validator) or we can discard the

deletion, reporting somehow (see the 5th step, creating merged XMI) our decision and the

motivation for it (a violation of the XMI syntax).

However, such a violation could be also seen (from another point of view) as a probable

related change, since in the version Vv the developer d changed an object o that now points to

some other object o' (often in the class diagram a reference represents a “type” link, as said in

§2.3), while in Vv' the developer d' has deleted o' without knowing that simultaneously an

object o was changed to point to o'. That means that probably these changes could cause a

problem also in the domain of models.

The difference between the considerations above (consider an XMI syntax violation or a

model-domain issue) is that we know XMI syntax and we can take a decision on the basis of a

precise information; contrariwise, we are simply supposing about the model (context) related

problem. In fact, the latter one is probable but not sure and it could depend for example on the

type of diagram used at higher level (UML, etc.). This difference lead us to call violation the

32

Figure 10: Violation example: a developer changed a
reference to a node deleted by another developer.

former problem and context-related (possible) problem the latter. However, in this case the

second consideration confirms that there is not only a violation of XMI but also a probable

higher level conflict. These considerations will be used to define a set of merge rules to

handle the problems encountered. In this case, as we will see in the next section on merge

rules (§3.2.4), we opt for the solution of discarding the deletion and report a warning, in order

to maintain valid the semantic and to warn about a very probable developer-intention

breaking. Discarding a deletion do not cause any loss of data, and a warning could be created

with a very simple message.

At this point we would like to repeat that a violation occur when a change affects another

change, not directly, but breaking the XMI validity of the result together with the other

change. Since we said that properties cannot affect XMI validity of other properties or nodes

(except for the references, which we discussed before), we should consider only the

composite changes (which involve more than one node). In fact, a composite change could

affect other changes by modifying a node X that “includes” them, in the sense that the other

changes are modifying a content which belongs to the sub-tree with root X.

At first sight, this seems hard to handle, since we can have nested changes that could be

related. Furthermore, applying a merge rule for one of them before another could change the

result, breaking one of the requirements (symmetry). However, a composite change always

involves a node: we can have deletion, addition and move. We do not consider the node

update a composite change, since, as we saw in the conflict detection paragraph, it always

lead to another change, which could be one of those just mentioned, or a property change.

Thus, we have the following cases, in which:

• having a node deletion in a version Vv could not involve other nested changes: in Vv

there are no changes involving a sub-tree of the deleted node (there are no sub-trees

anymore), and every time we have a change in Vv', it causes a conflict, causing the

discard of the deletion (as we will see in the merge rule part).

• in an addition of a node X on Vv, apart from the reference case already explained, we

cannot have nested changes, since in Vv' we cannot have any change involving the

sub-tree with root X (we do not have such a sub-tree at all, since it was not in the CA).

• only the move change remains, and in fact it is sort of a “Pandora's box”. We could

have many situations in which combining nested move changes with other changes

could cause a lot of violations and possible context problems. Furthermore we

33

mention again that there is a way to avoid moves (or at least strongly limiting their

occurrence). However, we found some solutions to handle these problems.

The first and the simplest solution is to ignore the existence of such a change, seeing

moves as deletions and additions (of the same node, with the same ID). In this case, we have a

problem when we have an update/delete conflict (see also conflict detection, §3.2.2). In fact,

whenever a node X is “moved” in Vv it results as deleted with respect to the CA, and if in Vv'

we have that X has been update, we have a conflict. The merge rule for that is to discard the

deletion, causing the duplication of X. This leads to have an invalid XMI with two nodes with

the same ID, and to have only one of them updated, while the moved node could not be

updated since it is seen as an added one from the change and conflict detector. The most

important side effect of this approach is that if we have some updates in Xv, they will not be

confronted with the Xv', which means that we do not find the conflicts (because we do not

compare them, considering them as different nodes). Thus, once a validator raises a problem

with these two nodes showing that they are the same, the user is forced to check again them

for changes and conflicts. Unfortunately, moving a big sub-tree means not finding a lot of

possible conflicts. However, in the pattern without nested MOF entities, where a refactoring

of the model involves references (see §2.3 and second solution below), the hypothesis of

having no moves is perfectly plausible. The following solution includes this one with the

addition of a small set of reasonable and safe moves.

The second solution is connected with a specific serialization pattern used by XMI (the

one without nested MOF entities). As we can see later and we have mentioned in the previous

sections (change and conflict detection), this pattern has more characteristics which make our

algorithm working better. Furthermore, it is equivalent to the other patterns, which means that

using this one does not lead to lose information about the model, and another differently

serialized file could be transformed in one like the this. In this pattern, every sub-tree of the

root is a first level entity (a classifier or an association) in the MOF representation, which

means that we cannot have a first level entity as a sub-tree of another entity, so we could not

have a move of an entire subtree. That also means that we have short XMI tree (in analyzed

class diagram the average maximum is 5, as said in §2.3), which means that we cannot have

many nested move changes. Moreover, due to the hierarchic structure, every child-node of

second level represents a feature of the parent one, and it is the same for the third level node

with respect with its parent and so on. This means that the more deeply we watch a node, the

34

smaller object it represents, the more parent related it is, which means that a move is highly

improbable. In fact, since we have a lot of first level entities connected by references, their

second level nodes represent attributes and method, and their third nodes are parameters of the

methods, and so on. Clearly it does not make much sense to move a parameter from a method

to another. It is easier for an editor to allow a user to write a new parameter inside a method

specification: this means creating a new node with a new ID in the XMI tree. Finally, note

that, with this pattern, the moves of classes in model domain, are performed in XMI changing

references (we can handle reference changes without problems) and not the tree structure (for

example a refactoring, see §2.3). This also means that we will not have many moves of nodes

and that they are not involving entities.

For these reasons, in this solution we consider only non-nested move changes, and only

move changes of a second level node. In this case, we can have only a node moved to another

substructure (sub-tree). How could it create violations? For the next cases we will not

consider the option of leaving the violations on the merged file, unless we have to discuss

some particular problem. Otherwise, leaving violations means exactly applying a change and

creating a warning. Furthermore, whenever we have a violation, it could be obviously a

problem at higher level: since the problem is highlighted yet by finding a violation, we do not

need to say something more to the user. Follow the violations caused by a move in a setting

with the described constraints:

• move/move: the same node is moved in Vv and in Vv'. The violation consists in

having, in the merged file, as result two node with the same ID. A way to handle it

could be to use alternatives or to discard changes and adding a warning about both

moves.

