
MASTER’S THESIS 2022

Analyzing front-end
performance using
Webassembly
Jacob Nilsson, Andreas Trattner

ISSN 1650-2884
LU-CS-EX: 2022-27

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-27

Analyzing front-end performance using
Webassembly

Jacob Nilsson, Andreas Trattner

Analyzing front-end performance using
Webassembly

Jacob Nilsson
jacobnilsson97@gmail.com

Andreas Trattner
mister.trattner@gmail.com

June 29, 2022

Master’s thesis work carried out at IKEA IT AB.

Supervisors: Lars Bendix, lars.bendix@cs.lth.se
Joakim Månsson, joakim.mansson@ingka.ikea.com

Examiner: Per Andersson, per.andersson@cs.lth.se

mailto:jacobnilsson97@gmail.com
mailto:mister.trattner@gmail.com
mailto:lars.bendix@cs.lth.se
mailto:joakim.mansson@ingka.ikea.com
mailto:per.andersson@cs.lth.se

Abstract

With an increasing demand for high quality web services, IKEA needs to be able
to deliver new features while keeping their web services responsive. JavaScript,
being the programming language used in the major web browsers, runs on the
vast majority of websites today to enable complex behavior. However, being
a dynamic, JIT-compiled language, its execution comes at the price of certain
runtime overheads and best-effort optimizations. A new technology native to
the web, WebAssembly, was created to address many of these shortcomings. The
goal of this thesis is to evaluate the performance of JavaScript in comparison to
WebAssembly for common algorithms that are not domain-specific.

To accomplish this, a literature study of the two technologies was conducted.
IKEAs web solutions were explored through interviews in order to identify com-
mon patterns and techniques that should be generalizable to the majority of
the web. A custom benchmarking framework was created in order to analyze
multiple stages of WebAssembly execution in the browser. Finally, algorithms
representative of the identified common techniques were benchmarked in both
JavaScript and WebAssembly.

An unexpected result shows that WebAssembly is subject to significant data
exchange overheads when non-primitive JavaScript data is passed between the
contexts. A more expected result shows that if the data exchange phases are dis-
regarded, WebAssembly executes faster than JavaScript in most circumstances,
sometimes on an order of several magnitudes faster. Improvements in WebAssem-
bly, such as using references to external data in an efficient way, could open up
the technology to a broader use case.

Keywords: Performance, WebAssembly, JavaScript, Benchmarking, Front-end

2

Acknowledgements

Thanks to Magnus and Joakim at IKEA. Your constant encouragement, curiosity and support
filled us with determination in this task. We would also like to thank all of the teams at IKEA
that we worked with. The constant laughter and occasional fika made every office day a joy.
Thank you for making us feel like a part of a family. We would also like to thank our friends
and family for supporting us during this thesis.

Last but not least, a special thanks to our supervisor at LTH, Lars. Your experience, guid-
ance and sense of humour saved us from many pitfalls and your love for metaphors provided
endless moments of enlightenment.

3

4

Contents

1 Introduction 9
1.1 Overview . 9
1.2 Problem definition . 10
1.3 Purpose . 10
1.4 Limitations . 11
1.5 Thesis structure . 11

2 Background 13
2.1 Context . 13
2.2 Method . 15
2.3 Theoretical fundament . 18

2.3.1 Compilers . 19
2.3.2 Web programming . 19
2.3.3 Advanced programming . 20
2.3.4 Concepts of Programming Languages 21
2.3.5 Algorithms, data structures and complexity 21
2.3.6 Evaluation of software systems . 22

3 Analysis 25
3.1 Literature Study . 25

3.1.1 JavaScript . 25
3.1.2 WebAssembly . 30

3.2 Interviews . 35
3.2.1 About the interviews . 35

4 Creating the benchmarking framework 39
4.1 Existing solutions . 40

4.1.1 Dynamic analysis frameworks . 40
4.1.2 Browser profilers . 40
4.1.3 Summary . 42

5

CONTENTS

4.2 Approaches to measuring execution time 42
4.2.1 Blackbox measuring . 42
4.2.2 Runtime instrumentation . 42

4.3 Requirements Specification . 43
4.3.1 Lessons learned . 44

4.4 Toolchains used . 47
4.4.1 JavaScript toolchain . 47
4.4.2 WebAssembly toolchain . 47

5 Running the benchmarks 49
5.1 Benchmarking setup . 49

5.1.1 Setup . 49
5.1.2 Input sizes . 50
5.1.3 Metrics . 50
5.1.4 Plots . 51
5.1.5 Execution setup . 51
5.1.6 Machine specifications . 51

5.2 Benchmarking results . 52
5.2.1 General results . 53
5.2.2 Sorting . 53
5.2.3 Mapping . 56
5.2.4 Grouping . 58
5.2.5 Filtering . 61
5.2.6 Machine learning . 63
5.2.7 Image data generation . 64
5.2.8 QR code generation . 66
5.2.9 Bin packing algorithm . 67

5.3 WebAssembly startup times . 69
5.3.1 Results . 69
5.3.2 Discussion . 69

5.4 Cross-algorithm discussion . 70
5.4.1 Recommendations . 72
5.4.2 Areas of improvement . 72

6 Discussion and related work 73
6.1 Reflection on our own work and method 73

6.1.1 Analysis and interviews . 73
6.1.2 Creating the benchmarking framework and approach to instrumen-

tation . 74
6.1.3 Running the benchmarks . 75

6.2 Threats to validity . 76
6.3 Generalizability . 79
6.4 Related work . 79
6.5 Future work . 83

7 Conclusion 85

6

CONTENTS

Appendix A Interview guide 95

7

CONTENTS

8

Chapter 1

Introduction

This section presents an overview and the problem this thesis aims to solve, why it is interest-
ing to solve it and the purpose of the thesis. The limitations and the structure of the report
will also be presented.

1.1 Overview
The web browsers of today are tools made in order to parse HTML-documents and, within
said documents, run scripts. The widespread adoption of the AJAX (Asynchronous JavaScript
and XML) model has fundamentally changed the web landscape; By introducing a commu-
nication layer between the client and server, web pages stopped acting as static documents
and allowed the same interactive behavior displayed in desktop applications. While the com-
plexity of websites grows, introducing 3D rendering and other processing-heavy operations,
the need to keep web pages responsive is more important than ever before. One bottleneck
stands out; The "lingua franca" of the internet, JavaScript, is a scripting language. Features
such as heap allocations, type speculations and the resulting overhead, garbage collection
and “best-effort” JIT-compilation may lead to suboptimal execution times. The reason for
the performance issues is not inadequately designed JavaScript engines, but mainly stems
from the design of the JavaScript language itself that favors ease of use over performance.
Looking upon these pitfalls in combination with the ubiquity of the web platform, an inter-
est in a compilation target for high-level languages on the web is apparent. Over the years,
several solutions to this issue have been proposed and explored to varying success. In this
thesis, WebAssembly will be researched and benchmarked against JavaScript in order to see
if it can execute processes faster. The result will be gathered from our tests and backed by
literature studies in order to explain the test results and support the validity of the tests.

IKEA is a large organization that designs and sells ready-to-assemble furniture, kitchen
appliances and home accessories, among other goods and home services. To provide their cus-
tomers with the ability to shop from home their web platform offers web services that enable

9

1. Introduction

that. Their services also include other features such as customizing a room with furniture,
searching for furniture using a photo and others. Seeing as they are a large global company
with many features on the web their web performance is important. Because of this IKEA is
interested in improving performance in their web services and wants to investigate available
methods. Since WebAssembly promises native-like performance, IKEA desires to explore
its benefits and limitations. IKEA also wants to know where and how they can use it for
enhancing their web service performance.

1.2 Problem definition
WebAssembly is a new technology which attempts to perform better than JavaScript by uti-
lizing Ahead-Of-Time (AOT) compilation, static typing and code optimization. One could
write code in one of several high-performance languages, such as C, C++ or Rust, compile
the code to WebAssembly binaries, and execute them from a Javascript environment. Given
the problem statement, the question becomes: Should IKEA adopt WebAssembly in their
front-end landscape, why and for what kind of services and algorithms? Our main hypoth-
esis is that WebAssembly will perform better than JavaScript for heavy-processes and time
consuming algorithms. This is because WebAssembly code is closer to machine instructions
and should therefore have faster execution time compared to JavaScript. However, because
of WebAssembly’s overhead and startup time JavaScript can be faster at executing some pro-
cesses due to optimization in the browsers. This leads us to the sub hypothesis which is that
the benefits of using WebAssembly highly depends on the type of algorithm, with regards to
how the compiler can optimize the JavaScript code. By analyzing the collected data from the
measurements, an investigation will be made to explore the reasons for the differences and
their consequences.

1.3 Purpose
This master thesis expects to help IKEA know what type of their web services can be im-
proved by using WebAssembly, also how and where to best use WebAssembly for improving
performance. Since WebAssembly is quite new, developed in 2017, This paper will also serve
as an investigation of a fairly unexplored area. Web developers can benefit from reading this
research as a means to understand the current and future state of performance in the web
browser. Reading this paper will give an understanding of how a new method for the web
can improve the performance in a large company’s web service. This thesis aims to increase
the current knowledge base in regards to execution time performance in realistic use cases
for WebAssembly. Also the WebAssembly community will gain knowledge about pros and
cons of using WebAssembly and areas of improvement that could be explored. Substantial
investigation has previously been carried out for fairly specific processes, namely those re-
lying heavily on matrix, vector- and arithmetic operations commonly used in fields such as
image- and audio processing. One goal of this paper is to analyze a broader spectrum of
processes common in the web landscape which will include routines that process large data
structures of arbitrary JavaScript data, in order to investigate whether or not WebAssembly
will perform better and why.

10

1.4 Limitations

1.4 Limitations
This thesis is conducted by two master students at Lund’s university over the course of 20
weeks, it is impossible to cover all use cases where WebAssembly might perform better than
JavaScript. Therefore the scope of the thesis has been limited to focus on a few selected
algorithms/processes which is interesting for the IKEA front-end landscape. Utilizing We-
bAssembly on the server side is interesting and has gathered a lot of traction lately, but due
to the manpower and time restriction it will not be in the scope of this thesis. Furthermore,
the paper will focus on performance in regards to execution time only. Memory usage will
not be explored. Competing solutions, mainly WebGL, will be discussed briefly but will not
be taken into account when performance is compared. Considering the time restrictions the
JavaScript engine in Chrome is the only one that will be researched. We will briefly look over
the other engines but our guess is that the differences in execution time will be minimal.

1.5 Thesis structure
• Introduction

• Background

• Analysis

• Creating the benchmarking framework

• Running the benchmarks

• Discussion and related work

• Conclusion

11

1. Introduction

12

Chapter 2

Background

This chapter will discuss the initial problem that IKEA faces and it will break it down into
research questions that will be explored in order to answer the initial problem at IKEA. A
roadmap will be presented about how this research would be best conducted to investigate
the research questions. Furthermore there will be a chapter about the theory, concepts and
principles that will be used in this thesis. After this chapter the manner of what to analyze
and how is clear.

2.1 Context
This section will further explore the IKEA context and the perceived problem therein. Un-
derstanding where the problem originates and the problem domain will be necessary to solve
it. Furthermore, It is necessary to set suitable research questions that shall be used to gather
data to drive the investigation. The initiating problem will be analyzed to find out what areas
are relevant for exploration in order to come to a conclusion.

Since it was first introduced, the world-wide web has grown exponentially in its usage
and complexity. Simple collections of text documents and file servers have evolved into full
scale applications. IKEA is no exception; public solutions such as Kitchen Planner have show-
cased that demanding 3D applications bring new potential to the web landscape and the IT
industry as a whole. It is unlikely that the customers of tomorrow will come to expect less
than the ones today do. Serving 490 million customers online from September 2019 to august
2020 [1] is testimony to the fact that IKEA has a large online presence. In order to stay ahead
in the game, IKEA needs to keep their web services responsive and well-functioning.

Early websites were made up of simple static HTML documents and some websites still
keep to this simplicity. In time, more advanced features in the browser window came in de-
mand. JavaScript was introduced as the native programming language for the client-side of
the web. As more features were introduced to the language, the gap between web pages and
native applications was blurred. As of June 2022, JavaScript is reportedly used by 98% of all

13

2. Background

web pages [2]. However, as the web became more dependent on scripting to drive increas-
ingly advanced behavior, certain shortcomings of JavaScript got more apparent. Its design fa-
vors productivity over performance; features such as dynamic typing and automatic memory
management results in an overhead during run-time. Early implementations relied on code
interpretation, but were later transformed into JIT-compilers for increased performance.

The issue of software performance on the web and the flaws with JavaScript is not a
recent discovery, as multiple solutions exist going back to the 1990s. Technologies such as
Java Web Applets and Microsoft’s ActiveX were created to address both inflexibilities in
earlier iterations of HTML and bring the native software experience to the internet through
plugins. By the end of the 2000s, the introduction of HTML 5 alongside powerful JavaScript
JIT-compilers spelled the end for several of the earlier attempts at running high performance
code in the browser window. In recent years, solutions such as Mozilla’s ASM.js and Google’s
NaCL aimed to be the next step in the web landscape, but they failed in having a lasting
impact. ASM.js, being a subset of JavaScript, gained some traction since it did not rely on
external tools meaning that all browsers that manage JavaScript could run it. NaCL allowed
native binaries to run in the browser, but was reliant on browser plugins to function properly
and lacked portability.

In 2015, several of the key browser vendors, namely Google, Apple, Microsoft and Mozilla,
started collaborating on what would become WebAssembly. It was developed with the in-
tention to supersede ASM.js and get around its shortcomings. Similar to ASM.js, it is a com-
pilation target rather than a language, and can be produced from code written in languages
such as C, C++ and Rust. It is a virtual instruction set, closely mimicking X86 assembly, and
can run through existing javascript runtimes such as V8, SpiderMonkey and Node.js. As We-
bAssembly promises performance similar to native programs, all the while running through
the JavaScript runtime, it is an interesting potential solution to the initiating problem.

Both memory usage and energy consumption are metrics other than time behavior that
can be used to describe the performance of a program. As both resource constrained mobile
devices and low-energy IoT nodes are becoming more prevalent, these properties are of great
concern and could have both a direct and indirect impact on execution time. Relating back
to the initial problem, however, the responsiveness of a program is directly connected to the
time it takes to perform tasks. As such, we consider that the research questions should reflect
an investigation that uses program execution time as the main metric.

With execution time in mind, the next question becomes what factors could influence
it. WebAssembly has, as one of its design goals, a fundamentally different execution model
than JavaScript. It is assumed that any measured difference in execution time within the
same context is a direct result of said differences, and as such it would be a useful area to
research. Furthermore, JavaScript is only a standard, with different browsers that implement
the technology. Differences in their implementation could possibly affect how efficiently
a program can be executed. Following this it is necessary to explore differences between
JavaScript and WebAssembly that affects the execution time and the first research question
should therefore be;

1. What are the differences between WebAssembly and JavaScript that affect the execu-
tion time, why are there differences and what are the consequences?

(a) Why do these differences affect the execution time?

14

2.2 Method

(b) How is it dependent on the execution environment, compiler and choice of al-
gorithm? To what extent?

(c) Why does WebAssembly have a start up time, can it be avoided? Is it negligible?

Similarly, all algorithms are not equal, and may utilize the hardware in different ways to
process information. By identifying and analyzing various common algorithms used by IKEA,
our exploration will answer the question whether or not WebAssembly could improve their
services. By exposing potential strengths and weaknesses in certain software patterns when
running WebAssembly, we will analyze the extent of the performance differences, as well as
discuss the reasons for them and how to address them. This will also provide insight into
areas of WebAssembly execution that can be improved by the WebAssembly community.

Connecting back to the IKEA context, there are many potential bottlenecks that could
slow down the user experience. Websites often communicate through APIs with back-end
systems that store and process data. This thesis is however concerned only with front-end
technology in order to have a more focused discussion. All websites are not equal, as the
driving processes depend on what kind of service the site provides. In order to answer IKEA’s
problem, it is necessary to explore how their front-end products function, and which kinds
of algorithms that are prevalent in them. It is also necessary to find a suitable approach to
evaluate the performance of WebAssembly and JavaScript. There exists multiple methods
and frameworks to accomplish this. They should be discussed and possible caveats of their
usage carefully analyzed. Therefore the second research question should be to explore IKEA’s
front-end landscape and current methods and frameworks to evaluate performance.

2. How much gain can be made with regards to execution time by implementing We-
bAssembly in the IKEA front-end landscape?

(a) What are common algorithms and services in the IKEA front-end landscape? Are
they suitable for WebAssembly? Why?

(b) What is a suitable benchmark when evaluating code performance, in regards to
time to complete different algorithms and processes and why?

(c) What frameworks exist to benchmark WebAssembly- and JavaScript performance?
What are their strengths and weaknesses?

2.2 Method
With the research questions in mind a need for exploring them in the most efficient and
thorough manner possible is needed. In this chapter we will discuss different ways of in-
vestigating the research questions in order to answer the initial problem. The result of this
discussion will be a detailed and motivated roadmap showing how to move forward with
the investigation advantageously with regards to the research questions. The first research
question focuses on the differences between WebAssembly and JavaScript and the second
research question focuses more on the possible gains for IKEA and benchmarking. Instead
of exploring the research questions in a sequential manner we have decided to explore them
independently. It follows naturally that the benchmarking result will depend on the differ-
ences but the result from benchmarking will also provide insights into the consequences of
these differences, which should be explored for research question (RQ) 1.

15

2. Background

RQ 1 focuses on the differences between JavaScript and WebAssembly, RQ 1.b has a bit
more focus on how it is affected by the environment and therefore will be explored later in the
thesis. But in order to explore RQ 1.a and 1.c the first step should be to perform a literature
study about JavaScript and WebAssembly. The goal will be to learn about different cases
where performance, with regards to execution time, of the execution process is different
and why. Another way of gathering knowledge about where the two competitors would
perform differently could be to first run benchmarking tests and then do literary study to
see the reasons for why. But this thesis aims to explore if- and where WebAssembly can be
useful for IKEA and therefore simply doing measurements on random algorithms will not
be sufficient. It would be more meaningful to first do a study of what type of tests has been
performed by others and see what can be applied to the IKEA context. Then perform our
own tests targeting IKEA services more accurately, in order to have more precise results for
IKEA. We have therefore decided that performing a literature study first will be the best way
of conducting this research. The literature study has the aim of helping us understand the
differences between JavaScript and WebAssembly which is important to know when we move
forward and try to adopt them in the IKEA front-end landscape. The literature study will be
done by the authors by searching prior studies that compare WebAssembly and JavaScript,
and search documentation about the two in order to find differences.

In order to explore RQ 2.b the second step should then be to understand more about
the IKEA front-end landscape. One way of doing this could be to perform a survey and
let the developers in the front-end landscape of IKEA answer it. This survey could contain
questions about what type of algorithms that are commonly used, and other questions that
have become important from the literature study in step 1. With this approach we would
be able to reach many developers in a time efficient manner. However the responses would
probably not be sufficient for our research. Since we have access to source code through
IKEA’s github, another way of doing it could be to analyze the source code ourselves in order
to find algorithms. However this would be time consuming as we would need to spend time
searching for where to look. We decided that the best way to understand more about the
IKEA front-end landscape would be to interview developers/teams that work in that area.
With this approach we would be able to ask our questions and interact with the developers
to fully understand their answers. When deciding upon which we would interview we settled
for:

• Product owners and engineering managers

• Web developers within the front-end landscape

The product owners is chosen as participants for the interviews since they know the
product and can quickly explain an overview of what the product is for. They will not be
able to give detailed answers to what type of algorithms that are prevalent in their products
and where, therefore they will not be questioned about it. The product owners have the best
insights of the future for the product and that is interesting for us to know, since that also
answers the question of if and where WebAssembly can be used in the IKEA landscape. The
questions to the product owners will therefore be with a focus on future prospects and goals
for the product. The engineering managers are more concerned with people than technology
in their day-to-day work. However, seeing as they mingle and network with multiple teams,
they could have a great sense of how IKEA at large is moving forwards.

16

2.2 Method

The questionnaire will be similar for both groups. When speaking to product owners
specifically, they will be more tailored towards their product and how it will evolve. For
engineering managers, the questions will be more about IKEA today and how it is expected
to change.

We will also ask Web developers in order to get information about how WebAssembly
could be adopted today into the IKEA front-end landscape. We have chosen to interview web
developers currently working in that landscape. The selected developers will have knowledge
about the specific product they are working with and know what type of algorithms they are
currently using and how it performs. The result from this step together with step 1 will be
the knowledge of what type of algorithms that would be interesting to compare in JavaScript
and WebAssembly.

To explore RQ 1.b and RQ 2.a there is a need for implementations of the chosen algo-
rithms. Therefore for the third step we need to implement the algorithms that have proven
to be interesting from step 2. For the JavaScript implementation there is of course the possi-
bility of writing the algorithm in JavaScript, but as a preference from the authors it will be
done in TypeScript. It does not matter when comparing execution time since TypeScript will
be transpiled into JavaScript in the browser. However for WebAssembly there are many dif-
ferent ways to write the algorithms. Since WebAssembly is a compilation target we need to
select which language to write the algorithm in and then compile it into WebAssembly code.
One option is to implement the algorithms in C or C++ and then compile it to WebAssembly
using Emscripten. However Emscripten does not automatically produce bindings for using
WebAssembly modules directly with JavaScript. This would have to be done manually and
would be time consuming. An alternative to using C/C++ and Emscripten is AssemblyScript
as language and Binaryen to compile it into WebAssembly. One of the biggest cases for As-
semblyScript is that it is similar to TypeScript which means that it would be straightforward
to implement algorithms in both TypeScript and AssemblyScript, compared to using a dif-
ferent syntax in C/C++. Since AssemblyScript has a narrow-use case, namely just compiling
into a static WebAssembly binary, the documentation is smaller in size compared to C/C++.
Another path could be to use Rust as the language together with wasm-pack, a plugin that
binds rust source code to JavaScript in order to compile it into WebAssembly. A significant
advantage of this approach is that wasm-pack automatically produces JavaScript bindings for
WebAssembly modules. Rust is a well-known and well-documented language and, together
with wasm-pack, is therefore chosen for implementing the algorithms in WebAssembly. The
result of this step will be the chosen algorithms written in both JavaScript (TypeScript) and
WebAssembly (Rust). This step is not directly connected to any of the research questions
but the product, the implemented algorithms, from it will be used for measurements in the
following steps.

For RQ 2.a there is a need to measure the difference in execution time for the imple-
mented algorithms. Therefore RQ 2.b and RQ 2.c are explored in order to have the best
possible way of comparing JavaScript and WebAssembly. The fourth step is therefore to find
ways to measure the difference for these algorithms in both WebAssembly and JavaScript. As
the initial problem is ultimately concerned with improving the user experience, one method
to achieve this would be AB-testing; One web page is created using only JavaScript, and
the other takes advantage of WebAssembly. Participants of the test could go through a set
of procedures on the two versions, and finally answer a survey about the user experience.
This would more directly answer the question whether or not IKEA should explore using

17

2. Background

WebAssembly in their front-end. However, this has certain limitations, for example, loss of
precision, anchoring the results in the subjective, and if the execution time for the various
algorithms are short to begin with, the results could become inconclusive. Being a subjective
measurement, the results would be locked on the ordinal scale- they are only meaningful in
relation to each other. Gathering results through benchmarking with timestamps, on the
other hand, is perhaps the better solution; It can capture discrepancies in execution time
with a higher resolution and is objective. These measurements can be analyzed using many
different scales, including the ratio scale, which further extends the ordinal scale by allowing
the magnitude of the difference between results to be measured. There are potential issues,
however; the resolution of the timestamp could introduce errors, as well as a certain code
execution overhead that affects the running time of the program. The potential issues with
timestamps, and what is considered a suitable depth of analysis will be further discussed in
a later section. Benchmarking through timestamps will be the approach this thesis uses as it
is considered more fruitful in exploring the research questions, while still noting that sub-
jective results could be sufficient to solve the initiating problem. There are different ways to
benchmark code performance. This step will result in a chosen benchmarking framework to
collect metrics in.

The fifth step will be to further explore RQ 1.b, RQ 1.c and RQ 2.a. We will use the
framework from step 4 and run the tests and collect metrics on the execution time for the
algorithms in JavaScript and WebAssembly. Most importantly this step is also to explain and
analyze the collected data and discuss the possibilities with WebAssembly. The data from
the benchmarking will be analyzed and compared to existing knowledge in order to come to
a conclusion and answer the initial problem.

To summarize the roadmap for exploring the RQs and with that be able to answer the
initial problem:

1. Literature study regarding WebAssembly and the javascript execution process.

2. Analyze IKEA’s front-end landscape.

3. Analyze and select appropriate framework(s) for benchmarking the algorithms

4. Create implementations of selected algorithms in both JavaScript and WebAssembly

5. Utilize selected framework for benchmarking algorithms and analyze the collected
data.

2.3 Theoretical fundament
This section will present the theory, concepts and principles that will be used as foundation
for the research in this thesis. It should be read in order for the thesis to be fully understood.
The reader is encouraged to seek further information in the corresponding fields if needed,
as this section only contains an overview.

First, concepts in the field of compilers are introduced. A brief introduction to concepts
in web programming follows. Advanced programming introduces data structures and various
sorting methods. Concepts of Programming Languages introduces the ideas of type systems.
Time complexity is explained in the section algorithms, data structures and complexity. Fi-
nally, evaluation of software systems explains terminology and methods for benchmarking.

18

2.3 Theoretical fundament

2.3.1 Compilers
Knowledge in compilers will be especially helpful in analyzing Research Question 1. Many of
the discrepancies between JavaScript and WebAssembly’s execution models can be explained
with the use of concepts in this field.

Code execution models
There are two dominant ways to execute code. Compilation means that human-readable code
is transformed into machine instructions before they are executed. Interpretation means
that human-readable code can be executed directly through a program called “interpreter”.
Interpreted code is usually several magnitudes slower than compiled code.

Code compilation strategies
AOT-compilation means “Ahead-of-time”, and produces the machine-readable code before
program execution. It commonly involves several code optimization strategies, such as uti-
lizing CPU registers instead of RAM whenever possible. The target architecture must be
known beforehand as the resulting binary contains hardware instructions. JIT-compilation
means “Just-in-time” and combines code interpretation with compilation to varying degrees.
When certain parts of the code are called often enough, it is tagged as “hot”; the executing
runtime could compile them into machine instructions for increased performance. One ben-
efit of this strategy is that it could find optimization opportunities that are only revealed
during runtime that would be impossible to find using AOT-compilation. The caveat is that
it could take a while until the code has been properly optimized. Some languages, partic-
ularly javascript running through the major browser runtimes, use a “best-effort” strategy;
Due to some properties of the language, the JIT-optimized code could become obsolete or
erroneous, resulting in the runtime falling back on interpretation.

Virtual instruction set
One problem in software science is portability. Compilers such as GCC will produce machine
code from C that is applicable to a certain computer architecture and operating system. If
the program needs to run on another computer, it would most certainly need to be compiled
again. Virtual instruction sets are a way to address this issue: Instead of creating hardware-
specific instructions, the compiler creates an intermediate format, targeting an “ideal” com-
puter. The result is a program that has undergone certain optimizations without being locked
to a certain architecture. The virtual program can then be executed from any computer that
has the appropriate runtime, usually with a minimal loss in performance. Adve et al. found
that for short runs, translations from virtual object code to machine code resulted in a 1%
additional execution time overhead[3].

2.3.2 Web programming
There are two broad divisions of web programming – front-end development which is also
called client-side development and back-end development (server-side development). This

19

2. Background

thesis focuses on the front-end development which mainly consists of JavaScript, HTML and
CSS. JavaScript is used to interact with the user and make the website dynamic. JavaScript
Object Notation (JSON) is a common data format that uses human-readable text to store
and transmit data objects consisting of attribute-value pairs (or other serializable values like
arrays). JSON objects are widely used when sending data to and from a server. An example
of a JSON object;

{" firstName ":"John", " lastName ":"Doe"}

If the website handles inputs and outputs such as gathering data from a server and then
presenting it to the user, there is a need for using non-blocking function calls. It takes time
for a function to fetch data from an API. Although multithreading is one approach that
could solve this issue, an idiomatic way of handling this problem in JavaScript is the usage of
asynchronous functions. Asynchronous programming allows a user to continue their business
in an application, while processes run in the background, thus enhancing the user experience.
It is common to use an asynchronous function with await where the fetch method is used to
get data from an API. To make a function asynchronous simply write async in its declaration
as below:

async function foo () {/* tasks */}

2.3.3 Advanced programming
In this thesis concepts about common data structures will be important and since differ-
ent sorting algorithms will be benchmarked a fundamental knowledge about them, mainly
quicksort and heapsort is needed.

Data structures
Data structures is about organizing data in memory. One commonly used data structure is an
array which is a collection of memory elements in which data is stored sequentially. Another
example is a list or a queue where the data is stored sequentially, an example where the data
is stored nonlinearly or not sequentially is a tree data structure.

Data structures can be classified as either static or dynamic. Static data structures are
when the size of memory is allocated at the compile time, therefore the size is fixed. Dynamic
data structures are when the size is allocated at the run time and therefore the size is flexible.
This is important to note for this thesis since Rust/WebAssembly need to specify memory
size at compile time whereas JavaScript manages to do it at runtime.

Sorting algorithms
Sorting algorithms are used to rearrange a given array or list elements by using a comparison
operator on the elements. The comparison operator is used to determine the new order for
all the elements in the respective data structure. Some common sorting algorithms that are
widely used will be explained below with corresponding time complexity.

20

2.3 Theoretical fundament

Quicksort Quicksort is what is called a divide and conquer algorithm. It picks an el-
ement as pivot and partitions the given array around the picked pivot element. There are
different versions of quicksort that pick pivot in different ways. One is to always pick the
first element as pivot. Another is to pick the last element as pivot, or to pick a random ele-
ment as pivot or pick median as pivot. The time complexity depends on how good the pivot
turns out to be. The best case for this algorithm is when the pivot will be in the middle of
the sorted data structure then the time complexity will be O(nlogn), in the worst case the
pivot will end up either first or last and corresponding time complexity will beO(n2).

Heapsort The heapsort technique is based on binary heap data structure. Min-heap or
max heap. For min-heap the root element is minimum and for max heap the root is maximum.
For min-heap it consists of finding the minimum element and placing it at the beginning
(root) and then repeating the process for the remaining elements building up a binary tree.
By deleting elements from the root we can sort the whole array. The time complexity for
heapsort is O(nlogn).

2.3.4 Concepts of Programming Languages
Knowledge in Concepts of Programming Languages is useful when discussing RQ 1. JavaScript
and WebAssembly have differences in their type systems that could affect the execution time.

Type systems
Statically-typed languages enforces that type information is available to a program at compile-
time. The types are connected to variables or fields within the program. Beyond allowing a
program to be guaranteed to be type-safe, knowing the size of the variables in the program
allows the compiler to place fixed-size data in stack memory, which is more efficient than
allocating heap memory. In Dynamically-typed languages, types are instead connected to
run-time values, and a variable’s signature may change during program execution. This usu-
ally results in a certain overhead. This is useful for research question 1.

Data passing
In programming, there are multiple ways to pass parameters to a function. Pass-by-value
means that parameters are copied into the function, effectively duplicating data. Pass-by-
reference means that the address of a parameter is copied into the function. Depending on
what data is being passed into the function, pass-by-value can be a very expensive operation-
passing data structures that are large or allocates data on the heap may lead to an overhead.
Meanwhile, memory addresses are 32- or 64 bit integers, regardless of the size of the data
structure they’re referencing.

2.3.5 Algorithms, data structures and complexity
Knowledge in algorithms and time complexity is useful for both RQ 1 and 2. It gives the
proper tools to reason about how execution time should scale in regards to certain algorithms.

21

2. Background

Furthermore, it will be useful when performing an analysis on IKEA algorithms, in order to
identify potentially demanding ones.

Time complexity and Big-O notation
In the realm of computer science, a common classification of algorithmic performance is
time complexity. Rather than being a metric for the exact number of clock cycles until a
routine terminates, it is an abstraction, giving information regarding the upper bound of the
execution time in relation to the input data. It is written on the format O(f (n)), where n is the
size of the input. As an example, if a program P is expected to take twice as long to execute
when the input size is doubled, the program P has the time complexity O(n) (P ∈ O(n)).
Since then notation is an upper bound of how a program’s execution time scales, it is also
true that the same program P ∈ O(n2). In most discussions of this paper, the lowest possible
bound is used, and as such, it is simply stated that P has the time complexity O(n) in the
previous example.

2.3.6 Evaluation of software systems
Knowledge in evaluation of software systems will be useful for RQ 2. It sets down standards
for metrics and approaches to benchmarking. Various methods of evaluation are used to fuel
the discussion concerning what manner of data extraction is the most suitable in order to
best quantify differences in performance between the two solutions that are studied.

Metric scales
There are certain scales that can be used to evaluate properties of software systems. The
Ordinal Scale applies when the only meaningful analysis of entities is their ordering. For
example, in AB-testing, one could gather that most users prefer system A over B (A > B F(A)
> F(B)), but the magnitude of this difference (|F(A) - F(B)|) cannot be quantified. The Ratio
Scale is an extension of the ordinal scale- an ordering between entities is possible. However,
it is also possible to measure the relative difference between entities that are mapped to the
ratio scale. This thesis will mostly use the Ratio Scale to analyze results.

GQM model
The GQM stands for Goal Question Metrics and is a model for taking goal oriented mea-
surements within software development. The GQM model is defined as first specifying the
goals with the measuring (Goal), then the questions that will answer the goals (Question) and
lastly specify the metrics that will answer those questions (Metrics).

The GQM blueprint: Object(s) of study This could be the code, product, process or a
resource Purpose What is the purpose of taking measurements, could be to understand how
something works or to improve the object(s). Quality focus What is the focus for measur-
ing, could be cost, predictability, reliability or execution time. Perspective From whose per-
spective it is, developers, scientists and product owners are interested in different types of
information. Context In what context has the measurements been conducted, for example
at which company.

22

2.3 Theoretical fundament

Data analysis
General purpose operating systems, such as Windows, MacOS and Linux are commonly used
among web consumers. They have very intricate systems that prioritize and regulate pro-
cesses, which could affect the execution time of programs by temporarily halting processes.
This can result in variations in benchmarking tasks.

By running a benchmark multiple times, a series of measurements are acquired. Under
ideal circumstances, they can be generalized into a Normal distribution the data series is
assumed to converge towards a Central value. Standard deviance is a measurement of how
close to the central value a randomly selected benchmark will likely be. A high standard
deviance implies that the data series has a high degree of variation.

Outliers are measurements in the data series that are unusually large or small compared
to the central value. What is considered an outlier can be rather subjective. One method of
exposing potential outliers is using box plots, by identifying the median, upper quartile and
lower quartile of the series, all values that fall outside of this range are considered outliers.

23

2. Background

24

Chapter 3

Analysis

The problem with benchmarking algorithms is that if the algorithms were chosen randomly,
which they would have been since the authors limited time and resources, the result of the
benchmark would be vague and it would be difficult to reach a conclusion. Therefore this
section aims to analyze the current literature together with the IKEA context and ultimately
result in relevant algorithms that will be useful to benchmark. The reader learns about the
current state of web technology, the root cause of the initiating problem and potential pitfalls
in attempting to solve it. Interviews are conducted in order to find out what experiments
are relevant. The result is a set of algorithms to explore, that have been motivated by their
prevalence in the front-end landscape. Information regarding the algorithms and existing
benchmarking tests will strengthen- or challenge the data obtained from our tests in chapter
5 “Running the benchmarks”.

3.1 Literature Study
In order to study the research questions we need to have algorithms that can be analyzed in
both JavaScript and WebAssembly. This literature study will be done with the aim to un-
derstand differences between JavaScript and WebAssembly and how they might affect the
execution time for different algorithms. With this understanding an analysis of algorithms
that are dependent on those differences can be done. This will in turn result in a list of algo-
rithms or processes that would be interesting to use for benchmarking given the differences
of JavaScript and WebAssembly.