• move/del: every time a deletion is combined with a move, we do not have a violation,

but we have a context issue:

◦ a deletion involve the parent node Y of the moved node X. No violations, since we

can apply both changes without breaking the syntax. We could have a context

issue: in fact, the deletion of Y could have meant the deletion of all its child-nodes,

while the sub-tree with root X is present on the merged file (but it is moved). We

should warn about the non-deletion of X;

◦ a deletion of X and the move of X itself: the same statements explained before;

◦ we have a deletion of a sub-tree of X and the move of X. In this case, we suppose

35

that moving X the developer do not want it to be affected with a deletion. Deleting,

we lose information, so a solution could be to discard the deletion and to add a

warning saying what was non-deleted;

• move/up: we have no violations, since a property could be XMI-syntax related to the

moved node X only by being a reference. In that case, the ID of the node remains the

same, so if a reference was changed (added) to point it, the pointer is valid also after

the move. Of course in this case we have a probable context issue, because a developer

is moving something that another developer decided to use pointing at it. In this case

we could put a warning. Note that, as described before in §2.3, the pattern we are

using in this solution combined with the class diagram, implies that we can have only

a reference pointing to a 1st level node, that is the root of sub-tree representing a MOF

entity and that could not be moved. Which means that we do not have this issue

working with these assumptions;

• move/add: again, no violations, but the probable context issue that an addition of a

node in a moved sub-tree could probably means two different wanted solution by two

different developers. We can create a warning.

There are no more cases of violations or context issues between two changes in this

solution. By stating the second sentence, we mean that even though there could be other

context issue, as said before, we cannot find nor handle all of them, but just the more probable

we can deduce analyzing the changes.

This solution handle the moves, but it is recommended to be used with a certain

serialization pattern and preferably when we know that the metamodel is the class diagram

(we have no way to test it on others diagrams), due to the various assumptions made before.

As we will see in the next paragraph, the third solution has to be more checked and verified,

so this could be an acceptable solution if we respect assumptions.

We provided also a third solution which is supposed to work also for nested moves.

However, it is a solution that should be further verified, since we had no time to cover all

possible situations that could be many and complex. The solution consists in adding some

rules to handle nested moves and their interaction with other composite operations. For

example, we have to handle the case in which in the version V a node X has been moved

under a node Y which, in turn, has been moved under X in the other version V'. Clearly, we do

not have this situation in the previously adopted solutions, because in those cases we avoid

36

nested moves. This is a conflict, and, since we cannot resolve it, we should use alternatives or

warnings. The problem is that the moved sub-tree may contain nested changes (also other

moves), and applying alternatives could lead to an explosion of them. In fact, suppose we

have 3 nested alternatives: the higher alternative duplicates all sub-trees representing 2

options. Then the second alternative has to duplicate a sub-tree within the already duplicated

sub-tree: consequently, we have 4 options for this alternative (not only 2). Follows that, with

the third change, we will have 8 options and so on, following the power of 2. Therefore, we

should choose warnings or a different strategy for alternatives, for example avoiding the

duplication of them. However, this is a problem when we have an extension tag (as we will

see in §3.2.5) and when we want to refer to something which is not XMI-reachable (because it

is inside the other alternative tag). We have already analyzed some examples and we have

found some similar solutions. Other problems will be discussed in chapter §3.2.5 concerning

change application. However, consider the solutions found a preliminary result: if well tuned,

they handle some particular situations (but probably not all of them). Furthermore, they could

be used as a hint to review the whole method.

We could have more context issues, for example when we discard a deletion. In this case,

a deletion is discarded but the deletion or update of the references that before pointed to the

deleted element are not discarded. That could be a problem, because we cannot know which

other changes were related to this deletion: the only thing we can do is to warn the user that

there could be related changes, like updates/deletions of connected references.

In this case we warn about a context issue that involve a discard of a deletion that could be

related with its close references, deducing their relation from their proximity (in fact they

were previously directly connected). So we choose to recognize the context saying that if they

are close they are probably related, even though we cannot be sure about the existence of such

a real relationship. Then we decided to create a warning. However there could be other related

changes and there could be other ways to suppose their relationship. We consider only those

references which were connected to the deleted node, so we use a distance-1 criterion.

We have not found more methods based only on the XMI syntax to deduce more probable

context-relationship between two changes with enough certainty. Besides, we cannot warn

about everything that could be remotely connected because that way the result could confuse

the user with too many irrelevant suppositions. At this point, we propose a direction for future

research on the representation of warnings, which could be somehow included (although it is

37

not very probable) and prioritized with some mechanism. This way, a user can choose to

browse only the more probably related changes (for example those based on proximity) or to

check deeply those changes that have less chance to be connected. However, as said at the

beginning of this section, finding all these related changes is a widely open issue.

3.2.4 Merge rules

As explained in the previous sections, whenever we have a conflict, a violation or a

context issue, we have handled them to avoid a loss of information. We mentioned also

solutions, and we will follow some basic rules to be applied in some situations.

The first cause of losing data is the deletion change. In fact, when such a change is

performed and it could affect another change, (e.g. we have a conflict, a violation or a

probable context issue), we should warn the user about the information that he is losing by the

simultaneous application of such changes. The only way to do this is to represent the whole

deleted sub-tree somehow in the batch file. In conflicts and violations, we also have to discard

effectively the deletion, since in a deletion-conflict we have to represent the other change

(update or addition) that has to be applied inside the deleted sub-tree. In the violation, as

discussed before, we can opt for correcting the syntax error, but the discard of a deletion does

38

Figure 11: Merge rule: we have to restore the deleted
node in order to represent the simultaneous addition

not cause any loss of data (apart from the non-application of the deletion itself, which could

be handled by a warning, specifying which sub-tree was supposed to be deleted). In the

context issue, we do not need to discard the deletion. However, to inform the user about the

possible context-related problem, we should represent what has been deleted, which is the

entire sub-tree. To do that, we can represent such an information somehow: however, the

simplest solution is again to discard the deletion and create a warning again (the same thing

that we do in other conflicts and violations which involve a deletion), instead of creating a

new rule that does the same thing but in a different way. Thus, we have a unique merge rule

to handle the deletion when it affects other changes: discarding it and creating a warning

(Figure 11).

Note that we could also have used a mechanism of alternative, creating two options which

represent the void option of the deletion and the modified sub-tree as the other option.

However, this solution seemed to create problems when an option of this alternative overlaps

an option of another alternative (like of a move). The problem consists in representing them

clearly, so we decided to follow the discard way, since it does not cause loss of information

and it does not have representational issues.