3.1.1 JavaScript
In order for the computer to understand and execute JavaScript code it must first be con-
verted into machine-readable code. A JavaScript engine is a computer program that exists
within a browser and that does this conversion. Since it is the JavaScript engine that does

25

3. Analysis

the optimization when running javascript code, it is interesting for this thesis to study the
engines.

It is no exaggeration to state that JavaScript was not an advanced language when it was
created, rather just to interact with HTML-elements. Brendan Eich developed it in only
10 days [4], but it has still survived and is the main language used for websites. Since it is
the optimization that has made JavaScript what it is today it is important for this thesis
to study the execution process within the engines, in order to see how it can compete with
WebAssembly. The aim of the study is to find cases where JavaScript has its strengths and
can execute quickly and where it has weaknesses and executes slowly. Below in table 3.1 are
common browsers and the name of their corresponding javascript engine:

Browser JavaScript engine
Google Chrome V8
Mozilla FireFox SpiderMonkey

Edge (internet explorer) Chakra
Safari JavaScript Core Webkit

Table 3.1: Browsers and their corresponding JavaScript engine

To study all of the optimizations in the engines above in detail would be too time con-
suming. Therefore the choice was made to study in detail the V8 in Google Chrome since it
is a widely used browser.

More detailed analysis of V8 engine
The V8 differs from other JavaScript engines in the way that it directly converts from an in-
coming JavaScript function to non-optimized native code. When the V8 processes JavaScript
code there are three main steps taken; 1. Parsing the code, 2. Compiling the code, 3. Executing
the code.

Step 1. Parsing the code During the Parsing phase, JavaScript code is decom-
posed into tokens. For example in: const sum = 4 + 1 the tokens are "const", "sum", "4", "+",
"5". These tokens are then sent to the syntax parser which converts the code into an Abstract
Syntax Tree (AST).

Step 2. Compiling the code The V8 engine uses one interpreter called Ignition
and one compiler called TurboFan [5]. The ignition interpreter gets the AST and converts it
into bytecode which proceeds into the execution step. On further executions the V8 engine
finds patterns such as frequently executed functions, frequently used variables, and compiles
them using TurboFan to improve performance. Suppose the performance degrades or the
parameters passed to the function change their type, then the V8 decompiles the compiled
code and falls back to the interpreter.

Step 3. Executing the code The bytecode is executed by using the memory
heap and the call stack in the V8 engine’s runtime environment. The call stack is where data
is pushed onto for execution and popped from after their execution.

26

3.1 Literature Study

Just-In-Time compilation
The TurboFan compiler doing the optimization mentioned in step 2 above is a Just-In-Time
compiler. One limitation with JIT compilers is that they need time to compile and optimize
a program before it can execute. A benefit with JIT compilation is the optimization possibil-
ities, since it is done at run time as opposed to Ahead-Of-Time (AOT), this means that the
optimizations will be done dynamically with how the code is being used, such as for inline
caching, which will be analyzed later in this chapter [6]).

Because of JIT compilation it could be motivated that running the same type of oper-
ations many times, allowing TurboFan to produce optimized code, should benefit the exe-
cution time of JavaScript. In “On the runtime and energy performance of WebAssembly:
Is webassembly superior to JavaScript yet?”, the authors performed benchmarking tests for
different sorting algorithms with varying input sizes, they used c/c++ as the language for We-
bAssembly. They concluded that WebAssembly was faster at executing sorting algorithms,
although not to an extreme extent. Interestingly they also found that the bigger the input
size the smaller the performance gap between WebAssembly and JavaScript became, they ar-
gued that this was because of JIT compilation[7]. It would therefore be interesting to study
where the breaking point for sorting algorithms is for WebAssembly compared to JavaScript.
To build upon the data of the mentioned paper, sorting algorithms are added to the list of
interesting algorithms for comparing WebAssembly and JavaScript.

Hidden classes and inline caching
Since JavaScript is a dynamically typed language, properties can be added dynamically to an
object, the type of these properties can be changed dynamically, these possibilities pose a
problem for the memory storage. In a statically typed language for example Java, the type
of an object’s property is known when compiled. The memory storing of the values for the
properties/pointers to those properties are in a contiguous buffer with a fixed-offset based
on the property’s type. This is not possible in JavaScript since a property’s type can change
during runtime.

The ways that JavaScript stores the location of object properties are in dictionary-like
objects, this makes the process of retrieving an object’s properties time consuming. In order
to optimize this process the V8 utilizes hidden classes [8]. Whenever an object is instantiated
in V8 a hidden class is attached to it with the purpose of optimizing the property access time.
When the created object is modified by an added or changed property a new hidden class
will be created, with all the properties from the previous class, and include the new property.
The old hidden class will be updated with a transition path, this path is important because it
allows objects to share hidden classes if they are created in the same way. For example if two
objects share a hidden class and both are assigned a new string property, the transition path
ensures that the newly created hidden class is assigned to both of the objects. It is important
to note that hidden classes depend on the order in which properties are added to objects. For
example if two objects get the same type of properties but in different order they no longer
share the same hidden class and there is no optimization in look up time.

Inline caching optimization makes use of hidden classes by keeping track of the addresses
of the properties on objects. When a method is called the V8 keeps track of what type of
objects that are passed as a parameter. It uses that information to assume what type of object
will be used as a parameter in the future for that method. If its assumptions prove to be

27

3. Analysis

correct it will be able to bypass the process of figuring out how to access the passed objects
properties. It will instead use its cached information from previous lookups to the objects
hidden class which entails memory penalties, however memory penalties is not the focus of
this thesis.

Since inline caching with the help of hidden classes [9] is to improve the execution time
remarkably it would be interesting to test its capabilities and how they can compete with
WebAssembly since webAssembly cannot use run time optimizations in the same way since
it is compiled and already optimized. In [10], the authors tested how much these optimiza-
tions improved JavaScript performance while running different benchmarks. Most notably
they used the JSBench which is a benchmark consisting of real javascript code assembled from
actual websites, they also tested Kraken, SunSpider and Octane which are common bench-
marks for measuring javascript engine performance. They first tested JavaScript performance
by only disabling the JIT compiler and then also the inline caching. Their first result with no
JIT but inline caching resulted in an average instruction count increase by 6.4x, 2.7x, and 3.1x
in Kraken, Octane, and SunSpider, respectively, while it decreases the count by 0.95x in JS-
Bench. Disabling the inline caching as well increases the average instruction count by 84.6x,
43.6x, and 31.9x in Kraken, Octane, and SunSpider, respectively, and by only 1.4x in JSBench.
As noted for Kraken, Octane and SunSpider there is a remarkable increase in instruction
count, which in turn increases the execution time, when the inline caching is disabled.

This means that JavaScript should perform well with algorithms that are consistent with
the input to their function calls and that are called many times. Also, many built-in functions
in JavaScript are higher-order functions; functions that compare two objects usually take a
function that specifies how objects should be compared. Before the engine can optimize
this comparison, it will compare objects slowly, meaning a long time for sorting but after
optimization it will compare quickly.

Type speculation and number optimization
To generate optimized code for code sections that are executed frequently the V8 uses type
speculation. However these assumptions require to be frequently checked in order for the
generated code to not be violated. In the case that the assumptions were wrong the program
reverts back to the unoptimized code, this is called deoptimization and the frequent checks
are called deoptimization checks [11]. An example of a simple javascript function is;

function add(a,b){
return a+b;

}

Because of javaScript’s kind and accepting syntax this is a valid function that can be called
with two arguments of any type. JavaScript has defined double-precision floating-point as
the number format. This means that there is no separate integer type and the number 37
consumes as much memory space as the number -9.75. If the add function above is called
with two 32-bit integers it will still use double-precision floating point addition as number
format, before optimization, which has double the latency of an integer addition, on a Cortex
A76 core.

The interpreter in a JavaScript engine will collect dynamic type information for object
access and type information. In the function “add” above, the interpreter will execute with
floating point addition but if it finds that the function is always called with integers the

28

3.1 Literature Study

JIT compiler will use type speculation and make an assumption that add will be called with
integers. It will then generate machine code which is optimized for integer addition instead
of double addition. The deoptimization checks will be used in order for the assumptions
not to be violated. If a function call comes with two floats then the optimized code can
no longer be used, a deoptimization step or bailout is done and the code reverts back to
unoptimized code. This means that JavaScript can continue running optimized code if the
calls do not change the type of the arguments. The deoptimization checks that are there to
verify assumptions have been tested to pose an execution overhead of 8%. More about type
speculation and its consequences can be found in [11]. The type speculation is beneficial when
optimizing away from using the JavaScript floating-point as number format and instead using
optimized machine code for integer operations.

It is interesting to see wheteher or not type speculation can make JavaScript a contenter
against WebAssemby since types are already known for WebAssembly. In thein the It can
be In the case of always calling a function with the same type of the arguments, allowing
the TurboFan to generate optimized machine code, JavaScript should therefore be close to
WebAssembly with WebAssembly in regards to execution time. But to find data for this
claim these types of algorithms should be tested.

Garbage Collection
In order for the browser to handle memory management, garbage collection was introduced
as a feature in modern browsers. It provides the ability to allocate and free memory effort-
lessly in modern language runtimes. Furthermore, it has the ability to prevent some memory
leaks that could be caused by programming errors, such as missed deallocation calls. Most
garbage collectors (GC) have similar ways of handling memory. the common tasks that are
done periodically includes:

• Identify live/dead objects

• Recycle/reuse the memory occupied by dead objects

• Compact/defragment memory (optional)

For traditional GC there is the concept of "stop-the-world" which is when the garbage
collection tasks pauses the main thread while the tasks are performed. This affects the user
experience in a bad way in the form of poor rendering and latency on the webpage. However
the GC in V8 has come a long way with garbage collection. V8 uses the garbage collector
Orinoco which makes use of the latest and greatest parallel, incremental and concurrent
techniques for garbage collection [12]. However it is hard to identify what type of algorithms
that will perform time inefficiently because of GC. It can be assumed that the general per-
formance of JavaScript is affected by garbage collection in that it needs to pause a bit for
clearing up memory. Rust does not utilize runtime garbage collection since it handles mem-
ory in a different way. But having an algorithm that adds a lot of objects to the heap without
clearing it in WebAssembly will yield memory penalties and is therefore discouraged.

Memory layout
JavaScript does not use sequential memory but rather uses mappings to deal with the dynamic
nature of objects. Each object is stored with a mapping, the first time the object is created

29

3. Analysis

the engine assigns it a large slice of memory and stores it with an empty mapping. The engine
remembers the mapping of property names to their stored value in the object array memory.
When a property is added to the object it saves it in the first place of the object’s memory
array. After executing;

let p = {a:1}

P’s memory array will be looking something like this
... a ... 1 ...

As can be seen by the table above the object’s data array and the mapping array might be
stored in different places in the memory. The left array is the mapping and and the right
array holds the property values. When a property is added to the object the engine optimizes
to reuse the old mappings and store the incremental changes with a link to the previous map-
ping, similar to a linked-list, even though this optimization, dynamically adding a property
still takes time as compared to a statically typed language. A statically typed language will
not need to worry about the mapping array or object’s data array needing to be restructured
since sizes are specified from the beginning [13]. This memory layout would suggest that al-
gorithms that use objects with multiple properties will be executed faster in WebAssembly,
since WebAssembly uses sequential memory.

3.1.2 WebAssembly
One of the motivations for creating WebAssembly was high performance, while still oper-
ating within existing web technologies. The purpose of this section is to discuss strengths-
and weaknesses of WebAssembly, to which extent they may affect performance, and connect
them to specific processes and algorithms. In order to achieve this, discrepancies between the
technologies and features unique to WebAssembly are accounted for in order to motivate the
discussion.

Execution model
The biggest difference between JavaScript and WebAssembly is their format. JavaScript is a
high-level, human-readable text format. WebAssembly is a virtual instruction format, more
akin to Java bytecode or x86 assembly. it is not supposed to be written manually. Rather, it
is a compilation target for other languages, such as C, C++ and Rust. WebAssembly binaries
are sent to the client computer, and executed through the browser JavaScript runtime [14].

WebAssembly aims to improve upon its predecessor ASM.js. It has been shown that We-
bAssembly running in the browser consistently outperforms ASM.js in regards to execution
time, with a mean speedup of 1.54X and 1.39X in Firefox and Chrome respectively [15].

In V8, WebAssembly does not rely on the interpreter Ignition. Rather, it is immediately
compiled into machine instructions using the baseline compiler Liftoff. After machine code
generation, V8 runs the optimizing multi-pass compiler Turbofan, which aims to further
improve the generated code. This is a slower process, but as soon as functions are opti-
mized, they replace their Liftoff counterparts for the remainder of program execution [16].
This differs from JavaScript, which is always liable to the optimize-backoff process. An opti-
mized javascript function may fail if the call signature changes from what has been speculated,
falling back on the slower interpreter mode.

30

3.1 Literature Study

Claiming that WebAssembly is AOT-compiled is only partially true. In Chrome’s V8
engine, WebAssembly code is further processed using JIT-compilation during runtime. Pre-
vious results have shown that while JavaScript’s execution speed is significantly improved
by JIT-optimizations, they are not as beneficial on WebAssembly code. Experiments on the
polybenchC benchmark show that JIT-optimization improved JavaScript execution speed up
to 120 times compared to interpreted JavaScript, with an average improvement on execution
time around 38.4 times [17]. Meanwhile, WebAssembly was found to be on average 0.4%
faster with JIT-compilation. It is partially credited to the fact that many optimizations that
would benefit WebAssembly have already been applied during compilation from the source
language [17].

Many existing WebAssembly compilers, such as Cheerp, Emscripten and RustC, are built
upon the LLVM (Low Level Virtual Machine) compiler framework. In their report “Under-
standing the Performance of WebAssembly Applications” [18], Yutian Yan et. al. conclude
that the efficiency of LLVM optimizations on WebAssembly is questionable, and might have
a negative impact on its performance aspects.

These facts result in a technology which at least should be faster to execute than JavaScript
before it has been optimized, regardless of what code is being executed.

Instantiation in JavaScript
JavaScript source code, as previously mentioned, is a high-level, human readable text format.
WebAssembly, on the other hand, is delivered- and executed in a binary format. Experi-
ments in Firefox show that it can be decoded an order of magnitude faster than ASM.JS,
its direct predecessor which is based on a subset of JavaScript [19]. At the time of writing,
WebAssembly does not use the common JavaScript instantiation mechanisms without the
use of external tools such as JavaScript Web Bundlers like WebPack. Calling WebAssem-
bly logic from JavaScript requires asynchronous instantiation of WebAssembly modules [20].
The module only needs to be instantiated a single time, a “cold-start”. The module can then
be reused without any additional start-up time. There is a WebAssembly standard proposal
to implement a WebAssembly-ES Module integration [21], which would effectively initialize
WebAssembly modules together with the JavaScript code. An investigation into the start-up
time of WebAssembly modules shows that it it directly tied to the size of the module; In the
experiment, reducing the size of a WebAssembly binary from 15.2 Mb to 28.6 Kb resulted in
the startup time being reduced from 4.472 to 0.104 seconds [22]. The start-up time could be
an issue. Algorithms which have a relatively short execution time and are not used frequently
enough should execute faster in JavaScript than WebAssembly.

Data types and arithmetic
The WebAssembly standard defines a very limited number of numeric data types; integers-
and floats of 32- and 64 bit width respectively, the 128-bit width vector type, specifically used
for SIMD instructions, and reference types, holding function [23]. In unoptimized JavaScript,
all numeric values are considered as double-precision floats if they can be represented using
64 bits.. This can prevent certain optimizations from applying until the runtime optimizes
the code. An experiment on the javascript library Long.js, which provides 64-bit integer
operations, shows that WebAssembly outperforms JavaScript in multiplication, division and

31

3. Analysis

remainder operations, with 64-bit division being roughly twice as fast in WebAssembly. This
is accredited to WebAssembly translating into fewer machine instructions due to a more
specialized number type system [18].

As a consequence, it can be inferred that programs that rely heavily on arithmetic should
perform better in WebAssembly than JavaScript. Examples of this include cryptographic
hash functions, matrix- and vector operations, and signal processing algorithms such as con-
volution and fast fourier transforms. In 3D graphics, many algorithms such as inverse square
root are executed for every single frame; even a small improvement in execution time can
make a large difference for the frame rate.

SIMD
SIMD (Single Instruction, Multiple Data) is a data-level parallelism technique (in contrast
to multithreading, which concerns process- or task parallelism). The instruction loads two
sequences of operands, and applies some operator to the data, rather than processing the
sequence of operands sequentially [24]. Originally in the works to be an extension of the EC-
MAScript standard, it was scrapped in favor of the feature being worked into WebAssembly
[25]. In WebAssembly, this is realized with the vector type, consisting of four 32-bit integers,
enabling two sequences of four operands to be processed simultaneously, if the underlying
hardware supports the instruction. A recent study that benchmarked a HEVC video decoder
showed that introducing SIMD-instructions resulted in a speedup of around 4x compared
to the original program [26]. The feature is being further extended with the introduction
of “Relaxed SIMD”, and the Fused Multiply-Add operator, which can perform the operation
(a ∗ b) + c in a single instruction (Relaxed SIMD proposal). On hardware that supports
it, performing intensive numerical calculations on sequences of data should reach far higher
performance. Examples of this include problems in signal processing, such as processing im-
ages, audio and video. Furthermore, many machine learning tasks rely on computations over
large numerical sequences.

Memory
WebAssembly modules do not define their own memory. Instead, when a WebAssembly
module is instantiated from JavaScript, a block of untyped, sequential bytes are allocated
and shared with the instance [27].

WebAssembly does not have any mechanism for garbage collection, but it has been pro-
posed as an extension to the standard [28].

Static typing
WebAssembly contains type information. As such, the runtime does not have to perform cer-
tain checks which are instead weaved into the program itself. Certain overheads are removed
from program execution, which should result in a program that runs faster. The impact of
this depends on how soon and well a javascript runtime can produce type information during
execution. In theory, the same type information that is present in WebAssembly will even-
tually be found in JavaScript, leading to type-specific optimizations to occur which removes
certain overheads. However, as stated previously, a failed deoptimization check in JavaScript

32

3.1 Literature Study

will lead to the runtime falling back on the slower interpreter mode. Furthermore, even well-
optimized JavaScript runs deoptimization checks at every function call, which WebAssembly
does not require.

Passing data

As previously mentioned, WebAssembly provides support for a fairly limited set of types.
Since WebAssembly is a stack machine which works solely with numeric data, calling a We-
bAssembly function from JavaScript only allows input- and output in the form numbers. The
key to getting around this limitation is using the shared memory between JavaScript and We-
bAssembly. For example, passing string data to a WebAssembly function would instead work
by allocating enough space on its stack memory to hold the bytes of the string and write the
data directly. The function would then receive an integer pointing to the string’s position
in memory, together with its length. Since this is a cumbersome mechanism to write by
hand, many WebAssembly toolchains such as WASM-pack for Rust automatically generate
the necessary helper code to allocate- and free fixed-size sequences from the shared memory.

A new data type, stringref, has been proposed for WebAssembly. Rather than requiring
strings to be copied into a shared buffer, WebAssembly modules would be able to directly
interact with JavaScript string without any overhead [29].

Another issue is JavaScript objects and generic arrays (which are syntactic sugar for ob-
jects). These are, fundamentally, mutable sets of key-value pairs. Furthermore, there is no
limitation to what kind of data they may hold. Due to JavaScript’s loose rules regarding
memory layout, two objects could be structurally identical, yet position their properties at
completely different memory offsets.

WebAssembly, aiming to be a minimal standard, has no method of directly interact-
ing with JavaScript objects, despite their key importance to web applications. Instead, the
programmer has to define how JavaScript data is decoded- and encoded in WebAssembly
memory. There are many frameworks that enable generic encoding- and decoding between
the instances, such as MessagePack for C++ and SERDE for Rust. SERDE encodes JavaScript
data into JSON strings, shares it through WebAssembly memory, and then decodes it in We-
bAssembly [30]. This could potentially introduce a large overhead compared to javascript,
where passing large data structures to functions is resolved through memory pointers or pass-
by-reference, rather than using data duplication or pass-by-value. Algorithms that handle
large amounts of data, such as sorting algorithms, mapping algorithms, and grouping al-
gorithms are expected to scale poorly performance-wise as the volume of data increases in
WebAssembly.

On the other hand, processes which rely on fixed-size, shared numerical data could go
for another approach. An example of this is drawing on a HTML canvas element. The pix-
els could be represented with a byte buffer, instantiated from WebAssembly and placed in
shared memory. There is no need to pass this data between the context with parameters and
function outputs. Since the data has a fixed size and known word size, calculating image data
in WebAssembly and then reading it back in JavaScript should come with little or no over-
head. With this in mind, together with SIMD-operations for data parallelism when groups of
bytes are processed together, handling- and generating image data in WebAssembly should
be beneficial.

33

3. Analysis

Summary
The very core of WebAssembly, being a low-level, static-typed instruction set, should theo-
retically increase performance over JavaScript across the board. WebAssembly modules are
parsed faster than ASM.JS and require less overhead during runtime. Features such as SIMD-
operations could potentially increase the execution speed of iterative calculations up to 4
times due to data parallelism. Data passing between a JavaScript context and WebAssembly
context is cumbersome for data which is not numerical, such as strings and generic arrays,
since it cannot directly share such data through references. Since WebAssembly needs to be
loaded manually during runtime, short-running, single time processes are likely to perform
worse in WebAssembly than JavaScript.

The following list outlines groups of algorithms that have been identified as interesting
for further research.

• Sorting algorithms

• Grouping algorithms

• Mapping algorithms

• Filtering algorithms

• Machine learning algorithms

– Back propagation (Deep learning)

• Signal processing algorithms

– Convolution

– video, audio- and image processing

– compression

– Fast fourier transform

• Cryptographic hash functions

• Matrix- and vector algorithms

– Matrix multiplication

– LU-factorization

– QR decomposition

– Newton-Raphson

• 3D graphics

– Inverse square root

• Image data generation

– QR codes

– Animations

34

3.2 Interviews

3.2 Interviews
In order to focus on algorithms that would be relevant for what IKEA is doing, it is required
to see how they use web technology. Therefore, interviews were conducted with various
IKEA employees to find out which algorithms previously mentioned should be of particular
importance in this context. The literature study above resulted in both general groups of
problems and specific algorithms that are interesting to study, however due to limited time
and resources that list needs to be reduced further.

3.2.1 About the interviews
The interview phase of the thesis is done with the goal of finding out which processes are
being used, or are likely to be used in the future, by IKEA. Given the scope of this thesis, it
would not be feasible to implement algorithms in all of the groups mentioned in the previous
section while providing a fruitful discussion around their time behavior. Furthermore, since
the problem lies in the IKEA context, it is necessary to know how they use web technology
in order to provide an adequate answer to whether or not WebAssembly is a viable solution.

Selection of participants
Since WebAssembly’s presence in the web landscape is a recent development, many employ-
ees within IKEA have limited knowledge of it. The focus was therefore to divide participants
into two categories that correspond with their position at IKEA. Namely,

• Product owners and engineering managers

• Web developers within the front-end landscape

In total, we interviewed 7 product owners, 3 engineering managers and 11 developers. See
Appendix A for the interview guide.

Interview answers
Product owners and engineering managers We decided to ask more general questions about
the product and what the future goals are since product owners are not deeply engaged with
the code development. But the direction of a product is important for us as it allows us to
analyze algorithms that will be used in the future. The interviews aimed to find out informa-
tion about the current- and future state of technology at IKEA. Although interesting, a lot
of information gathered was not directly relevant to the problem of responsive web pages.
The following outlines common answers that are relevant to this thesis.

In regards to the question about future goals of the products, all interviewees had plans
but they were mostly concerned with better integrations to other solutions. A key area of
interest that was mentioned by most of them was machine learning. Specifically, solutions
that perform classification tasks were mentioned to be on the horizon. On the question
regarding bottlenecks, most mentioned API-calls and data being spread between solutions
as the main offender, but nothing localized in their own product. Upon reflecting on the

35

3. Analysis

question, one interviewee said “We do not design our solutions based on what is hard to
accomplish, but what the customers desire”.

Web developers There are a lot of sorting, filtering, grouping and mapping that are being
used in the front-end, and with an increasing amount of users on the online platform, this
could prove to become a bottleneck in the future.

Some developers have (or are interested in introducing) animations in their product in
order to improve the user experience. With the possibilities of WebAssembly for compu-
tation, it would be interesting to see how well it can perform computation of frames that
could be used for animation. Furthermore, several developers mentioned QR-codes as being
an interesting algorithm to benchmark.

Regarding the question if the product handles a lot of data the answer was usually yes,
but not on the client-side. Since IKEA has many online customers with a profile, there is a
lot of customer data. But customer data is regarded as sensitive information and should be
kept on the server-side since it is dangerous to send it to the client-side. This means that
although there is a lot of data some of it should not be on the client-side. Therefore there are
not many performance heavy algorithms in the front-end that consume a lot of time.

List of algorithms to benchmark
In the current IKEA web landscape, certain algorithms were mentioned as being more in-
teresting than others, namely algorithms for sorting, mapping, grouping and filtering data.
From the literature study, these groups of algorithms are shown to have certain strengths-
and weaknesses in both JavaScript and WebAssembly. Since they rely on repeated operations
on similar data, JavaScript is expected to create optimizations both in function structure and
property lookup, given enough computations occur. Meanwhile, WebAssembly has an ini-
tial startup time, and requires encoding and decoding the data to- and from memory rather
than passing references to it. At the same time, the increased algorithmic performance in
WebAssembly should result in the data being processed quicker. This group of algorithms is
interesting to explore for multiple purposes. As they are used in IKEA’s front-end landscape,
their investigation will help answer potential future performance problems at IKEA. Further-
more, as data passing is a complicated matter in WebAssembly, it could help understanding
potential issues with the technology for future improvements.

Another group of processes that were mentioned as interesting was image data genera-
tion. QR-codes are prevalent in the IKEA client-side landscape. Furthermore, many teams
have (or intend to introduce) animations in their products. It is beneficial to IKEA to see
if these algorithms perform better in WebAssembly, certainly when large amounts of image
frames are to be generated. Furthermore, tying back to the literature study, image data can
be represented as a sequence of bytes and shared across the JavaScript and WebAssembly
context, resulting in little overhead.

In regards to future development, Machine learning is very interesting for IKEA. Data
privacy is becoming a large concern today; The traditional approach of data collection to
create Machine Learning models might come to be threatened by laws such as the General
Data Protection Regulation (GDPR) in Europe. Concepts such as Federated Learning, which
attempts to solve this issue by distributing certain machine learning tasks to the client ma-
chine might become critical to the future of personalization and classification online [31].
Connecting to the literature study, many machine learning solutions rely heavily on repeated

36

3.2 Interviews

and often complicated calculations, where WebAssembly shows great potential. It is a large
field with many solutions, and as such, will be narrowed down in this thesis.

One problem that was mentioned as interesting for IKEA is the bin-packing problem,
which entails positioning a set of items of different geometries within a a larger container.
Although there exists multiple solutions to the problem, it is NP-hard, and as such, finding an
optimal packing is time consuming. The complex nature of the problem makes it interesting
from a practical standpoint, as WebAssembly is expected to run faster than JavaScript in
general, and as such should complete the task faster.

Disclaimer concerning the algorithms
From the answer of the interviews, a collection of problem domains that are interesting for
IKEA was accounted for. It should be noted, however, that the actual algorithms that are
benchmarked are not taken from IKEA source code, and are instead publicly known algo-
rithms representative of - or inspired by - the aforementioned problem domains. There are
multiple reasons for this. First, the inner workings of IKEA shall not be made public due to a
Non-Disclosure Agreement made between the authors and IKEA. second, by benchmarking
well-known, generic algorithms, the results should be more generalizable to other contexts,
all the while being valid in the IKEA context.

Summary
Going forward, several algorithms identified as interesting in section 3.1.1 and 3.1.2 have been
discarded, such as cryptographic hash functions, algorithms in 3D graphics, signal processing
and matrix algorithms. Although significant in the realm of browser performance, they were
not mentioned as relevant within the teams that were interviewed. In summary, the following
groups of algorithms- and processes have been selected as appropriate for further analysis.

• Sorting

• Mapping

• Grouping

• Filtering

• Machine Learning

• Image data generation

• QR codes

• Bin packing

37

3. Analysis

38

Chapter 4

Creating the benchmarking framework

Believing that it would be simple to measure execution time for WebAssembly and JavaScript
was quickly regretted. It proved to be a complicated task as there are many approaches and
pitfalls to consider and it must be done correctly in order for the result to be useful. This
chapter will discuss the problem of how to best measure execution time for the algorithms
from the previous chapter. It will do this by first exploring existing solutions for bench-
marking algorithms and their possible usage for the goal of this thesis. Second, an analysis of
approaches to measuring execution time will be conducted in order to conclude the approach
for this thesis. This will produce a requirement specification that needs to be met in order to
produce valid results for this thesis. Finally, we will discuss and highlight interesting prob-
lems and how we solved them while implementing our solution for the best way of measuring
execution time for this thesis.

In order to solve the problem of whether or not WebAssembly would speed up IKEA’s ser-
vices, the manner of measurement should at least capture the time it takes from initiating the
WebAssembly module until the entire service has executed. However, there are three aspects
of WebAssembly execution that have been previously identified that could alter execution
time and as such, would be interesting to explore as they could give key insights into why
WebAssembly’s performance differs from JavaScript. First, WebAssembly modules have to
be manually initiated through an asynchronous call WebAssembly.initiateStreaming(). Sec-
ond, exchanging complex data between JavaScript and WebAssembly cannot be done through
references, and requires writing- and reading data from a shared buffer. Third, switching be-
tween JavaScript and WebAssembly execution could add a certain runtime overhead. As
such, finding a tool that allows certain limited introspection for the above stated parts of
execution would be beneficial for further discussions.

39

4. Creating the benchmarking framework

4.1 Existing Solutions
A time efficient solution for measuring execution time would be to use an existing frame-
work for benchmarking. However we must first conduct an analysis of available solutions in
order to conclude their possibilities for this thesis. This section will analyze Wasabi, Jalangi
and browser profiling by reading their documentation and how they fit with our goal for
measuring execution time for our list of algorithms. We reason that existing solutions are
inadequate for the purpose of this thesis, since they either gather data that is not relevant
to execution time and could affect the execution time in an unclear manner, or require that
programs in the two languages need to be run through separate frameworks, which would
make it hard to compare differences in execution time since their influence on time behavior
could vary.

4.1.1 Dynamic analysis frameworks
There are two prominent frameworks for analyzing WebAssembly and JavaScript: Wasabi for
WebAssembly, and Jalangi for JavaScript. They are both based on the concept of runtime (or
binary) instrumentation: A program is processed by the framework and transformed into
a new program, with injected code that captures individual statements. Using a template
system, one could define what information should be extracted during the capture phase of
execution. For the purposes of this thesis, timestamps could be created as specific statements
are executed. There is a slowdown associated with using dynamic analysis frameworks. De-
pending on the program there is an overhead of Wasabi which is 1.02 to 163x of the original
runtime [32]. When performing analysis on the SunSpider benchmark suite, Jalangi shows
an average slowdown of 30X the original execution speed [33].

There are some shortcomings with these solutions. For the purpose of answering whether
or not WebAssembly is faster than JavaScript for the selected algorithms, breaking down
execution time to statement level is unnecessary. In order to get accurate measurements, the
benchmarks should be run through the same framework. Running code through Jalangi and
Wasabi for JavaScript and WebAssembly respectively would alter the full execution time of
the programs to potentially various degrees for the two languages, leading to inconclusive
results.

4.1.2 Browser profilers
Most browsers have a developer tool suite, which usually includes a performance profiler. It
can be used to capture the runtime behavior of a program down to function execution time,
heap allocations and garbage collection, but also DOM manipulation such as rendering and
adding new DOM elements.

Using a browser profiler results in the entire javascript engine being instrumented and
could be used to measure the execution time of both languages. In order to understand how
it would impact execution times, A simple test was performed on the heapsort algorithm to
get an idea of its impact. First, the algorithm was run on 50.000 integers over 100 iterations
in a fresh chrome instance, see figure 4.1). Following this, the same test was repeated but with
the developer tools tab open, see figure 4.2.

40

4.1 Existing solutions

Figure 4.1: Running heapsort on 50.000 integers for 100 iterations

Figure 4.2: Running heapsort on 50.000 integers for 100 iterations
with dev tools open in chrome

41

4. Creating the benchmarking framework

The results show that keeping the developer tools tab open has no discernable effect on
JavaScript execution times, executing on an average in 4,833 ms in a clean window, and 4,846
ms when the tab is open. The WebAssembly execution times, however, are noticably greater:
The execution time on average increases from 10,768 ms to 17,748 ms just by keeping the tab
open. This pattern is shown for all input sizes and algorithms. The reason for this change
in execution time is unknown, but is enough to conclude that it is not a suitable method to
gather accurate data.

4.1.3 Summary
In conclusion, the above solutions are powerful toolboxes for program analysis, but alter
execution too much or to varying degrees, which would make the results harder to analyze.
An optimal solution should capture just the information that is relevant to this thesis and be
usable for both JavaScript and WebAssembly.

4.2 Approaches to measuring execution time
Creating a custom tool that is tailored towards the problem this thesis attempts to solve is an
alternative to using existing frameworks. However, there are various approaches and pitfalls
that need to be addressed when execution time measurements are performed. This section
will analyze two approaches, blackbox measurements and runtime instrumentation, high-
lighting potential issues. This will produce guidelines that will be beneficial when creating a
custom framework.

The main issue when measuring execution time in software is that capturing timestamps
comes with a cost, in the form of additional execution time overhead. An experiment on
measurement overheads using JavaScript’s performance.now() function shows that, within a
5% error margin, calling the function in Firefox 81 takes 21 µs on average, while in Chrome
84 it takes 5.5 µs on average, but these values vary from call to call [34]. The matter becomes
more complicated, as several browsers have added a random jitter to their timers in order to
prevent timing attacks such as Spectre [35].

4.2.1 Blackbox measuring
Blackbox measuring is the simplest solution; start a timer just before the program or func-
tion starts execution, and stop it right after. The main benefit from this approach is that the
executing code is left completely untouched, yielding a result that is as close as possible to the
actual execution time. This approach is adequate in answering whether or not WebAssem-
bly could improve IKEA’s services, but will not produce any insights to certain phases of
execution, such as data exchange and switching between the JavaScript- and WebAssembly
context. A simple example is provided in code listing 4.1.

4.2.2 Runtime instrumentation
Runtime instrumentation is the practice of injecting code into the source code or binary of
the program, so called “instrumentation statements”, which could be used to capture infor-

42

4.3 Requirements Specification

Listing 4.1: Example code illustrating how blackbox measurements
are performed

const t0 = performance.now ();
const result = someLongRunningFunction (arg1 , arg2);
const t1 = performance.now ();
const executionTime = t1 - t0;

mation regarding the execution on either a statement or a collection of statements. This
would be required for program introspection, such as capturing the time it takes to decode
and encode data between JavaScript and WebAssembly.

Given the program P = S1S2...Sn where Si is the i:th statement of the program, the
instrumentation of the program, a program in itself, is I(P) = I1S1I2S2...InSn , where Ii is the
instrumentation code around statement Si . Certain instrumentation statements may be left
out, if the goal is to just gather information about certain groups of statements.

One major improvement over blackbox testing is that instead of measuring execution
time on program-level, runtime instrumentations can measure execution time on statement
level. There are some issues with runtime instrumentation, however. The major one is the
phenomenon known as “software perturbation”. Every call to an instrumentation statement,
given that it is not empty, has a certain overhead [36]. A heavily instrumented program could
potentially lead to a dramatically altered execution time, while a less instrumented program
reveals less runtime information.