For the update/update conflict, as we mentioned above, a property has been changed: we

cannot represent two values of the same property, so we cannot apply them. As we will see in

the next section we have to find a way to represent both changes in the same file. We are

speaking about an alternative mechanism, that allows us to represent two different options for

the same element (to be XMI compliant).

We have another conflict to manage: when we have two moves in which a node X is

moved under a node Y in Vv and the node Y is moved under the node X in Vv'. This situation

could not be represented: the best thing to do is to discard changes and to put a warning about

their conflict. Another solution could be to use the same mechanism used for the conflicts (as

we will see later) to represent both the possible alternatives.

There are no more violations and conflict to manage which are not included in the rules

above. The other changes are applied modifying directly the CA and applying the change.

Since conflicts and violations are already managed, every other change could be performed.

The only thing we should consider is that it is safer to apply first every change which is not a

move, and then applying moves. This rule is necessary, because all the registered changes are

recorded with respect to the CA. Since we saw that applying a move before or after other

39

changes does not change the result (see the conflict detection §3.2.2), we can apply first all

the changes modifying the CA and then we can apply the moves. We will explain more in

details in the next section.

Note that we do not have so many rules, because, performing a batch merge, we want to

record the widest possible amount of information about conflicts, violations and context

issues without taking decisions in place of the user. The purpose of this batch merge is in fact

to help the user to understand relationships between related changes and then to facilitate the

manual (or using other tools to be implemented) merge rather then to perform a completely

automatized merge (which would require at least a huge IA component relying on a large set

of information that we do not have) [7].

3.2.5 Creating the merged file.

The last step is to create the merged file. We have to apply changes to the CA and to insert

annotations about changes, conflicts, violations and potential problems.

First of all, we proceed with the application of all the changes that do not create a

conflict. We create a copy of the CA, then we can simply modify it. We can gain access to the

changed element finding the path described on the change statement and then apply the

change. For an addition we create a new substructure identical to the one we have in Vv or

Vv'. In the case of the properties, we delete, add or change the value. We have to be very

careful about the combination of deletions and moves. In fact, if we apply a deletion and we

have previously moved a child node (which is not considered a conflict or a violation, because

the result is valid) we lose the source of the node. Even though we have the entire deleted sub-

structure in an annotation (as we will see later), it is safer to apply the move before the

deletion. But delaying deletions, in case a child-node placed below the moved node is deleted,

we are not able to reach it by its path. So which one is better to apply first? We choose to

apply these changes in a bottom-up way: we apply first the changes in the lower nodes, so

that their path is not changed by a higher level node move or deletion. Notice that by applying

the addition and the updates before the moves, we avoid many problems of the same type. In

fact, suppose that we have an added node X and a moved node Y under X: if we did not apply

the addition of X we would not have such a node, and it would be impossible to apply the

move. Furthermore, applying additions and updates before moves avoids the path problem

explained in the case of the deletion. We do not need to be careful about a move whose source

40

is placed below an added node or a property, since these cases are impossible. Doing these

operations is quite easy using an XML parser like DOM, so we do not explain further details.

During the application of changes, we would also like to mark them with annotations: the

aim is to show to the developer which part of the document has been changed and how. To

represent the whole information, we have to report both the modified and the original piece of

XMI. We said that we mark changes “during” and not “after” the application, because, to

mark a change, we use a path strategy and we could encounter the same problems as the ones

on the application. An annotation should show, as changed, only the latest element in the

change statement, which is also the smallest and deepest element changed in the XMI tree

hierarchy. For example, if we are speaking about updates, we should highlight only the

changed property. If we have a deletion or other composite changes, we should mark the root

node of the interested sub-structure. In details:

• addition: we can mark the root node of the added sub-structure or we could put a mark

of starting and one of ending. The first solution seems to be the best, since we can put

a mark element beside the structure without modifying the original XMI tree. The

second solution is more readable, which means that by looking at the XMI document it

is more visually clear which part has been changed. Furthermore, the first approach

could be tricky since it could happen that a node is added and another sub-tree is

moved below it: thus marking only the first added node means that we are marking

also the moved sub-structure. However, since we mark the moved node as well, in the

end it will be easy to deduce changes anyway. In the case we add a property, we have

no such problems;

• update: as we have previously said in the change-detection section (§3.2.1), every

update ends with the modification of a property. Thus we can create an annotation

which points to the property and explains what has been changed (we recall the fact

that to reach a property we need the parent-node in the path). We should put into the

annotation a field to show the previous value, in order to avoid loss of information: the

user could need to know it to resolve another conflict;

• deletion: here we have two choices. The first is not to apply the deletion and mark the

node as “to be deleted”; the second consists in deleting the node and adding an

annotation containing the whole deleted structure, in order to avoid a loss of

information about the change. To prevent confusing the user, we prefer to choose the

41

second solution. Since we do not have the node anymore, we should put a reference

that includes the parent node as well. For example, if we want to say that the node Y

has been deleted from the parent node X, we should not refer only to Y but we need to

refer to X.Y;

• move: to highlight this change we need an annotation that refers to the moved node,

but also to the changed parent nodes. For example we should say in the note that we

have moved the node Y from X to Z. This could create a problem when the node X is

deleted. However, we saw that the deleted node is available in the deletion annotation.

Moreover, we create a warning in this case (see conflict detection §3.2.2), so the

change can be entirely recognized.

Furthermore, we should associate every change to its author: thus, we need to put this

information in the batch file, enabling the merge-user to know which changes are connected

by the same “owner”. This is an information that should be represented in all annotations

(including alternatives and warnings which will be explained later).

To highlight changes, we need a mechanism. Unfortunately, XMI does not provide it, so

we have to use an expedient (we will use this term to define a way that is useful or necessary

for our particular purpose, but not always following completely the existing rules). We have

two possibilities: using a comment (like in a text-based merge) or using the XMI extension

element. We will discuss such possibilities at the end of this chapter, since we have to deal

with other kinds of additional notes (alternatives and warnings) which need the same

representation.

We have spoken many times about creating alternatives and warnings, so we need to

define these mechanisms in details: which requirements do they have to satisfy and which are

the main related issues. We start with the alternative, then we will explain the warning.

 An alternative represents a set of options for the same element. Since we are speaking

about the comparison of two different versions with the common ancestor (3-way merge), we

could have only two possible options to be represented with respect to the original one.

However, we could have more then only two alternatives to represent the correct result, since

we may combine alternatives creating more options. In the followings we will deal with two

alternatives for the sake of simplicity, but the mechanism could be easily extended to show

more options. Creating an alternative means that the same element should be duplicated in

order to represent differences. Since we have elements that are recognized by their ID or

42

name, we cannot duplicate them, otherwise we lose the possibility of reaching them uniquely.