4.3 Requirements Specification
In section 3.1.2 it became evident that non-primitive data exchange is a crucial aspect for
certain algorithms, which means that the benchmarking framework should be able to capture
its influence on execution time. This requires that there are parts of the program that pass
data between JavaScript and the WebAssembly module and that the data passing time can
be measured.

In order for the result to be accurate it should not be affected by any long overhead. Cases
where there must be an overhead should be limited. There should not be notable change to
the executing code since it will affect the execution time.

In order to explore RQ 1.c the benchmarking framework needs to be able to measure
the startup time for WebAssembly. To measure startup time a timestamp was made before
initializing WebAssembly and then directly after instantiation.

Taking the above into account, in order to have a basis for fruitful analysis of the above
stated aspects of WebAssembly execution, the following phases of execution should be cap-
tured, where applicable:

• WebAssembly instantiation

• Switching from the JavaScript context to WebAssembly

• Deserializing parameters in WebAssembly

• Executing the algorithm

43

4. Creating the benchmarking framework

Listing 4.2: Example code illustrating how the WebAssembly startup
time is measured

const t0 = performance.now ();
initWasmModule ().then ((module) => {

const t1 = performance.now ();
const startup = t1 - t0;
// run benchmark

});

• Serializing return value in WebAssembly

• Switching from the WebAssembly context to JavaScript

4.3.1 Lessons learned
Existing frameworks that were explored did not meet the requirement specification and
therefore a decision was made to create a new benchmarking framework. In this section
we will discuss the difficult parts of creating the benchmarking framework and experiences
we now have that would have benefitted us greatly if we had known them at the start of the
thesis.

Measuring execution time
To meet the requirements specification for measuring execution time it was decided to de-
velop a benchmarking framework that would be a hybrid between blackbox testing and run-
time instrumentation. The blackbox technique is the one used for measuring the execu-
tion time of the algorithms in both JavaScript and WebAssembly, as well as WebAssembly’s
startup time. Limited runtime instrumentation would allow gathering additional informa-
tion regarding the execution time of various phases during WebAssembly execution.

Measuring the full execution time of the algorithms is done by simply creating times-
tamps before- and after function execution. However this would yield limited information
about what it is during the execution of an algorithm that is time consuming. As we have
seen, serialization and deserialization complicates data passing. To manually add all the
timestamps to the algorithms would be time consuming and would decrease the scalabil-
ity of testing if for example another interesting aspect of the algorithms would be interesting
to measure time, therefore a framework is created. In order to fully explore RQ 1.c we need to
be able to measure the start up time for WebAssembly. Therefore an important part about
the requirement specification is to be able to measure this start up time. It was solved in
the framework by having a timestamp right before and right after the instantiation of the
WebAssembly module, see listing 4.2.

Furthermore, as previously discussed, it would be interesting to investigate the time be-
havior of WebAssembly functions that exchange data with the JavaScript context that cannot
be directly used, such as JavaScript arrays. Since this will require data passing with serializa-
tion and deserialization, which we believe could be a common use case for WebAssembly.
This will however require certain instrumentation statements inside of the WebAssembly
functions. WebAssembly running inside of a javascript runtime does not have direct access

44

4.3 Requirements Specification

Listing 4.3: Example code illustrating how the benchmarking func-
tion is defined

// Benchmarking function in JavaScript
function benchmark (wasmFunction , nbrIterations , ... args) {

for(let i = 0; i < nbrIterations: i++) {
startTimer ();
wasmFunction (... args);
endTimer ();
collectResults ();

}
}

to any timestamp functions, and as such needs to be imported from the JavaScript context.
Listing 4.4 shows an example of how this could be done. First, four functions are declared as
external, with a reference to which module the functions should be imported. These external
functions are called at certain points during WebAssembly execution. When executing the
functions, the program returns briefly to the JavaScript context and registers a timestamp.

The external functions trigger a call to custom functions in the JavaScript context, regis-
tering the appropriate timestamp before - and after - serialization and deserialization events.

We have identified several key parts of WebAssembly execution time that are important
to capture in order to give a good view of what parts of the execution that allocates time.
Using the above approach several of these key parts can be captured and studied:

1. Startup time

2. Time to enter function from JavaScript context

3. Time to deserialize parameters

4. Time to execute algorithm

5. Time to serialize output

6. Time to return to the JavaScript context

Instrumentation overheads
From the previous section, it is evident that benchmarking WebAssembly functions will use
four additional timestamps that will not be present in JavaScript functions and as such, will
give a result that is greater than the actual execution time. This section explains how the im-
pact of the additional timestamps were analysed. In conclusion, the impact of four additional
timestamps was found to be negligible.

Rust, C and C++ have support for pre-processor directives that may omit- or include code
based on flags that are passed to the compiler, see listing 4.5. In the example, the instrumenta-
tion statement will only be added if the flag "instrumentation" is used while compiling. One
could then run the benchmarks with- and without instrumentation to find out how much
overhead is added.

45

4. Creating the benchmarking framework

Listing 4.4: Example Rust code illustrating how instrumentation
statements were placed along with how data exchanges are per-
formed

use wasm_bindgen::prelude::wasm_bindgen;
/*

Declare external functions imported from the JavaScript
context

*/
#[wasm_bindgen(raw_module = "../wasm-js-externals")]
extern "C" {

#[wasm_bindgen(js_name = registerSerializeStart)]
pub fn register_serialize_start();

#[wasm_bindgen(js_name = registerSerializeEnd)]
pub fn register_serialize_end();

#[wasm_bindgen(js_name = registerDeserializeStart)]
pub fn register_deserialize_start();

#[wasm_bindgen(js_name = registerDeserializeEnd)]
pub fn register_deserialize_end();

}
/*

Implementation of a WebAssembly function which is exported
to JavaScript through wasm-bindgen

*/
#[wasm_bindgen(js_name = webAssemblyFunction)]
pub fn webassembly_function(input_values: &JsValue) -> JsValue {

register_deserialize_start();
let deserialized_input: Vec<i32> = values.into_serde().unwrap();
register_deserialize_end();
let results = run_rust_function(deserialized_input);
register_serialize_start();
let serialized_output = JsValue::from_serde(&results).unwrap();
register_serialize_end();
serialized_output

}

Listing 4.5: Conditional compilation of instrumentation statements
in Rust

#cfg(feature = "instrumentation")
register_serialize_start();

46

4.4 Toolchains used

Since the average overhead of calling performance.now() was previously established, it
could also be used to reason how much the execution time was affected with instrumenta-
tion. Using a similar setup as in section 4.1.2, heapsort on 50.000 elements over 100 iterations
was performed with- and without instrumentation statements in the Rust code. The result
shows that with the four additional instrumentation statements, the execution time of We-
bAssembly was on average increased by 0.163 ms. Since this impact is minimal, especially for
longer running algorithms, the benchmarking framework is deemed to be accurate enough
to gather reliable data.

The random timer jitter introduced in modern web browser would be a considerable
problem to the purpose of this thesis. However, these can be temporarily disabled using
browser configurations.

4.4 Toolchains used
To be as efficient as possible while developing the framework we need to have an environment
that is easy to work with. The fairly broad spectrum of software problems to be tested could
be time-consuming and unwieldly to work with without a modular, scalable setup. In this
section we will discuss the toolchains we decided upon.

4.4.1 JavaScript toolchain
Since the authors have previous experience in Web development, it was decided early on that
the benchmarking page should use a combination of React and WebPack. The time invested
in setting up the environment was offset by the ease of scaling up and extending the page as
more algorithms were implemented. Furthermore, it was considered a more realistic envi-
ronment for testing, as many modern solutions rely on the technologies. As compared to only
using a simple HTML-page, since the developer of a simple HTML-page would probably not
consider using WebAssemby for execution time performance. When using WebAssembly
modules with JavaScript an issue arises on how the communication between the two should
be done. One useful tip we found was to use Webpack with its Wasm-pack plugin [37]. It be-
came remarkably easier by utilizing Webpack + Wasm-pack plugin when using Rust code to
generate WebAssembly modules that would be used with JavaScript. It allowed for an auto-
mated compiling trail which relieved the manual labor by generating appropriate javascript
helper code, and supported imports of WebAssembly modules that did no longer require
asynchronous instantiation. For the purpose of measuring startup time in this thesis, the last
feature was disabled.

4.4.2 WebAssembly toolchain
When using WebAssembly in the browser it needs to be able to communicate with JavaScript.
In order to use such an interaction wasm-bindgen is utilized, it is a Rust library and CLI tool
used when compiling Rust code into WebAssembly code for high level interactions between
the two [38]. It creates helper code between WebAssembly and JavaScript that can easily be
used in JavaScript and proved very useful for this thesis.

47

4. Creating the benchmarking framework

48

Chapter 5

Running the benchmarks

In order to explore RQ 1.b, RQ 1.c and RQ 2.a we need to have concrete data that can be ana-
lyzed. Therefore this chapter will present the gathered data, together with a discussion, from
running the benchmarking frameworks. The outcome of this chapter will be a recommenda-
tion for what type of algorithms that would benefit from using WebAssembly compared to
JavaScript and potential weaknesses in WebAssembly that could be further improved.

5.1 Benchmarking setup
In this section we will discuss how we set up our benchmarks, our thoughts on iterations and
input sizes for testing. How to handle outliers will also be discussed. The specifications of
the machine running the benchmarks will be presented.

5.1.1 Setup
When measuring execution time it is important that the results are trustworthy which is why
only one test measurement for each algorithm will not be sufficient. There could potentially
be other processes running on the computer that are hard to control, and variations in exe-
cution time when running code that is object to a JIT-compiler, which could alter execution
time suddenly and aggressively. In order to yield as correct data as possible the benchmarks
will be done with multiple iterations. Since there is the possibility of outliers in the results,
these can be handled in three ways:

• Scale up the number of test iterations, lessening the influence of outliers

• Discard test runs which contain outliers

• Ignore outliers

49

5. Running the benchmarks

Using [17] as a starting point, which also directly explores differences in performance
between JavaScript and WebAssembly, the number of iterations per benchmark is set to 10
where applicable, in order to lessen the impact of outliers. Furthermore, the PolybenchC
benchmark specifies 5 different program input sizes: XS, S, M, L, and XL, which depend on
the algorithm. Since this thesis is interested not only in the full execution time of the two
technologies, but also several phases of WebAssembly execution such as data exchange with
JavaScript, running tests on multiple input sizes could expose how these phases are affected
as the input grows, leading to a more fruitful discussion.

5.1.2 Input sizes
The question is then what suitable input sizes are for the various algorithms. There are two
key factors to take into account when the program input sizes are considered. First, they
should be large enough that any potential measurement errors become minimal. Benchmark-
ing an almost instantaneous function call would suffer the effects of micro-benchmarking:
variance in the time to call to performance.now and execution being temporarily halted due
to other processes running on the computer could have a severe impact on each iteration,
leading to an erroneous result. Second, the difference between input sizes should be large
enough that the result shows how the various phases of execution scale up as the input grows.
For example, running algorithms on input sizes 1000 to 1005 in increments of 1 would vary
little.

As a starting point, the average overhead of calling performance.now was established in
section 4.2 to be 5.5 µs and 21 µs for Chrome and Firefox respectively. However, the potential
influence of other computer processes while running the algorithms can not be estimated. As
such, the smallest input size was selected empirically, by identifying a size at which multiple
test runs yielded similar results. We increment a bit differently depending on the algorithm.

5.1.3 Metrics
As previously mentioned, multiple phases of WebAssembly execution will be subject to mea-
surements. As such, it is necessary to establish a few ways in which metrics will be collected.

In order to lessen confusion going forwards, a discussion concerning the word "Algorithm"
or "Algorithm phase" is in order. When discussing JavaScript, "algorithm" refers to the full
execution of an algorithm, since this thesis does not break down JavaScript execution into
multiple steps.

The same does not apply to WebAssembly: logic written in the language has certain extra
work done before and after the actual algorithm. As such, when discussing WebAssembly,
"algorithm" refers to the phase that occurs after all preparations are completed, and before
work to return data to the JavaScript context and cleaning up memory is performed.

Since the benchmarking framework does not take into account when JIT-optimizations
or garbage collection occur, the execution time of running the JavaScript functions will be
captured in their entirety:

JS f ull = JSe f f ective = JSalgorithm

WebAssembly execution has multiple phases that can be collected in two groups: Effec-
tive execution time and preparatory execution time:

50

5.1 Benchmarking setup

W ASM f ull = W ASMe f f ective +W ASMpreparatory

The effective work in WebAssembly is when the algorithm actually runs:

W ASMe f f ective = W ASMalgorithm

The preparatory work in WebAssembly is all the phases that exchange data with JavaScript
or cleans up memory:

W ASMpreparatory = W ASMEnter +W ASMdeserialize +W ASMserialize +W ASMreturn

For the purpose of using WebAssembly instead of JavaScript, the most interesting ratio
is the full execution time of the two technologies compared to each other:

Speedup f ull =
JS f ull

W ASM f ull

For the purpose of analyzing how well WebAssembly could perform if data exchange was
theoretically absent, The execution time of JavaScript is compared to only the effective phase
of WebAssembly execution, namely the algorithm time:

Speedupalgorithm =
JSalgorithm

W ASMalgorithm

Finally, the efficacy, or degree of execution time used to perform the actual algorithm,
of WebAssembly can be shown through the algorithm time compared to the full execution
time:

e f f icacy = W ASMe f f ective
W ASM f ull

=
W ASMalgorithm

W ASMalgorithm+W ASMpreparatory

The efficacy shows how severe the impact of data passing is to a given algorithm. Another
metric that will be explored is how execution time scales with input sizes.

5.1.4 Plots
The plots that follow are grouped, stacked bar plots, placing JavaScript execution time in
direct comparison to WebAssembly execution time. Since WebAssembly execution is broken
down into multiple phases, an explanation for the different phases is presented in table 5.1.

5.1.5 Execution setup
When running the benchmarks, all applications were closed down except for two: The browser
in which tests were performed, and a terminal window hosting the page. Each benchmark
was run through a new Chrome incognito window in order to have a clean slate without any
cached data. It should be noted that the benchmarks were run on a cold-start, meaning that
the functions were not run in advance to warm up the JIT-compiler.

5.1.6 Machine specifications
The benchmarks were executed on a Windows machine using the chrome browser, see table
5.2 for a detailed specification.

51

5. Running the benchmarks

Name Executing context Explanation
JS: Algorithm JS Running the full algorithm in pure JavaScript
WASM: Enter JS Placing references to JavaScript data on the shared

heap and switching context to WebAssembly.
WASM: Deserialize JS + WASM Runs two steps: First, A call to the the javascript

context transforms object data
on the shared heap into bytes in WebAssembly
linear memory through JSON encoding. Then, the
WebAssembly context
parses the string. At the end of this phase,
WebAssembly has full ownership of a copy of the data

WASM: Algorithm WASM Running the algorithm in WebAssembly
WASM: Serialize JS + WASM The return value of the algorithm is first

converted into a JSON string in
WebAssembly Memory. Then, A call to JavaScript
parses
the JSON string in WebAssembly memory
into an object on the shared heap.

WASM: Return JS + WASM If needed, WebAssembly cleans up data that
will be discarded when the function ends. Then,
the previously parsed data is removed from
the shared heap and returned from the function.

Table 5.1: Table with an explanation for the different execution
phases

Operating System Windows 10 Pro, OS Build 19042.1706, x64
CPU Intel i5-4670K @ 3.40GHz, 4 Cores
RAM 2 x 8 Gb DDR4

Browser Chrome, build 102.0.5005.63, x64

Table 5.2: Specifications for the computer and browser used to run
the benchmarks

5.2 Benchmarking results

To give an answer to if and where IKEA could use WebAssembly to speed up their client-
side services, it is necessary to explore which services are improved by the technology. The
analysis section argued in favor of- and against certain software patterns and algorithms. This
section will present- and discuss the results from running the previously established list of
interesting algorithms through the benchmarking framework that was previously discussed.
Each explored algorithm is explored individually. Plots from running the benchmark are
shown and discussed.

52

5.2 Benchmarking results

5.2.1 General results
As the results from the various algorithms were inspected, one thing to note was the lack of
trends in execution time between iterations. Disregarding outliers, the measured execution
times would vary a little but generally stay in a certain range.

5.2.2 Sorting
For the purpose of this thesis, the choice of sorting algorithms was limited to two: Heapsort
and quicksort. They are both O(nlogn) algorithms, with quicksort having the worst case
scenario O(n2) but usually running faster than heapsort.

The initial input size was set to 50.000 elements, and scaled up to 800.000 elements.
Smaller input sizes were tested, but the results varied heavily between test runs even when
the number of iterations was high, with one language executing faster than the other almost
randomly. At 50.000, the results were stable enough between test runs and as such was chosen
as a starting point.

In all tests, data was passed as a generic JavaScript array. After setting the number of
elements n, the benchmarking framework generated an array of integers 0, 1, ...n and then
randomly shuffled the array. On each benchmarking iteration, the functions then sorted
copies of that list. For the string variant, the list elements were instead integers that were
parsed into strings.

It should be noted that the integer scenario could have been solved using fixed-size ar-
rays such as JavaScripts UInt32Array, which are far easier to handle in WebAssembly and
require little more than sharing address pointers and array lengths. However, they are not
representative of the common use case where generic, dynamic arrays dominate.

Result
Heapsort - integer data The plot in figure 5.1 shows the different input sizes on the x-axis and
the execution time in milliseconds on the y-axis. The blue bars show the full execution time
of JavaScript. The other colors represent execution time in WebAssembly, with the red bars
showing the algorithm work and the others various phases of data exchange or cleanup. It is
notable that preparatory work is considerable for this problem, since it passes arrays which
need to be parsed. At 50.000 integers, WebAssembly’s algorithm phase shows a speedup of
1.9x compared to JavaScript. As the input sizes grow, this speedup decreases, ending at 0.97x
compared to JavaScript at 800.000 integers. Accounting for the full WebAssembly execution
time, WebAssembly starts with a slowdown of 0.5x which declines steadily to 0.45x at the
largest input size. The efficacy of WebAssembly is 26.4% at 50.000 integers, and increases
steadily to 46.8% at 800.000 integers.

Heapsort - string data The WASM: Return-phase becomes considerable when passing ar-
rays of strings to the algorithm, see figure 5.2. The reason for this is not clear as the generated
WebAssembly code is highly obfuscated and would require a significant time to study. One
probable reason is that WebAssembly cleans up data that goes out of scope, see the discussion
in section 5.4 for further information.

At 50.000 strings, WebAssembly’s algorithm phase shows a speedup of 1.79x compared
to JavaScript. As the input sizes grow, this speedup decreases, ending at 1.12x compared to

53

5. Running the benchmarks

Figure 5.1: Heapsort - integer data

JavaScript at 800.000 strings. Accounting for the full WebAssembly execution time, We-
bAssembly starts with a slowdown of 0.86x which declines steadily to 0.74x at the largest
input size. The efficacy of WebAssembly is 48.2% at 50.000 strings, and increases steadily to
65.8% at 800.000 strings.

Figure 5.2: Heapsort - string data

Quicksort - integer data The plot for the benchmark is shown in figure 5.3. At 50.000
integers, WebAssembly’s algorithm phase shows a speedup of 2.57x compared to JavaScript.
As the input sizes grow, this speedup decreases, ending at 2.23x compared to JavaScript at
800.000 integers. Accounting for the full WebAssembly execution time, WebAssembly starts
with a slowdown of 0.66x which declines steadily to 0.62x at the largest input size. The effi-

54

5.2 Benchmarking results

cacy of WebAssembly is 25.7% at 50.000 integers, and increases steadily to 28.1% at 800.000
integers.

Figure 5.3: Quicksort - integer data

Quicksort - string data The plot for the benchmark is shown in figure 5.4. At 50.000
strings, WebAssembly’s algorithm phase shows a speedup of 2.86x compared to JavaScript.
As the input sizes grow, this speedup decreases, ending at 2.05x compared to JavaScript at
800.000 strings. Accounting for the full WebAssembly execution time, WebAssembly stays
very close to JavaScript, staying between 0.98x and 1.05x JavaScript execution time up to
the largest input size, where it declines to a slowdown 0.87x to JavaScript. The efficacy of
WebAssembly is 35.3% at 50.000 strings, and increases steadily to 42.7% at 800.000 strings.

Figure 5.4: Quicksort - string data

55

5. Running the benchmarks

Discussion
In both algorithms, sorting string data takes more time to execute than integer data. This
is to be expected, as string comparisons are a more complex process than integer compar-
isons. Phases passing data to- and from WebAssembly is substantial, with the string sorting
benchmarks having a greater execution time during the data passing phases due to the more
expensive operation to read- and write strings as bytes in WebAssembly memory. The exe-
cution time of all phases seem to scale linearly with the input size.

In both algorithms and input types, there is a pattern where the algorithm phase of We-
bAssembly is quicker than JavaScript at the smallest input, but this speedup decreases as
input grows, and when running heapsort on integers, JavaScript executes faster at the largest
input size. Similar experiments performed by Yan et al. also increased input sizes while
comparing WebAssembly and JavaScript. The results are similar: WebAssembly becomes
slower compared to JavaScript as the input size increases. The authors attribute this to JIT-
optimizations becoming more aggressive the longer a function runs, which has little effect
on already optimized WebAssembly [18].

5.2.3 Mapping
mapping is a concept in functional programming, a higher order function. Given a list of
values of type V, some function g that transforms objects of type V into K, it produces a list
of values of type K.

createMapping <K, V>(values: Array <V>, g: (value: V) => K): Array
<K>

The initial input size was set to 50.000 elements, and scaled up to 800.000 elements. Map-
ping functions have a time complexity that depends on the function g. In this case, both
benchmarks use a function g with time complexity O(1), resulting in the full time complex-
ity O(n). A simple constant time function g was chosen since transforming a collection of
objects to a collection of one of the object’s fields is a very common practice. The input data
was a list of javascript objects.

{
itemID: number;
name: string;

}

Two versions of the function were tested: One that transformed the list to a list of the
integer value, and one that transformed the list to a list of the string value.

Result
Map objects to integers

The plot for the benchmark is shown in figure 5.5. At 50.000 objects, WebAssembly’s
algorithm phase shows a slowdown of 0.95x compared to JavaScript. As the input size grows,
this slowdown becomes a speedup, ending at 2.14x compared to JavaScript at 800.000 objects.
Accounting for the full WebAssembly execution time, WebAssembly starts with a slowdown
of 0.04x which increases steadily to 0.07x at the largest input size. The efficacy of WebAssem-
bly is 4.6% at 50.000 objects, and decreases steadily to 3.4% at 800.000 objects.

56

5.2 Benchmarking results

Figure 5.5: Map objects to integers

Map objects to strings The plot for the benchmark is shown in figure 5.6. At 50.000
objects, WebAssembly’s algorithm phase shows a speedup of 19.07x compared to JavaScript.
As the input sizes grow, this speedup increases, ending at 35.82x compared to JavaScript
at 800.000 elements. Accounting for the full WebAssembly execution time, WebAssembly
starts with a slowdown of 0.07x which increases steadily to 0.1x at the largest input size.
The efficacy of WebAssembly stays around 0.3-0.4% at for all input sizes with no discernable
trend.

Figure 5.6: Map objects to strings

57

5. Running the benchmarks

Discussion
The algorithm performance of mapping objects to strings in WebAssembly was striking, and
initially believed to be due to an error in the algorithm. However, an inspection of the values
that the call produced confirmed that it did indeed work. This could be attributed to the
ownership system of the Rust language, which allows the mapping function to safely operate
on the input list in an optimal manner since it is rendered invalid after the call, which in turn
can produce highly optimized WebAssembly code. In order to confirm this, additional ver-
sions of the mapping function were produced that instead used non-destructive references,
but were otherwise identical. The result shows that the destructive version does indeed per-
form far better during the algorithm phase, with a speedup compared to the non-destructive
version ranging between 10.3x and 12.7x, see Table 5.3.

Input Size 50.000 100.000 200.000 400.000 800.000
Destructive (ms) 0.15 0.31 0.62 1.24 2.39

Non-destructive (ms) 1.8 3.37 7.87 12.83 25.5
Speedup 12x 10.9x 12.7x 10.3x 10.7x

Table 5.3: Table comparing WebAssembly algorithm execution time
with both destructive and non-destructive mapping strategies, and
the relative speedup for the algorithm for the destructive strategy

In the end, however, JavaScript outperforms WebAssembly in both benchmarks when
the full execution time is considered, regardless of the input size. This could be attributed to
well-performed optimizations using inline caching in JavaScript: The JIT-compiler quickly
finds the memory offset of the field requested by the function g, and optimizes the property
lookup.

5.2.4 Grouping
Grouping could refer to many things, but in this instance, it is a function which receives a
collection of values, some function that transforms a value to a key, and as a result produces a
Map-like structure from the individual keys to collections of values which produce that key.

createGrouping <K, V>(values: Array <V>, g: (value: V) => K):
Record <K: Array <V>>

A simple example would be a collection of Person objects, and a function which transforms
a Person to their first name. The result would be a Map with first names as keys, and lists of
people with the same first name as values.

In this test, objects of the following structure were used:

{
i t emID : number ;
groupID : number ;
groupName : s t r i n g ;

}

58

5.2 Benchmarking results

itemID is a field which contains a number unique to the object. groupID is a number
between 1 and 4. groupName is similar to groupID, being a string "Group A" to "Group D".

Applying the algorithm to either groupID or groupName would create 4 different groups.
In order to see how performance was affected when the number of groups increase with the
input, one benchmark groups items by itemID, which is unique for every item, resulting in
as many groups as there are objects.

Result
Group array of objects by group id

The plot for the benchmark is shown in figure 5.7. At 50.000 elements, WebAssembly’s
algorithm phase shows a speedup of 1.23x compared to JavaScript. As the input sizes grow,
WebAssembly’s algorithm phase becomes even faster in comparison to JavaScript, growing
steadily to 3.23x compared to JavaScript at 800.000 elements. Accounting for the full We-
bAssembly execution time, WebAssembly starts with a slowdown of 0.04x which increases
steadily to 0.09x at the largest input size. The efficacy of WebAssembly is 3.5% at 50.000
integers, and decreases steadily to 2.8% at 800.000 elements.

Figure 5.7: Group array of objects by integer

Group array of objects by item id The plot for the benchmark is shown in figure 5.8.
The pattern in this test is interesting: WebAssembly’s algorithm phase at 50.000 elements
shows a speedup of 2.11x compared to JavaScript. at 100.000 elements, it decreases to 1.59x.
Then it increases steadily to 2.06x at the largest input size. Taking the full execution time of
WebAssembly into account, a similar pattern shows: at 50.000 elements there is a slowdown
of 0.17x compared to JavaScript, which is further decreased to 0.13 at 100.000 elements, which
then increases steadily to 0.15x at the largest input size. The efficacy of WebAssembly is at
8% at the smallest input size, and decreases steadily to 7.1% at the largest.

Group array of objects by group name The plot for the benchmark is shown in figure 5.9.
At 50000 elements, WebAssembly’s algorithm phase shows a slowdown of 0.56x compared to

59

5. Running the benchmarks

Figure 5.8: Group array of objects by unique integers

JavaScript. As the input sizes grow, WebAssembly’s algorithm phase becomes even slower in
comparison to JavaScript, ending at 0.33x compared to JavaScript at 800000 elements. Ac-
counting for the full WebAssembly execution time, WebAssembly starts with a slowdown of
0.05x which decreases steadily to 0.03x at the largest input size. The efficacy of WebAssembly
is 8.8% at 50.000 integers, and increases steadily to 9.5% at 800.000 elements.

Figure 5.9: Group array of objects by string

60

5.2 Benchmarking results

Discussion
Grouping items into a combined object is exceptionally fast in JavaScript compared to We-
bAssembly, mainly due to computationally heavy serialization and deserialization steps. In
the two benchmarks which grouped into a limited set of groups, JavaScript would be able to
make use of inline caching optimizations: The signature of the grouped object would quickly
receive all of its properties, and future deoptimization checks would not fail.

It is interesting to note that both the integer and string versions perform fairly similar,
with the full execution time at 800.000 elements for JavaScript and WebAssembly were 93
and 1043 ms respectively for integers, for strings 107 and 1095 ms respectively.

Although the group keys are duplicated, the group values in JavaScript would be arrays
of references rather than duplicated data. For WebAssembly, having been compiled from
Rust which uses destructive optimizations, data duplication would be limited during the
algorithm phase.

The results from the benchmark grouping by unique IDs is interesting, as both languages
show a slowdown. This could be due to the additional heap allocations required to create a
new array for each element. Furthermore, it would become impossible for JavaScript to create
a hidden-class optimization, as each grouped element adds a new property. The results had a
less stable trend between different input sizes for both languages. For JavaScript, requesting
more heap memory repeatedly for the arrays could trigger garbage collection more often.

5.2.5 Filtering
There are two ways of filtering that are being benchmarked, one we implement ourselves for
complete insight and one that is builtin in the language as that might be the common use
case, the goal of both is however to filter through an array of string numbers [“1”, “2”, ”3”, ..
input size] and only keep the ones that contain number “9”. However one is custom filtering
which consists of going through the array and for each element comparing it to “9”, the other
one uses JavaScripts builtin-filter function against Rusts builtin filter function. The input
has been selected to be between 50.000 and 800.000 as it gives a good span and the execution
time the algorithms reaches is measurably high.

Result
Custom filtering The plot for the benchmark is shown in figure 5.10. At 50000 elements,
WebAssembly’s algorithm phase shows a slowdown of 0.99x compared to JavaScript. As the
input sizes grow, the relative performance of WebAssembly’s algorithm phase compared to
JavaScript increases, ending at 2.57x compared to JavaScript at 800000 elements. Accounting
for the full WebAssembly execution time, WebAssembly starts with a slowdown of 0.13x
which increases steadily to 0.27x at the largest input size. The efficacy of WebAssembly is
13.6% at 50.000 strings, and decreases steadily to 10.4% at 800.000 strings.

Builtin filtering The plot for the benchmark is shown in figure 5.11. At 50000 elements,
WebAssembly’s algorithm phase shows a speedup of 1.09x compared to JavaScript. As the
input sizes grow, the relative performance of WebAssembly’s algorithm phase compared to
JavaScript increases, ending at 2.52x compared to JavaScript at 800000 elements. Accounting
for the full WebAssembly execution time, WebAssembly starts with a slowdown of 0.15x

61

5. Running the benchmarks

Figure 5.10: Custom filtering, where the input is an array of string
numbers

which increases steadily to 0.27x at the largest input size. The efficacy of WebAssembly is
13.4% at 50.000 strings, and decreases steadily to 10.9% at 800.000 strings.

Figure 5.11: Builtin filtering, where the input is an array of string
numbers

Discussion
WebAssembly performs the algorithmic part faster than JavaScript but the time consumption
for serialization and especially deserialization slows down the execution process, resulting in

62

5.2 Benchmarking results

a remarkably faster execution time for JavaScript. As can be seen there is not much difference
when using a customized filtering method compared to using builtin function, except for
overall execution time for the different input sizes. But since this thesis is not for evaluating
the performance of the builtin function it will not be discussed further.

Things to note though is that the time for deserialization and serialization is far too ex-
pensive, the reason is that it consumes a lot of time when writing an array of strings into
WebAssembly, since it needs to be copied and converted into bytes for WebAssembly mem-
ory. The WASM: Return-phase is non-negligible, and becomes more of an issue when the
input size increases.

5.2.6 Machine learning
For machine learning we have chosen to benchmark the K nearest neighbor (KNN) algorithm
[39]. It is used for classification tasks, which IKEA is interested in. It is a supervised learn-
ing algorithm that tries to predict the correct class for test data by calculating the distance
between test data and training data. Then use the K nearest points of training data to select
the class of test data).

Since we do not have time to write a complex machine learning algorithm, the KNN
was decided to be a good choice. The KNN was chosen because it is a simple and common
algorithm in the space of machine learning, which can provide some insight into how We-
bAssembly could perform for general machine learning algorithms. It uses a JSON file with
data for 10.000 people as JSON objects including their length, weight and gender.

The input sizes for the benchmark were chosen as 500, 1000, 2000, 4000 and 8000 data
points. For each input size, 80% of the data set is used in training, and 20% for testing the
classification.

Result
The plot for the benchmark is shown in figure 5.12. At 500 elements, WebAssembly’s algo-
rithm phase shows a speedup of 2.9x compared to JavaScript. As the input sizes grow, the
relative performance of WebAssembly’s algorithm phase compared to JavaScript increases
steadily, ending at 3.4x compared to JavaScript at 8000 elements. Accounting for the full
WebAssembly execution time, WebAssembly starts with a speedup of 1.83x which increases
steadily to 3.38x at the largest input size. The efficacy of WebAssembly is 63.1% at 500 ele-
ments, and decreases steadily to 99.3% at 8000 elements.

Discussion
As can be seen from the figure 5.12 the execution time for WebAssembly beats JavaScript for
all input sizes. One reason for this is the KNN algorithm’s reliance on comparing distances
between objects. Even though the data is in the form of JSON objects the overall execution
time is faster in WebAssembly. As can be seen in figure 5.13 there is a deserialisation phase
that consumes time but it becomes negligible when looking at the overall execution time.
There is also time consumed for serialization and entering the function from JavaScript, but
it is negligible compared to the deserialization phase. The algorithm is still representing
between 63.1% and 99.3% of the overall execution time for WebAssembly though. Which

63

5. Running the benchmarks

Figure 5.12: K nearest neighbor algorithm

means that, with limited data passing, if the time spent on algorithmic computing for both
JavaScript and WebAssembly can be sufficiently high making the data passing time negligible
WebAssembly can be used gainfully.

Figure 5.13: K nearest neighbor algorithm with logarithmic scale

5.2.7 Image data generation
For image data generation the algorithm that was selected as representable was the one im-
plemented by Biffle in the guide Making really tiny WebAssembly graphics demos [40]. It was

64

5.2 Benchmarking results

chosen because it uses an algorithm for generating image frames and the need for spending
time constructing our own algorithm for animation could be eliminated. The image is then
rendered to the HTML canvas element which is commonly used by web developers and IKEA
is no exception. Especially since IKEA is interested in improving user experience there is a
need for rendering high quality images.

The input was chosen to rendering 50, 100, 200, 400 and 800 frames in both languages.

Result
Figure 5.14 contains the result for benchmarking the image generation algorithm, where the
input size is the number of frames to compute with the given logical algorithm. The input
sizes differ from what has previously been used in for example sorting, the reason is that the
time consumed for generating 800.000 frames would be too long and with 50-800 there is
still enough of a span for recognizing trends. The algorithm speedup in WebAssembly for
the image generation function started at 1.91x for 50 frames, and increased steadily to 2.1x
at 800 frames in WebAssembly. The preparation phases of WebAssembly (WASM: enter,
deserialize, serialize, and return) had an average execution time very close to or equal to 0 ms
since there was no need to pass data as parameters and function output between the instances.
It is no surprise that the overall execution time and the algorithm execution time are the same
since there is no need for serialization- or deserialization.

Figure 5.14: Image data generation

Discussion
This algorithm uses a shared buffer between JavaScript and WebAssembly meaning that there
is no need for passing any data through parameters or function outputs between JavaScript
and WebAssembly. It can be seen from figure 5.14 that there is no need for deserialization or
serialization. It is an effective way of using WebAssembly together with JavaScript, since the

65

5. Running the benchmarks

computationally heavy part can be ported to WebAssembly. This is for computing the frames
using an algorithm that colors the frames. This does not do rendering but the time gained
from using WebAssembly can be used for other processes, for example physics in gameplay.
The time it took for JavaScript to generate image data for a set number of frames is about
double compared to WebAssembly for the same number of frames.

We looked into using SIMD-operations for the image data generation but since the al-
gorithm we used only operated on 32 bit integers for each frame, SIMD was not utilized.
Because SIMD is used on the newly introduced vector type v128 which consists of 128 bits,
it was decided that it would be too hard rewriting the algorithm with vector type. therefore
SIMD was not used. But by rewriting the data generation algorithm making use of vector-
ized data, SIMD-operations should be able to speed up the execution process by using data
parallelism, in theory further increasing WebAssembly performance up to four times.