We could create two new elements which are of the same type as the one we want to

duplicate, which would mean that they have a new ID. Note that when we have a name (like

in XMI properties), there is a problem concerning the duplication of such an identifier.

Furthermore, and more importantly, how could the user know that they are alternatives of an

element and they are not just new independent elements? We should mark them somehow, but

we need a mechanism that does not break the language syntax (as for annotations. In our case

such a language is XMI). Otherwise, we could use a new and different element (an

appropriate alternative element) that should refer to the element that has to be represented by

the alternative and its options. In both examples, as we have seen also in the case of

annotations, if we want to mark alternatives without breaking syntax at the same time, we

need a language support (for example from XMI) like an appropriate metamodel that

“understands” alternatives. Otherwise, we need to use some expedients (as we said before, we

use this term to define a way that is useful or necessary for our particular purpose, but not

always following completely the existing rules). For example, in text-based merge tools such

alternatives were performed commenting the same duplicated piece of text (line or lines)

representing both options and marking the comment somehow (often with special character

sequences). As we will see in the next chapter, using XMI comments could be a solution to

implement an alternative, but we also provide another solution using the XMI tag extension.

However, it is still a non standard mechanism, since it has not been created to represent

alternatives and it does not provide most of the specified fields (described below).

Consequently, some requirements have to be satisfied. In fact, analyzing alternatives, we

found some requirements to be satisfied when implementing a (generic) alternative

mechanism in a structured data file like an XMI document (tree). The alternative element

could be composed by more separated part (for example a nested move) that could be

dislocated in different places of the structure. Thus, an alternative element should have:

• an ID: every alternative should be uniquely identifiable. Every sub-structure that

belongs to the same alternative should have such an attribute;

• an option ID: for the same reason described above, every fragment belonging to the

same option should have this ID to be put together with the others. This way the user

(or a hypothetical tools) could see what belongs to the whole option;

• an author ID: we should show to the user the authors of each option;

43

• a difference marker: sometimes we might need to represent in the alternative the

whole element that has been changed (for example, if the value of a property is in

conflict, we duplicate the whole property but we mark only the value with this tag).

Marking the effective part that has been changed could be useful for the user or for a

tool to read the differences (e.g. in the case of the property we could mark only the

value as changed);

• a position mechanism: sometimes, we do not want to duplicate a changed element but

its different position in the structure. To represent that, we can duplicate the two

options in different places. Otherwise, we could leave the sub-structure choosing one

solution (for example the original one in the CA) and finding a way to say that the root

could be placed in two different places (to avoid duplication of a whole sub-structure).

We choose to use alternatives only to represent options for a conflict of the type

update/update on the same property. The main aim is to avoid situations in which we may

have overlapping alternatives. There is no problem having alternatives for atomic changes

(involving properties): they cannot overlap each other, since they are independent and they do

not have any part in common. On the contrary, we have some problems using alternatives on

composite changes. In fact if two composite changes need an alternative representation, it

could happen that one or more fragment which should be represented in an alternative, may

appear in the other one as well. That leads to a very complex representation which could

create confusion. Furthermore, such alternatives on composite changes are not very realistic:

probably the user will not choose one of them, but he will create a new solution ad hoc [7].

Our main task then is to let him know which are the problems to solve instead of solving

them, since we do not have enough information. To do that, we can use a more appropriate

mechanism, described below: the warning.

A warning is a mechanism whose aim is to show a problem that involves (or may

involve, in the case of probable context-related problems) two changes. The difference

between the warning and the alternative is that the warning does not propose a solution, but

just flags and describes a (possible) problem. We used it widely on most cases described,

since the information that we have, using only XMI, is not enough to deduce a limited set of

reasonable options (apart from property conflicts). In the followings, we show some required

elements that should be included in the definition of warning:

• an ID: sometimes could be useful to refer to another conflicts and reach them

44

uniquely;

• an author ID: we should show to the user the authors of each option;

• two (or more) change references/descriptions: if we have a set of saved changes on the

batch merge or if we have marked them within the original elements (in other words

we are sure that all information about changes is reachable by identifier in the merge

file) we would use references to connect the involved changes. Otherwise, we need

some sort of language to represent appropriately the changes to explain exactly to the

user (or to a tool) which changes are involved. In this thesis we use the change-

detection mechanism described in the section §3.1.2 and §3.2.1. Thus, for example,

the update with the value v of a property p of the node Y belonging to the sub-

structure X will be described as the statement [X, up(Y, up(p, up(v)))]. Suppose that

we detect a conflict, a violation or a probable context-related issue with another

change: for example, a reference r, placed within the sub-tree with root Z, which is the

child-node of a node W, that now points to X instead of another sub-structure S, we

will have also the description [W, up(Z, up(r, up(S→X)))] together with the previous

one. With this pair of descriptions placed inside the conflict element, we have the

information to highlight all what we want to attract the attention of the user or the tool

on;

• a priority mechanism: this is rather a desired component and not a requirement. It

could be useful to distinguish an important problem (for example regarding a conflict)

from a notice due to a probable context-problem. The way to implement such a

mechanism should reflect how crucial the warning is: for example, in this thesis we

may use the priority mechanism with three different values to flag conflicts, violations

and context issue;

• an “explanation” field: it is important to explain more carefully the problems that have

been detected, for example if we had a conflict or a violation or if we discarded some

of the described changes. It could also explain why we create the conflict, for example

when we discard a deletion because it causes a violation with a reference update. We

do not discuss in this thesis the way to represent such a field, we simply use the

natural language for the explanations.

As mentioned in connection with alternatives and annotations, XMI does not provide a

warning mechanism, so we have to use the same expedient. At this point we have to discuss

45

which expedients are available in XMI and which one do we use. We identify two

possibilities: inserting a comment, like in a text-based merge file, or using the XMI tag

extension.

In the case of comments, we can simply write notes as we wish, using XML format or

even a natural language. The main problem is that such comments are not distinguishable

from others. To avoid this problem, we should put some kind of special character sequence to

show that we do not have a common comment but it represents a merge note.

What we have found interesting in the tag extension, is that, according to XMI, we can

use a special attribute that makes the element (“wrapped” by this tag) an extension of another.

This satisfies a requirement described before, in which we desire to create annotations that

refer to nodes. For example, if we have to represent an added node, we can add an extension

element pointing to it. The extension tag, since it was created to support interoperability,

allows us to specify which tool we are using: this could be useful, since we can just find a

string to define every extension element as belonging to a “batch merge tool”. This way we

have a mechanism to formally distinguish the merge elements we added from other elements

inserted by other tools. Finally, every extension element has its own ID, which is a good way

to reach them. We have problems when we have to mark a property (which has no ID), but it

could be solved by just marking the parent-node (we need to mark it anyway, since a property

is reachable only by its parent-node). Unfortunately, there are no more positive features, so we

have no other way to represent more information using standards. This is due to the fact that

the XMI language lacks of the definition of a mechanism to handle annotations, alternatives

and warnings. The main reason is that the batch method for merging models (and generally

structured data) is not so widespread, so there is no standards to represent such mechanisms.

The best solution might be a standard definition: once we have a batch merged file, it could be

processed and elaborated by other tools created separately and relying on such a standard.

This is a way to separate the different tasks of merging, interpreting or visualizing results [7].

46

4. Algorithm

We propose an algorithm which implements the merge process described before. The

abstract algorithm is expressed in natural language to simplify its reading. The following

instructions are meant to cover all the serialization patterns used by XMI. However, as we

discussed before, it works very well if we have no moves at all (described before as the first

solution). It works properly if we have a pattern without nested MOF classes and thus a few

amount of moves, especially involving the second level of nodes (usually class diagrams). We

did not have the chance to test the algorithm enough on the remaining pattern (nested MOF

classes and frequent moves of nodes), so in a very complex combination of various changes

we cannot assure a correct result (there may occur problems in the application of changes and

in the representation of alternatives and warnings). The algorithm is annotated with comments

which explain the reasons for the choices made.

◊ COLLECTING CHANGES (1)

• find the MODEL node (we call it R as root) in the XMI tree;

• for each child-node E (we choose E for “MOF Entities”) of R do:

• (a) if E has been added or deleted then report in CHANGES (2)

• if E has been added and deleted at the same time report in MOVES (3)

• (b) if an XML property XP or a REF of E is deleted, added or changed then

report in CHANGES (4)

• for each child-node E' of E do the same 2 steps (a) and (b) and so on until the

leaves;

• for each M in MOVES do the same steps (a) and (b), taking E as the root of the

sub-tree instead of R, and keeping the prefix related to the CA (not to the

prefix after the move) (5)

Comments:
1. This whole set of instructions is meant do be executed on both changed versions Vv and Vv' with respect

to the CA in a non-deterministic order.

2. The CHANGE set contains all the changes: every change is structured as described in section §3.2.1

47

dealing with change-detection. For example, if a node X has been deleted we have […path…X, del()]

3. It reports the different parents. It is explained in details in §3.2.1

4. If it has been changed, then it reports how, for example the new node pointed by the reference

5. As said in §3.2.1, whenever we have a move of a node N, this should be matched with the original one

placed in the CA and we should continue the change detection: otherwise, the whole sub-tree of N is

considered simply deleted (whereas it is not) and it will not be compared with the same one belonging

to the CA, hiding changes.

◊ CONFLICT DETECTION, MERGE RULES (6)

• for each deletion DEL check its suffix and

• if there is a node N that is also (in the other version) in a prefix of other

updates, additions, it is a destination of a move or of a new/updated/added

reference, then remove the DEL and add a report in WARNINGS (7) saying

why it has been discarded; (8)

• for each reference that previously pointed to the deleted node and now is

updated/deleted, report in WARNINGS (9)

• if there is a node N which is the source of a move, then report in WARNINGS

(9)

• for each update UP of an XML property or a reference in V

• (c) if the same property/reference is changed (with a different value) in V', then

remove the UP and report in ALTERNATIVES (10)(11)

• if the original reference in the CA pointed to a deleted node N in V or in V',

then remove the DEL and report it in WARNINGS (12)

• if the same property/reference is deleted in V', then remove the DEL and report

in WARNINGS (8)

• for each added XML property or reference, if they are added in both V and V' ,

then do the same thing described in the previous step (13)

• for each move M in MOVES of V

• if there is another M' of the same element in V' (and it is not moved to the

same new father-node) then remove M, the deletion and the addition and report

in the WARNINGS (14)

• if there is a reference REF in V' which has been added or updated in a way that

48

now REF points to a node that belongs to the moved sub-tree or to the prefix of

the destination of M, then report in the WARNINGS (8)

• if in the new prefix of the moved node N there is a node A which is moved in

V' under a node B that is placed in the suffix of N, then remove both moves

and report in WARNINGS (15)

Comments:
6. Sometimes it is necessary to mix them.

7. WARNINGS is a set which contains records as described in § 3.2.5

8. Every deletion conflict, violation or context issue is managed by discarding the deletion, as explained in

§3.2.4

9. It recognizes every distance-1 related reference that could be context-connected with the deletion.

10. Here we can put a further and specific algorithm to find conflicts between the two values.

11. ATERNATIVES contains elements as described in §3.2.5: every element (that represent a conflict) has a

sub-set of options, extracted from the changed versions.

12. Keeping the original reference to a node N could break the validity if one of both changed versions have

deleted N. Then we have to act as when we want to avoid syntax violations. In this case, discarding the

deletion also causes the warnings about connected references. Since all these operations are caused by

the initial conflict (c), we should report the cause in the case of every element inserted in WARNING.

13. This situation corresponds to the situations in which the same property has been changed.

14. Conflict due to the move of the same node. As mentioned in §3.2.2 and §3.2.3, this conflict could not be

resolved and we can discard both moves inserting a warning, or represent them as alternatives: the latter

representation is more visual, but it could lead to inconsistencies with other nested move conflicts.

15. Useful only for those patterns which has nested moves.

◊ CHANGE APPLICATION, ANNOTATIONS, WARNINGS AND ALTERNATIVES

• copy the whole CA in a new file MERGE (16)

• for each addition in CHANGES, it is performed in MERGE

• mark the new nodes as added

• for each update in CHANGES, the property is changed in MERGE

• for each alternative in ALTERNATIVES

• create two duplicates of the original element and apply the changes separately

• if there is no original duplicated element (two additions) then choose non

deterministically one of the two options and apply it (17)

49

• “wrap” the two options using the comment or the extension mechanism

• refer to the original element (or the applied one in the case of two additions)

• for each move in MOVES and deletion in CHANGES apply them using a bottom-

up strategy (18)

• for each warning in WARNINGS create the extension sub-tree (or a comment)

referring to the involved nodes.

Comments:
16. Since we saved the changes with respect to the CA, we need to duplicate and modify it with them.