5.2.8 QR code generation
When generating qr-codes there are libraries that are available for both JavaScript and Rust.
When performing this comparison one library was chosen to be used [41] this contains im-
plementation for both JavaScript and Rust and it was therefore chosen to be tested.

Result

Figure 5.15 shows the results from generating a number of QR codes which direct to “https://www.ikea.com”.
The input was chosen to range between 500 and 8.000 and not as in sorting as that would
have been excruciatingly time consuming and the chosen span was considered to be giving
enough information. The algorithm speedup for the QR code generation algorithm starts at
3.11x at 500 QR-codes and keeps steady up until 8.000 QR-codes, where it decreases to 3.01x.
Accounting for the full WebAssembly execution time, WebAssembly showed a speedup at
2.76x at 500 QR-codes and keeps steady up to 8.000 QR-codes, where it decreases slightly to
2.71x. Although difficult to see, there is a deserialization phase in the beginning, since there
is a string input, however it can be negligible. But the serialization becomes time consuming
for larger inputs and can therefore not be negligible. This is because the QR code is returned
by WebAssembly as a large SVG string which needs to be converted into a JSON string in
WebAssembly Memory and then parsed into an object on the shared heap, which is time
consuming considering the size of the SVG string.

Discussion

The only data passing in the start phase is one string which needs to be deserialized. This
argues that a good use case for WebAssembly is when there is a simple input, needing limited
data passing, that is used for heavy computation and yields many outputs. Also for this case
the SIMD-operation could be used which argues for an even faster execution time. However
the size of the output SVG string is troubling and if it would have been much larger the time
consumption for serialization would be remarkably large.

66

5.2 Benchmarking results

Figure 5.15: QR code generation

5.2.9 Bin packing algorithm
As stated in the analysis the bin packing problem is a computationally heavy algorithm. It was
inspired by an online Rust example [42] by MacAulay. Using a First Fit Decreasing-heuristic,
the algorithm attempts to place the item with the largest dimension in the smallest available
space until no more boxes can be placed, or all items have been placed. This solution differs
from the general bin packing problem in that it can only pack items in the initial bin, rather
than creating a new one.

Since test data was hard come by, it was generated by using a modified bin-packer: Given
a container of a fixed size, it calculated how many of each test item could fit inside if packed
with the same algorithm, having a bias towards items with the most extreme dimensions.

The implemented algorithm uses a naive approach due to time constraints, only work-
ing on containers and items that were rectangular cuboids and rotations were limited to
90°. Because of its simplicity, smaller inputs resulted in very quick execution times in both
JavaScript and WebAssembly. As such, the containers used for test data generation were
larger: Cubes with sides 250, 500, 1000, 2000 and 4000 cm per run, resulting in a packing of
208, 1704, 14796, 110388 and 882216 items respectively. As such, in contrast to the previous
experiments, the actual input sizes to the bin-packing benchmark is not doubled between
two input sizes.

The input to the function was kept as simple as possible in order to minimize data ex-
change: The dimensions of the container and two lists of identical dimensions: One contain-
ing the dimensions of the items and the other the number of items of each type to pack. The
output is an array of arrays, each pertaining to a certain item similar to how the input lists
were structured. Each subarray contains the coordinates of the item’s corner closest to origin,
as well as a simple rotation vector.

The 8 possible items were selected randomly from IKEA’s website, which provides the
dimensions of the boxes they are shipped in.

67

5. Running the benchmarks

Figure 5.16: Bin packing

Result
Figure 5.16 shows the result of the benchmark.

At 208 items, WebAssembly’s algorithm phase shows a speedup of 22.8x compared to
JavaScript. As the input sizes grow, the relative performance of WebAssembly’s algorithm
phase compared to JavaScript decreases, ending at 3.94x compared to JavaScript at 882216
items. Accounting for the full WebAssembly execution time, WebAssembly starts with a
speedup of 4.07x at 208 items, increases to 5.15x at 1704 items, then decreases to 3.0x, 0.87x
and finally 0.67x at the largest input. The efficacy of WebAssembly varies as well: From the
smallest to the largest input sizes, it is 17.9%, 32.1%, 33.1%, 19.1% and finally 16.9%.

Since it is hard to make out the values at the lower input sizes, figure 5.17 shows the same
values on a logarithmic execution time scale.

Discussion
As expected, the Deserialization phase of WebAssembly is very limited due to how the input
was defined, and ranged between 0.05 and 0.08 ms in execution time. Increased input size
did not result in a longer deserialization phase. The same cannot be said about the serializa-
tion phase. Since the output grows with an increased number of boxes to pack, so does the
serialization.

One possible explanation for the differences could be the data structures used in the
solutions. JavaScript does not have a standard MinHeap implementation, and as such, it was
implemented by hand. It could be the case that it is not as well optimized as the binary heap
in Rust’s standard library.

Furthermore, the algorithm is heavily oriented towards arithmetic, which has been shown
to run faster in WebAssembly than JavaScript.

The fact that the algorithm performs well on smaller inputs is very promising: As previ-
ously stated, the large amount of items packed is a result of the algorithm being too naive,

68

5.3 WebAssembly startup times

Figure 5.17: Bin packing, execution times on a logarithmic scale

requiring an increase in input size in order to have a less error-prone result. A more sophis-
ticated algorithm that could work with other geometries than rectangular cuboids and right
angles should perform better in WebAssembly, if the number of items is kept relatively low.

5.3 WebAssembly startup times
As part of the research questions, the time required to start up a WebAssembly module came
into question. This section presents our findings, and discusses the results.

In conclusion, the startup time of WebAssembly is very limited for the binaries used in
this thesis. Furthermore, ongoing work in the language standard aims to remove the need to
manually instantiate the binaries. The used JavaScript bundler, Webpack, already supports
the feature if specific flags are passed to wasm-pack on WebAssembly compilation. For the
purpose of investigating the impact of startup time, however, this feature was disabled.

5.3.1 Results
The time to initialize the various modules was tested over 100 iterations per module, and the
average time was calculated. Table 3.1 shows the results from this test.

5.3.2 Discussion
As the results show, the time required to initialize the module is very limited, and never ex-
ceeds 4 ms. In section 3.1.2 it was established that the instantiation time of a WebAssembly
module is linked to the size of the binary. Our results seem to indicate the same behavior,
as the smallest binary, "Canvas Rendering" with the size 372 bytes is the fastest to initial-
ize. The size of the other binaries are far larger, starting at 82813 for the second smallest,

69

5. Running the benchmarks

Module name File size (bytes) Startup time (ms)
Canvas Rendering 372 3.275

Filtering 82813 3.467
KNN 88661 3.580

Bin Packing 92588 3.569
Mapping 95343 3.667
Sorting 98841 3.583

QR-codes 104241 3.59
Grouping 104425 3.43

Table 5.4: Table showing the time to initialize the WebAssembly
modules together with the size of the binaries ascending

"Filtering". This can be accredited to the fact that the only module that does not use wasm-
bindgen is Canvas Rendering, which is represented using data which is natively understood
by WebAssembly. The execution time increased slightly as the binaries increased in size,
with minor variations. In previous work experimenting with different binary sizes, it was
measured that starting a 29286 byte WebAssembly module took 10.4 ms [22], which is higher
than our largest binary at 104425, taking on average 3.43 ms. There could be multiple expla-
nations for this. First, the authors claim that they used the linux command time to measure
the execution time of the program. Second, the authors run their tests in Wasmtime, a We-
bAssembly runtime intended to be executed outside of the web. In comparison, our data is
gathered by isolating WebAssembly instantiation with calls to performance.now in a chrome
browser. As such, it is possible that the authors captured more than just the instantiation
time in their call.

5.4 Cross-algorithm discussion
There are general patterns that are clear when running benchmarks across multiple algo-
rithms. This section will discuss some of those patterns in an attempt to explain the reasons
for them. Finally, the section contains a short summary of recommendations as to how We-
bAssembly should be used given the results, and potential areas of improvements.

As can be seen in the benchmark results, the actual algorithm phase is rarely slower in
WebAssembly than in JavaScript. In the cases where JavaScript is faster than WebAssembly,
it is usually data exchanges that dominate WebAssembly execution time. The time consump-
tion for data passing poses problems for the possible usage of WebAssembly as it slows down
the execution time for processes that need to pass a lot of data between WebAssembly and
JavaScript. As was discovered when running the benchmarks, filtering, sorting, grouping
and mapping introduces a large overhead when passing data between JavaScript and We-
bAssembly. Even though the algorithmic part executes faster in most cases, this overhead
makes the use case for WebAssembly discouraged. Improvements in the data passing might
be performed and will be discussed in the next chapter “discussion and related work”, but in
our case these algorithms should not be used with WebAssembly. In these cases it should also
be noted that JavaScript still performs quite well and the gain for using the algorithmic part

70

5.4 Cross-algorithm discussion

in WebAssembly is in terms of milliseconds even for large inputs.
One interesting observation when executing code in WebAssembly was the “WASM: Re-

turn” phase. The initial speculation was that this phase only entailed JavaScript removing
references to the data that was shared with WebAssembly in preparation for the deserializa-
tion step, since the timestamp was created immediately before returning from the function.
However, some quick testing on the JavaScript side showed that this part of the process was
almost instantaneous. This behavior was inspected using various test functions, receiving
both simple data that was immediately understood by WebAssembly such as integers, more
complex types such as strings, and finally arrays. The WebAssembly code was then inspected.
Although highly obfuscated, it was clear that simple inputs such as integers were returned
by simply removing the value from the WebAssembly stack, resulting in a minimal overhead.
Meanwhile, the more complex inputs generated additional code before returning control to
JavaScript. The most plausible explanation is that when WebAssembly takes control over
complex data structures by copying them, it allocates internal memory to hold the data. At
the end of the function, this data is cleaned up to free space. Comparing benchmarks in both
the sorting and mapping category, arrays of either strings or integers were passed to We-
bAssembly. The "WASM: Return" phase of the functions working on integers had minimal
durations, often measured to 0 ms, while the string versions lasted for several milliseconds.
Since the internal data is stored as a vector, it is likely that cleaning a vector of integers re-
quires simply marking the address of the underlying address pointer as free. Meanwhile, the
string version contains a vector of string references which are allocated on the heap. These
need to be individually deallocated, and as such, takes much longer to clean up.

Another interesting observation is that the “WASM: Enter” phase has little- to no impact
on execution time. In most benchmarks, the duration of this phase was measured to 0 ms,
with some instances lasting for a fraction of a millisecond. During this phase, non-primitive
parameters such as strings, arrays and objects are added to the shared heap, before execution is
handed over to WebAssembly. As such, context switching is shown to be of little consequence
in long running algorithms.

In RQ 1.a “How is it dependent on the execution environment, compiler and choice of
algorithm? To what extent?“, the aim was to explore factors that affect the execution time for
WebAssembly and JavaScript. The results presented and discussed in this chapter shows that
the differences in JavaScript and WebAssembly is heavily present and affects the execution
time when performing different algorithms. Due to time constraints we did not have time to
study other compilers and execution environments.

Connecting back to RQ 1.c “Why does WebAssembly have a start up time, can it be
avoided? Is it negligible?”. Our findings show that the startup time for WebAssembly can
be negligible and even eliminated when using WebPack and Wasm-pack. But even without
WebPack and Wasm-pack the wasm module could be instantiated when loading the page
which would remove the startup time from execution. It was found that the time to instan-
tiate a WebAssembly binary is dependent on the size of the binary. The main problem is the
time consumption of data passing that is present for some algorithms.

Algorithms that only perform simple tasks once, for example filtering through a semi-
large array once, are probably not worth porting to WebAssembly because of data passing
overhead and JavaScripts filtering function is sufficiently good.

One discovery from the results and discussion above is that serialization and deserial-
ization becomes more time consuming when the input is an array of string type compared

71

5. Running the benchmarks

to an array of integer type. The execution time is even higher when arrays of objects are
passed. This can be seen in figures 5.1 and 5.2 (note different scaling on y-axis). The reason
for this is because string is a more complex data type compared to integer and therefore needs
more work in order to be understood by WebAssembly. For the use case of QR code genera-
tion, the result from that discussion was that generating many qr codes from one string is a
good use case since it is a simple input, needing limited data passing, that is used for heavy
computation. However if the input would have been an array of strings, simple enough in
JavaScript, the time consumption for deserializing the array would have been devastating. For
the use case of QR code generation, the results were in favor of WebAssembly compared to
JavaScript. Both the input- and output from the function were strings, which requires some
preparatory work. However, for such limited non-primitive data, the impact was extremely
small in relation to the effective work of the algorithm.

RQ 2.a “What are common algorithms and services in the IKEA front-end landscape?
Are they suitable for WebAssembly? Why?“, is used for exploring if the chosen algorithms
from the analysis chapter are suitable for WebAssembly and why. As we have found in this
chapter, some of the algorithms that IKEA uses can be gainfully implemented in WebAssem-
bly instead. Below we will give a list of recommendations for what algorithms WebAssembly
performs well in and in which algorithms it performs worse than JavaScript.

5.4.1 Recommendations
From the results and discussions in this chapter the recommendations for algorithms that
WebAssembly should be used for instead of JavaScript is:

• Image data generation, both for QR code where a string input yields many qr codes as
output, for example qr code for a discount and also for generating images for HTML
canvas elements.

• Machine learning that relies on computationally heavy algorithms where the time for
computation is longer than the time for serialization and deserialization, in this thesis
a classification algorithm was tested and executed faster than JavaScript.

• Simple algorithms that have limited data passing, or even utilizes a shared memory
buffer not needing any data passing. The execution of the algorithm has been seen to
always execute faster than the algorithm in JavaScript, meaning that data passing can
be limited or removed WebAssembly can be beneficial.

5.4.2 Areas of improvement
What has become strikingly clear from this chapter, that has not been discussed in the re-
search papers we read for our literature study, is that passing data between JavaScript and
WebAssembly is time consuming. Previous work that we have read, have focused entirely on
problems with data that can be easily shared between JS and WebAssembly. Anything more
complex than floats and fixed-size arrays has yet to be seen. However our work is heavily ori-
ented towards generic arrays and object data. Since there are many cases where WebAssembly
and JavaScript needs to pass data between the two, this area needs to be improved in order
for WebAssembly to be used beneficially in many algorithms.

72

Chapter 6

Discussion and related work

To come to a conclusion and solve the initial problem it is necessary to discuss the findings
we have gathered and relate it to prior art. We will reflect upon our own work and method as
to see what worked well and what should have been done differently. The threats of validity
will be discussed in order to evaluate the strength of our claims. To motivate general use
cases from the findings in this thesis the generalizability of the results and insights will be
discussed. We will relate our result to related work and bring insights into future work that
has been raised by this thesis.

6.1 Reflection on our own work and method
The following section analyzes various aspects of the method used to reach the results. Knowl-
edge gained from the work process that could have altered the approach will be discussed, and
alternatives to the method will be accounted for. In summary, most of the planned methods
worked well. Some phases, especially when researching and creating a benchmarking frame-
work, had some surprises in store that were hard to predict and required slight deviations in
the plan.

6.1.1 Analysis and interviews
The interview phase of the work did not differ significantly from the planned approach.
However, it consumed a substantial amount of time during the early phases of the work
process, and the vast majority of the information gathered had to be discarded. The questions
were deemed suitable, as it was directly concerned with what we aimed to learn. However,
there were certain aspects of the interviews that could have been done differently. First,
the interviewees did not properly learn about our goal until the interview started beyond a
quick summary when we reached out. We should have been more explicit in our goal and
show the questions ahead of time. Second, the majority of the interviewees did not know

73

6. Discussion and related work

what WebAssembly was and what it could do. It could have helped prime the interviewees if
its capabilities were showcased better.

In hindsight, it would have been far more time efficient to have employees fill in a form
with relevant questions, which could have reached the same result, and would have been
a strong contender to the planned method. Another approach would have been to align
the work process to a single team with computationally heavy goals in mind. This could
have led to a more focused- and deep analysis, rather than the broader approach this paper
used. However, this would have come with the disadvantage of the results becoming less
generalizable. Furthermore, such teams were not found- for IKEA, the origin of this thesis is
curiosity rather than necessity.

6.1.2 Creating the benchmarking framework and ap-
proach to instrumentation

In the process of analyzing different approaches to program instrumentation, no tools that
could perform the same analysis on both JavaScript and WebAssembly were found. The exist-
ing solutions focused on other aspects of program analysis. Previous works such as “Empow-
ering Web Applications with WebAssembly: Are We There Yet?”[17] and “Understanding
the Performance of Webassembly Applications”[18] use blackbox measurements to capture
execution time behavior in both languages. While this could have been one way of studying
the algorithms in full, our analysis of how WebAssembly exchanges data with the JavaScript
context led to suspicions that this approach would hide interesting details from the results.
As such, creating a custom instrumentation framework is considered to have been the cor-
rect choice for the purpose of this thesis. Although the phases of our work were listed in a
sequence, there was a significant overlap between designing the benchmarking framework
and running the benchmarks. During this overlap, it was found that our approach using
custom timestamps in rust code had little overhead. Using conditional compilation in Rust,
the instrumentation statements could be switched on and off through flags, allowing us to
compare execution time of instrumented WebAssembly and pure blackbox WebAssembly.
The results were that using the four additional instrumentation statements inside the code
had minimal impact on execution time, see section 4.3.1. Using Chrome’s builtin developer
tools page, however, changed the execution time significantly: By simple keeping the tab
open while running the benchmarks, the same heapsort algorithm test had a minor impact
on JavaScript execution while WebAssembly execution times were impacted significantly, see
section 4.1.2. The reason for this difference was unclear and we were unable to find informa-
tion about this behavior. As such, this method of gathering data was found to be unreliable
for our purposes.