17. In case of an add/add of the same property we have nothing to refer to (there is not an original property in the

CA). Then we apply one of them and we use the other as alternative. This is the only one case in which we do

not respect the symmetry constraint, but consider that it is a very rare situation. Furthermore, it does not cause

any problem.

18. As mentioned in §3.2.5.

50

5. Discussion

In this chapter we will discuss our work. We have shown that the XMI approach is not

supported enough by the XMI standard itself and by tool vendors to perform a model merge.

Nevertheless, we have said that it is possible to define a process to handle the task of merging

with three XMI files. We will summarize our results and we will specify under which

restrictions they hold. Then we will compare our work with other three related ones: an

operation based, a formal approach in the model domain and an XML merge algorithm.

Finally, we will see how the work could be extended by further research.

5.1 Results and restrictions

In chapter 2 we have seen how XMI shows a non homogeneity in representing models,

caused both by the language definition and by the implementations of different tool vendors.

Then we have to state that we cannot provide a general merge tool that covers every possible

set of XMI files. This is the first (negative) result that emerges from this work. However, by

adding some restrictions, like choosing an XMI version (2.0) and ignoring tool

implementations, we have showed that a merge process could be defined to handle the merge

task among XMI files. We will present the restrictions and the results we obtain in each part

of the process.

We are able to identify every possible change between two versions of a model with the

help of the common ancestor: this is possible because for each XMI element we have a

correspondence (provided by the ID) in both changed files. Consequently, we can state that if

something has been changed inside the same element, we are able to find it. This is true only

if we assume that all the XMI files were serialized with the same pattern of serialization

(specification restriction) and if the same id is kept for the same XMI element

(implementation restriction) or if a match was provided in advance (environment restriction).

However, if the first and one of the other constraints are satisfied, we are able to report all the

information about both changed versions in the merged result.

The same restrictions have to hold again to guarantee a conflict detection among changes,

since this process depends on the change detection (and generally they have to hold for the

whole merge process for the same reason, so we will not repeat this in the next paragraphs).

However, such a conflict detection is correct, complete and cheap: we prove the first two

51

statements only informally, since it can be easily deduced from the detection definition in

section 3.2.2. In fact, we have a conflict only when the same property is changed, when a

change is placed in a deleted sub-tree, or if the same node has been moved. The method of

using a dynamic unit of comparison, which follows the branch of the tree in depth, makes sure

that we cover every change in every branch, even if there are moves (thanks to identifiers).

We come across conflicts in all of the previous cases, so the method is correct and complete.

We also have the positive side effect that it is cheap, since when it finds a deletion (and it

surely finds the root node of the deleted sub-tree first) it finds all conflicts involving the

deleted sub-tree without analyzing it. Moreover, its working policy allows us to integrate

other algorithms (even if we have not done it) in order to refine the conflict detection within

the leaf value, depending on the different format (for example if we have a piece of code in a

node value, we can continue to analyze it, selecting a dedicated text algorithm when we reach

it).

In the interpretation part we required also the analyzed files to be XMI valid. This is not a

strong restriction, since there is no reason for any editor to serialize an invalid XMI. The good

result was, in the case of (XMI syntax) violation detection, that we had to find only those

situations in which the separate application of two changes produced two valid files, while

their application in the same document violates the syntax. This means that we avoid to

process the whole file finding violations, since the part of the document that was not change

remains valid: instead, we found only a small set of such “dangerous” changes (involving

references and moves), which have to be checked in order to recognize violations. Even

though we do not provide a better result than the one performed by an XMI validator, we

propose a cheaper and faster way to discover violations (we do not have to validate the whole

document against all XMI rules, but only those dangerous changes). The part dealing with the

context-related problems provides, as expected, only a small set of those recognized probable

problems that we could encounter at the model level. This is reasonable, since we have only

the small amount of information (on such a level) provided by the MOF structure and

represented by the XMI tree, which represents a very high abstraction of the model. We

provide a mechanism that uses the proximity of changed MOF entities to determine whether

they could be related at a higher level. We have not found any other way to deduce related

problems without proposing excessively case-related ones. In fact, the problem of detecting

related changes is a very complex and open issue even if we know the specific semantic of the

52

model [7], so using XMI we can simply speculate on it.

With the merge rules and the application of changes, we create a new XMI file. The aim

of these steps is to represent the whole information about changes and to show every problem

we have found maintaining the XMI validity. First we discard the deletions and the moves

which have caused violations or conflicts. Then we create the alternative mechanism to

highlight conflicts and to represent possible options. Finally we insert warnings to report

about everything that could cause a problem or about discarded changes. In order not to break

the XMI validity, we represent alternatives and warnings with comments (like in textual

merge tools) or using the XMI tag extension. This way we have a merged XMI-valid file, with

all the applicable changes performed, all conflict representations and problem warnings.

On one hand we can provide an XMI valid result, on the other hand we cannot guarantee a

valid model as a result. In fact, even if we are provided with three valid models (represented

by XMI files), we cannot apply changes and discard them considering the correct result with

respect to the model semantic, since we do not know enough about it. As an example,

consider two changes that modify the minimum and the maximum of the cardinality of a

relationship: we have no possibility to know if the minimum is higher than the maximum after

the application of these changes, because we do not know such meanings and, consequently,

we cannot avoid the occurrence of a model violation.

The approach of the merge is batch oriented, since we do not expect the developer to

choose interactively from various options, but we provide a merge that represents rather than

resolves problems (like conflicts, violations, etc.). In fact, the small amount of information

that we could extract from XMI, permitted us to recognize changes but not to interpret them,

except for low level conflicts. The batch result could be regarded as an intermediate step in

the whole merge process (completed by the developer elaboration or by running another

interpretation/resolution tool over it), but could be useful by itself as explained in the paper

[7]. In fact, it could improve communication between parallel-working developers to resolve

merge issues, or it could help developers to see quickly which are the problems concerning

their work together with the others', without the necessity to find an immediate solution

(virtual merge).

53

5.2 Related works

In this work we proposed a “low level” merge based on the standard serialization

language XMI, in which we do not have to rely on further information provided by a specific

editor or by a higher level language. We have not found a similar work that deals with a merge

at XMI level and with a batch approach. However, there are some related works which are

similar for some aspects, but they usually used different approaches.

We have seen (before in this thesis) that we used a state-based approach to perform our

merge. There is, however, another way to produce a merge, that is called operation-based

[10]. In this approach we are provided with two sequences of changes (or operations) and the

goal is to merge them. This is often put in contrast with the state-based approach. There are

pros and cons between the two methods, and often they depend on which method is used: for

example, in the context of a state-based merge, if we have to match elements using a

similarity-based algorithm, as we saw in §3.1.1, the task could be very expensive, while using

identifiers is very easy and cheap. This means that in the former case we have a whole

expansive merge process, while in the latter we do not. Thus we cannot simply assert that the

state-based approach is more expensive. In the case of the operation-based approach, we

know from somewhere (often recorded by a model editor) which operations have taken place,

while in the state-based one we have to deduce them: thus, it seems better to know operations

instead of deducing them. In fact, with the former approach we avoid some false positives and

false negatives (sometimes we could deduce a single change from a modified element, while

it could be the result of a set of operations), so if there are less problems, the developer does

not have to deal with them. Nevertheless, we need a way to store operations during the

modification of the artifact: it is usually carried out by the editor while the developer performs

such operations. However, we choose XMI to be independent from editors: such a feature is

quite valuable since means that this work does not rely on a precise tool or a model

specification version, but it could be used in a wider setting (even though we need XMI to be

more homogeneous). Then we use XMI, but the drawback is that we could not have the

information about operations: consequently, we were forced to choose the state-based

approach.

Another related work is the one proposed by Westfechtel [16], in which he shows a formal

approach to provide a state-based 3-way merge of models. The fact that he proves a

completely valid merged model, including moves and recognizing both context-free and

54

context-sensible conflicts, makes his work very interesting but not suitable for our purpose.

Unfortunately, we cannot apply the logic he uses to the information provided by XMI because

there is no correspondence between them. In fact, as we can deduce from the title, “A Formal

Approach to Three-Way Merging of EMF Models” it is based on the EMF metamodel. Since

it is a new work, it may be adapted to the domain of XMI by further research.

Lindholm presented, in his master thesis [11], a 3-way merge on XML documents. Since

XMI is an XML dialect, the approach is very close to this work. However, considering the

XMI syntax, we can deduce more information from its structure and from the serialization

patterns used (that we have knowledge about), so we can make more assumptions than in a

generic XML file. For this reason, even though we can have some similar cases to analyze

(since XMI files are also XML files), we provided different solutions to handle certain

changes. Furthermore, we can exclude some cases that we know we cannot find in XMI; and

on the other hand we can add some specific cases regarding only XMI. Using IDs (from the

XMI specification) allows us to avoid the match part of his merge, which is the most

expensive and failure prone phase. Furthermore, IDs prevent the copy operation which is

considered in his work. Moreover, we do not need to consider child-node order: in Lindholm's

work, in fact, a change could affect a node if it is swapped with another sibling one, whilst for

our purpose it does not change anything (it is the same if an attribute is put before or after

another one). Furthermore, we changed the context definition in our work. Lindholm assumes

that there is a context problem when there are changes between a node and other nodes which

surround it, so every structural change on close nodes is discarded in order not to interfere

with semantic (unknown) dependencies. However, we do not need to discard them: we do not

know the exact context and it is not necessary to apply automatically every change (since we

put warnings and alternatives in unsolvable conflicts), so our approach highlights possible

problems due to proximity but without discarding changes. We used the same strategy to

handle conflicts: this is one of the most important differences between the two works. In our

solution, in the case of unsolvable conflict, we include different options on the merge result

which will be left to be checked by the developer. In Lindholm's work (as well as in Asklund's

[1]), conflicts caused by the modification of the same property are solved choosing the “first”

change: but this depends on the order in which we read changed version, which breaks our

requirement of symmetry (§3.1.5). Again, in the case of deletion-conflict (when we have

another change on a deleted sub-tree), the deletion is performed erasing other simultaneous

55

changes on the same deleted sub-tree. This results in a loss of information in the merged file,

that we managed to avoid. On the other hand, the drawback of our approach is having a non

complete merge which has to be validated again, whereas Lindholm needs to perform a merge

and has to take all the decisions about all conflicts.

The last issue we discuss represents an important difference between our work and that of

others described in the previous paragraphs. By choosing the batch approach and creating a

merge with all the information but without all the solutions, our result presents no

“dangerous” change-applications (those that could lead to a loss of information). It proposes a

non complete merge (in the sense that conflicts need to be resolved), which means that the

result needs to be elaborated again before being considered completely merged. When dealing

with models this solution makes sense, but if we have to merge files quickly between mobile

phones (like in a scenario involving XML proposed by Lindholm), might be preferable having

a valid (but possibly not correct) merge despite of some loss of information.

5.3 Further research

Our work could be useful to present some further research proposals concerning the XMI

approach.

First of all XMI itself and its implementation could be improved to be more homogeneous

and then to be used to perform a model merge. The language presents valuable characteristics

such as the ID mechanism to match files and the extension tag to report annotations of

different tools, but a more standard compliant implementation by tool vendors is important to

apply in real life what is proposed in the specification. For example the habit of using IDs and

keeping them over saves and loads could be a very nice feature in order to avoid the

dangerous and expensive task of matching.

Still, the language itself presents some rules of serialization that, even allowing flexibility,

could lead to ambiguities and issues concerning the merge problem. One of them is the choice

of nesting MOF entities as sub-structures of other nodes which represent other entities: it does

not add more expressivity since, as we saw in chapter 2, the two patterns of nesting and using

references are equivalent.

Moreover, XMI could be provided of a new mechanism(s) to represent warnings and

alternatives. This would be very useful to represent such elements in a standard way: having a

specification to be followed lets everyone free to create new tools to elaborate such

56

information derived from a merge result without creating all the other merge steps. For this

purpose, in §3.2.5 we listed some requirements to be respected in case one decides to

implement the useful mechanisms of alternative and warning.

The same thing could be expressed by the metamodel: for example, the same mechanism

could be described in the MOF specification, and it would have the same meaning (since XMI

uses the MOF specification).

There are several ways to improve this work: first of all the techniques described should

be verified on a wide set of models which we could not perform due to a lack of time and, as

said, of homogeneity in XMI artifacts. In fact, to do that, we would need a more evolute state

of XMI, in which tool vendors produce more homogeneous artifacts. At that point may be

necessary (in case XMI would be changed) to adjust the presented algorithm.

Using the serialization pattern without nested entities allows us to have all MOF

classifiers well defined and separated in different sub-trees of the root: this information may

be used to create a tool which reasons over the connections among entities. We know that

those connections are represented only by references: a changed reference means that a

dependency between entities has been changed (for example the fact that A was included in B

and now it is not), but they have not been structurally modified (a good example could be

when a developer performs a refactoring). Therefore, a tool could create a reference graph to

study only dependencies between entities and it could try to resolve only problems concerning

references.

We proposed a batch merge, a result with a lot of annotations: XMI is not very human-

readable, it is a mechanism to serialize models. For this reason, a visualization tool could be

very useful in order to show to the developer a more user-friendly representation of the

different and connected alternatives, warnings and changes, possibly with a model

representation. Besides, a tool which helps resolving conflicts, violations and other context

related problems could be very useful.

57

6. Conclusion

The study of the XMI language has highlighted some problems, first of all, the fact that

the same model could be represented by different XMI productions (different patterns of

serialization and different versions), which means that we cannot compare a set of any XMI

files. Furthermore, some patterns contain more model semantic information than others, or it

is differently represented which means that we can make assumptions when dealing with a

certain pattern, and these are not valid when dealing with another one. These considerations

forced us to define some restrictions which have to to be satisfied in order to consider this

work valid.

I proposed a 5-step merge process which takes as input three XMI files and provides as

output a new XMI valid file that represents the merged XMI tree. Such a process makes a diff

of the files relying on unique identifiers (avoiding the expensive job of matching).

The proposed algorithm, once all changes are obtained, finds conflicts among them. The

algorithm works deeply, which means that two changes are in conflict only if they involve the

same smallest structural element (fine-grain unit of comparison) and widely, which means that

it should find every direct conflict. The algorithm warns also about syntax violations and

distance-1 possible non-direct conflicts; it could be extended in a way to be able to warn also

distance-n non-direct conflict. The algorithm merges non-conflict changes, which means that

if two changes are not in direct conflict, they are applied correctly with respect with XMI

syntax.

The output is represented as a file in which we can find trace about all changes (also those

in conflict), so the algorithm runs in batch-mode. In fact, it reports about all ordinary changes,

unsolvable conflicts, syntax violations and possible problems. To handle such reports, three

approaches are used: annotations to label a changed element, alternatives which show all

possible solutions for a conflict, and warnings that report about violations or context-related

problem. Since such mechanisms are not supported by the XMI language, we propose the use

of the extension XMI tag and XMI comments. We also provided a specification which could

be verified and extended by further research.

Discussing outputs of the algorithm (which should be verified on a wider set of

examples), we can observe how this XMI approach suffers from the lack of semantic

information, which leads to a lack of warranty about correct model semantic output.

58

Finally, the algorithm at present is not completely environment-independent, since it needs

to analyze a set of XMI files which are necessarily serialized using the same pattern, and it

works better on a specific pattern. However, once the XMI language had found homogeneity

in the specification and in the implementation perfomed by tool vendors, we showed how we

can provide, without any further information (other than the three provided files), a

preliminary XMI valid merge which includes all information about changes, conflicts and

some model-semantic problems which could be elaborated subsequently by the developer or

by further tools.

59

Bibliography

[1] Asklund, U., Identifying conflicts during structural merge. In Proceedings of Nordic Workshop on

Programming Environment Research, 1994.

[2] Babich, W. A., Software Configuration Management – Coordination for Team Productivity,

Addison-Wesley, 1986

[3] Baisley, D. E., Method in a computer system for comparing XMI-based XML document for

identical contents, 1999

[4] Bendix, L.; Emanuelsson, P.: Collaborative Work with Software Models - Industrial Experience and

Requirements; p.x in: Proc. 2nd Intl. Conf. Model Based Systems Engineering - MBSE'09, Haifa,

Israel, March 2-6, 2009; http://www.mbse-org.org/; 2009

[5] Bendix, L.; Emanuelsson, P.: Diff And Merge Support For Feature Oriented Development; p.31-34

in: Proc. 2008 ICSE Workshop on Comparison and Versioning of Software Models, May 17, 2008,

Leipzig; ACM; 2008

[6] Bendix, L.; Emanuelsson, P.: Requirements for Practical Model Merge - An Industrial Perspective;

p.167-180 in: Proc. 12th Int.l Conf Model Driven Engineering Languages and Systems, MODELS

2009, Denver, CO, USA, October 4-9, 2009; LNiCS 5795, Springer; 2009

[7] Bendix, L., Koegel, M., Martini, A., The Case for Batch Merge of Models – Issues and Challenges –

International Workshop on Models and Evolution - ME 2010, Oslo, Norway, October 3, 2010.

[8] Fowler, M., “Continuous Integration”, published on the internet, URL:

http://martinfowler.com/articles/continuousIntegration.html

[9] Grose, T., Doney, G., & Brodsky, S., Mastering XMI: Java Programming with XMI, XML, and

UML, Wiley, New York, 2002.

[10] Kögel, M., Hermannsdoerfer, M., von Wesendonk, O., Helming, J., Operation-based Conflict

Detection on Models, in proceedings of the International Workshop on Model Comparison in

Practice, Malaga, Spain, July 1, 2010.

[11] Lindholm, T., Master Thesis, A 3-way Merging Algorithm for synchronizing ordered trees - the

3DM merging and differencing tool for XML, Helsinki University of Technology,

[12] Oliviera, H., Murta, L., Werner, C., Odyssey-VCS: A Flexible Version Control System for UML

Model Elements, in proceedings of the 12th International Workshop on Software Configuration

Management, Lisbon, Portugal, September 5-6, 2005.

[13] OMG-XML Metadata Interchange (XMI) Specification, version 1.0-2.0

http://www.omg.org/technology/documents/formal/xmi.htm

[14] Pagano, D., Brüggemann-Klein, A., Engineering Document Applications, From UML Models to

60

http://www.omg.org/technology/documents/formal/xmi.htm

XML Schemas. Presented at Balisage: The Markup Conference 2009, Montréal, Canada, August 11

- 14, 2009. In Proceedings of Balisage: The Markup Conference 2009. Balisage Series on Markup

Technologies, vol. 3 (2009). doi:10.4242/BalisageVol3.Bruggemann-Klein01

[15] Persson, A., Gustavsson, H., Lings, B., Lundell, B., Mattsson, A., Ärlig, U. - OSS tools in a

heterogeneous environment for embedded systems modelling: an analysis of adoptions of XMI,

2005

[16] Westfechtel, B., A Formal Approach to Three-Way Merging of EMF Models, in proceedings of the

Workshop on Model Comparison in Practice, Malaga, Spain, July 1, 2010.

[17] Wikipedia, http://en.wikipedia.org/wiki/Unified_Modeling_Language

61

	Martini.pdf
	blank.pdf
	MartiniReport.pdf