Concerning generalizability and control over what was instrumented, however, the choice
to implement the instrumentation statements manually in the rust code might not have been
the best approach, as seen with the "WASM: Return" phase which did different things depend-
ing on the output. If this had been known beforehand, we would have created a customization
of the wasm-bindgen tool that injects instrumentation statements programmatically, which
would have increased control over what was measured. Furthermore, it would have allowed
for a more general benchmarking framework that could be used in both client- and server
side solutions and would not rely on a combined webpage- and benchmarking solution.

74

6.1 Reflection on our own work and method

The issue of exchanging non-primitive data between JavaScript and WebAssembly con-
texts was not immediately obvious. During the analysis phase, it was noted that previous
research papers- and resources provide information and data for problems that can be ex-
pressed using integers and fixed-size arrays which WebAssembly handles with relative ease.
The problem of data interoperability is stated implicitly in that WebAssembly operates on
numeric types, which JavaScript can either append to the WebAssembly stack or encode into
shared memory. It can be discussed whether or not this knowledge would have changed our
use of tools such as wasm-bindgen in this work: On one hand, using wasm-bindgen was a time
efficient way to create a bridge between the contexts, which allowed us to utilize our time to
implement- and test more algorithms. On the other hand, serializing- and deserializing data
through wasm-bindgen’s generic JsValue type is a questionable practice: it acts on arbitrary
data and as such utilizes JSON encoding- and decoding, which is potentially costly. Another
approach would have been to manually create logic to encode- and decode data on both the
JavaScript- and WebAssembly side, which would have been a lengthier process but would
have been tailored to the data, potentially increasing WebAssembly’s total performance. Al-
though potentially better for a highly tailored solution, it is not a recommended practice for
very generic solutions.

Another concept that was briefly explored was WebAssembly’s fairly recent addition,
externref. Rather than duplicating data into WebAssembly memory, one could pass a refer-
ence to data in the JavaScript context. Two things became apparent from some quick testing.
First, the feature is disabled by default in wasm-bindgen and it is required to pass extra flags
for the tool to make use of it. This affected the WebAssembly optimizer wasm-opt and the
JavaScript-WebAssembly bundler wasm-pack, neither of which currently support the feature.
As such, externref could only be tested in a manually crafted binary without optimizations.
Second, testing showed that although the data passing overhead was reduced dramatically,
the execution time of the algorithm was increased to such a degree that its full execution
time was even longer than the serialization-deserialization solution. The reason for this is
not completely understood, but since the data only exists as a reference in WebAssembly,
one possibility is that any usage of the data in WebAssembly requires switching back to the
JavaScript context. The results show that context switches are fast in WebAssembly, as both
the phases "WASM: Enter" and "WASM: Return" can be close to instantaneous phases. A
study from Mozilla shows that this can be the case, as the execution time of 100.000.000
function calls from WebAssembly to JavaScript has been improved from the previous 5500
ms to 500 ms [43]. However, it is unknown if this applies to chrome and externref, as the
study specifically investigates functions exported between the contexts in Firefox.

6.1.3 Running the benchmarks
The benchmarks were executed using two primary parameters: Number of iterations and
algorithm input size.

Little information was found in regards to an adequate method of picking the number
of iterations. Using similar research as a starting point, a common number of iterations
per benchmark was 5 [18] or 10 [17][44]. As such, it was decided to use 10 iterations per
benchmark in this work.

As the algorithms were to be implemented, it was decided early on that all algorithms
should have known source code or otherwise kept simple to save time. As an example, the

75

6. Discussion and related work

choice of using KNN as a representation of machine learning algorithms. It is arguably the
most simple machine learning algorithm, and has some odd properties such as no model
training phase and a fairly demanding test phase. Similarly, the two sorting algorithms that
were used, heapsort and quicksort, were created by hand rather than using the standard li-
brary sort functions available in the two languages. The motivation for this is that we wanted
to know exactly what code was being run, rather than rely on a standard library or machine
learning library, which could potentially hide away implementation details.

Concerning sorting algorithms, the chosen algorithms might not have been the best
choice: both implementations are recursive, in-place sorting algorithms, with the most sig-
nificant difference being that heapsort is more predictable in execution time. One of the
algorithms should have been mergesort, which utilizes auxiliary arrays and as such, requires
O(n) additional space to execute. Although the current choice does not threaten the validity
of the results, it would have been interesting to see if the additional memory usage would
have affected the two languages in any way.

6.2 Threats to validity
In order for the conclusion of this thesis to be valid, the data need to be questioned as to
see if there could be other factors that influence the results. In this chapter our data will be
evaluated and arguments opposing the result will be discussed.

The most important conclusion we assert, which we have not seen in related work, is
that data passing can be detrimental for WebAssembly usage in many algorithms. However
we have not read all papers touching upon WebAssembly and JavaScript interprocess com-
munication, meaning that it might have been discussed in previous work. But it is deemed
not common knowledge since we could not find it during our literature study. But since
our literature search was done in order to find differences between and JavaScript and We-
bAssembly, we might have missed literature about data passing. To see the extent of this we
decided to do a quick search where the criteria was changed in order to target data passing.
Most previous work that explores the performance of WebAssembly does mention the fact
that WebAssembly only supports float and integer data natively. However, it is common to
see previous research being focused on domain-specific, demanding algorithms that can in-
terface easily between Javascript and WebAssembly. Another threat to the conclusion that
data passing is the killer of performance could be that our choice of using serialization and
deserialization (SERDE) was wrong and that there is another way of passing data between
JavaScript and WebAssembly that is more efficient. But when seeking ways of passing non-
trivial data, SERDE was the most common and visible result online, which is why we decided
to use it. We later found out about ExternRef and WasmAbi. We did a quick test using Ex-
ternRef. Although the preparatory phases of WebAssembly execution were far shorter, it
resulted in dramatically increased execution times during the algorithm phase. However it
was not a solution that was explored sufficiently in order to draw any conclusion to how it
would compare to SERDE. Using wasmAbi, an interface in wasm-bindgen to provide logic
as to how data structures should be encoded and decoded from memory, was discarded as an
initial study of it pointed out that it would be time consuming to implement. Since there are
other ways of avoiding/limiting passing of data our conclusion still stands that data passing
should be limited, especially when using SERDE, however there might be other solutions that

76

6.2 Threats to validity

can allow data passing in a more efficient way.
One problem with our claim about data passing is that a framework was used to generate

helper functions that performed the data exchange process. If we instead had customized
the data passing for each of the algorithms instead of using stringify/parse for all, we might
have been able to reduce data passing time but we decided that this would not be a general
use case for WebAssembly since customizing data passing would be time consuming. Since
we could save a lot of time using wasm-bindgen it was decided that it would be the best way
going forward.

A bottleneck in our ability to reason about the results is the nature of the WebAssembly
code that was generated: The use of wasm-bindgen increased our overall productivity and
saved time, but would introduce additional code to each WebAssembly function, specifically
at the beginning and the end of them, and could depend on the in-put- and output of the
function. It was presumed to be code meant to clean up memory used by data that was about
the go out of scope due to not being present for very simple primitive data. But since it
entailed upwards of a few thousand lines of code that were hard to analyze, the exact nature
of this code was not understood and brings some uncertainty to our reasoning about it.

Our recommendations for which algorithms work well with WebAssembly and which
should not be used with WebAssembly are affected by the designs of said algorithms. We
claim that machine learning for classification can be beneficially implemented in WebAssem-
bly as opposed to JavaScript, if de/serialization can be limited. However we only tested a
simple machine learning algorithm, k nearest neighbor, which might not be the best rep-
resentation for overall machine learning classification algorithms. Instead we could have
chosen a more mathematical approach with vector computation, using SIMD-operations we
would probably have seen that the mathematically heavy part of machine learning can be
improved. But also for this case we argued that a simple machine learning algorithm would
be most time efficient to implement which would result in the possibility to further explore
other algorithms.

Although not found in literature it is possible that React could be contributing with
additional overhead which might have skewed the results a bit. We do not think it is likely
that it affected the result and if it did it was not by much, therefore we did not investigate
this. Furthermore, the usage of React is very common in web development today, and as such
any potential overhead could increase the generalizability of our results.

One general threat to the validity of this thesis is the fact that we decided to only inves-
tigate one browser, namely the V8. Although there are differences in optimizations between
different JavaScript engines, we decided that it was more beneficial to fully understand the
execution process of one commonly used engine instead of briefly investigating multiple.
However this poses the threat that we can not guarantee that the results from running the
benchmarking framework will yield equivalent results.

In order for the results to be accurate, and not biased by different computer specs, each
of the benchmarks was done using one computer, namely the Windows machine, see speci-
fications in section 5.1.6. However this poses a potential threat as the results become biased
by the specs of that computer. In order to see the magnitude of this issue the benchmarking
framework was used on another computer as well, namely a 2021 Macbook Pro with a 2,3 GHz
8-Core Intel i9 CPU, 2 x 8 GB DDR4 RAM. Although the ratio in the overall WebAssembly
execution time stayed the same, there were some differences in overall execution time. For
some algorithms where execution speed were almost the same, WebAssembly would win on

77

6. Discussion and related work

one computer and lose on the other. However we did not have time to further investigate
the reasons for why.

Weaknesses in the benchmarking method could influence the gathered data, making it
less trustworthy. One such weakness is that there are processes which could have consumed
processing power in the background lessening the efficiency for the algorithms. One such
process could be garbage collection since it pauses the execution in order to clear up mem-
ory. Although WebAssembly in itself does not perform garbage collection, it is quite possi-
ble that it could have been triggered during one of the multiple data exchange phases, where
JavaScript is used to allocate and deallocate data which is shared between the instances. An-
other uncertainty with the framework is that there is no JIT-warmup in the tests. We de-
cided that allowing JavaScript to use optimized machine code at the start of each test would
be an unfair advantage. The consequence of this is that we can not know when - or even if -
JavaScript optimizations occurred. Given the literature study we can with certain confidence
say that V8 engine optimizations probably occurred, as the execution time of JavaScript did
not change significantly between multiple iterations.

As raised in the reflection on our own work and method, choosing the number of itera-
tions is no easy task as the data found addressing this choice was limited. Previous work used
5 and 10 iterations, but did not motivate their choices. As such, we settled for 10 iterations
per test. The reason to use a certain number of iterations was to lessen the impact of variance
between test runs. Although outliers were uncommon, they were present and could increase
the execution time during certain phases significantly. Although our method of calculating
the average of 10 iterations for each phase independently should bring the final result closer
to a realistic number, it runs the risk of being too high for both JavaScript and WebAssembly.
One argument in favor of this method, however, is that the outliers are not caused by mea-
surement errors, but are a natural occurrence due to the nature of the JavaScript runtime.
They could, however, give an unfair advantage to one language over the other.

The size of the smallest program inputs were chosen through testing various inputs until
one was found that showed a result that was similar across multiple independent benchmarks,
which could be a questionable practice. This number was fairly high for most benchmarks.
Due to this, the report fails to provide data on very small inputs, such as sorting 100 elements.
Previous results show that smaller program input sizes favor WebAssembly over JavaScript
due to missing JIT-optimizations. Analyzing the trends from section 5.2.2, this would likely
have been the case for most algorithms in our work, as the most common observation was that
WebAssembly’s speedup decreased as the input size increased. However, another observation
is that the most common pattern is that the efficacy of WebAssembly increases as the input
size grows, and as such, data exchange could have been far more dominant on smaller inputs.
This report does not provide any data on this, and tests on very small inputs lead to wildly
varying results in execution time and as such, were not deemed suitable for the purpose of
this thesis. As a result, the claims made by this thesis cannot be generalized to very small
inputs, which is certainly a valid case depending on the context.

Many algorithms such as the sorting methods in JavaScript mutate the input. Since the
same function was called on each benchmark iteration, the solution to this was to pass a
closure to the benchmarking function, which generated a new copy of the original input
data before each test. This would likely have triggered garbage collection more often during
the benchmarks, as references to the previous inputs were dropped between iterations.

78

6.3 Generalizability

6.3 Generalizability
The results and deliveries from this thesis should be viewed from the given context. However
it is important to highlight the generalizability of the work in order for it to be useful and
applicable in other contexts.

Many of the results derived from this thesis are highly generalizable. The only IKEA
influence was when the long list of interesting algorithms was reduced in order to fit with
the IKEA usability. The claim that data passing should be limited when using wasm-bindgen
is therefore applicable for the general use case of WebAssembly for any algorithm.

The algorithms that were benchmarked are commonly used and not specific for IKEA.
This means that the conclusions from this work can be applied in many contexts where We-
bAssembly performance is sought in regards to execution. Another important delivery of
this thesis is the long list of algorithms that are interesting to benchmark given the differ-
ences in WebAssembly and JavaScript. This list kindles thoughts of other use cases where
WebAssembly could be faster than JavaScript but which were not investigated due to time
and resource restraint and given context.

The benchmarking framework was developed independent from the IKEA context and
with the aim of providing enough information when benchmarking algorithms in JavaScript
compared to WebAssembly. The language decided to target WebAssembly was Rust and this
affects how the WebAssembly binary will be built compared to if the language used would
have been C/C++. This means that the data and results the framework produced are specific
for the Rust toolchain but the difference, had C/C++ been used, should be minimal. When
designing the framework we had generalizability in mind and decided therefore to use React
instead of simple html pages as most web pages, that depend on performance, are built using
a framework.

6.4 Related work
The following section contains reviews of papers related to this thesis. A brief summary of
each work is given in order to let the reader understand its contents. Then, each paper is
discussed in how it relates to this thesis. The papers that will be reviewed are, in order, [44],
[45], [17] and [46].

The Need for Speed of AI Applications: Performance
Comparison of Native vs. Browser-based Algorithm
Implementations
Summary
The authors address the problem with increasing demand on AI applications. The paper
also explores the current state of client-side possibilities for computationally demanding AI
applications, by comparing JavaScript, ASM.js, WebAssembly and native binaries. The au-
thors claim that the current advances with browser based implementations such as JavaScript,
ASM.js and WebAssembly challenge native binaries with regards to execution time. To prove

79

6. Discussion and related work

their claims the writers conducted 10 test cases with different computational heaviness, some
being more extensive processes than others, on the different implementations.

In conclusion, the authors’ tests yielded the result they were expecting for the compu-
tational and function-call oriented operations that do not heavily rely on memory manage-
ment, but they were surprised by WebAssembly’s capabilities. The result was that compiled
C++ code executed fastest, secondly WebAssembly closely followed by ASM.js and JavaScript
far behind. Interesting cases were when WebAssembly beat compiled C++ which it did in
four cases. ASM.js beat compiled C++ in one case and JavaScript never beat compiled C++.
The authors interpret that this speed difference could be because of WebAssembly’s SIMD
vectorization happening within the Emscripten pipeline.

Discussion
The authors in this paper only looked at overall execution time and therefore lost insights
into how data passing affected the execution time. What we did differently was that we
studied more in detail what parts of the execution process are time consuming. This proved
to be novel as we have yet to find any prior art addressing this question. However their tests
were made with an AI context in mind, and therefore the focus was on number crunching
routines, which differs from our focus as we were seeking a more all around use case for
WebAssembly. Furthermore they only used a simple html page for their tests as compared
to our tests which were done on a react page. Since their focus was on number crunching
algorithms their results differ from ours as it shows a speedup using WebAssembly compared
to JavaScript for all algorithms.

Since they did not provide an explanation of how data is passed while running these
algorithms it is hard to argue if data passing is the reason for the cases where WebAssembly
does not completely outshine JavaScript. However for some of the algorithms they tested we
can conclude that data passing is limited, for example the test of filling an array, and for this
WebAssembly dominates with a faster execution time compared to JavaScript. Therefore
their findings and ours does not stand in dispute, but rather that we provided more insight
into reasons for why their number crunching algorithms performed well with WebAssembly.

Accelerate JavaScript Applications by Cross-Compiling
to WebAssembly
Summary
The problem that is addressed is the insufficient performance for compute-intensive pro-
cesses that exist with JavaScript. To solve it the authors present their cross-compiler Speedy.js,
which is a subset of JavaScript/TypeScript that was designed to perform better than regu-
lar JavaScript when dealing with computationally intensive functions. The cross-compiler
should only impose minimal restrictions on the JavaScript code and reduce runtime fluctu-
ations. To prove that their cross-compiler Speedy.js enhances performance they conducted
benchmarks from regular typescript compared to typescript cross-compiled with Speedy.js.

In conclusion the tests proved that there was an increase in execution speed for most cases
and in some cases up to a factor of four. There were also less fluctuations in execution with

80

6.4 Related work

Speedy.js compared to an ordinary JavaScript engine, they claimed that this consistency only
will grow with more support for WebAssembly in the browsers.

Discussion

One notable difference we did compared to this work is that instead of compiling JavaScript
code to WebAssembly, we made use of Rust. Another difference is that instead of passing
objects between JavaScript and WebAssembly, resulting in data passing, they made use of
the heap and only passed object references between the two. This limits the useability as
they must specify more information about how the stored object on the heap should be rep-
resented in WebAssembly, for it to operate on it. Our work brings new insights into how
to pass objects instead of object references, and thereby freeing up space on the heap. With
Speedy.js they only used 8 test cases which were all handling numbers, what we do differently
is that we used more extensive tests. As their work was conducted in 2017, when WebAssem-
bly was still in the birth stage, they did not have as much prior art to rely on as we did.
Therefore the context from which their work was done differs and they did not explore use
cases of WebAssembly rather just benchmarking simple numeric algorithms. One issue with
their conclusion is that in order to use Speedy.js relaxations in regards to safety must be re-
duced, i.e array boundary checks can no longer be done, which will enhance performance
at cost of safety. But it still points to an improved performance when using WebAssembly
instead of JavaScript for numeric computations.

Empowering Web Applications Using WebAssembly

Summary

The authors attempt to shed some light on the question “what parts of your code should
be executed through WebAssembly, and which parts need to be improved in WebAssembly
execution?”. The authors claim to contribute to the scientific community by exploring the
performance of WebAssembly applications in comparison to JavaScript in both execution
time and memory usage. The goal is to explore shortcomings in the current WebAssembly
implementation in Chrome in order to create opportunities to improve it. To substantiate
their research, the authors use an experimental analysis of JS/WASM execution, by running
a computationally heavy C benchmark cross-compiled into both JavaScript and WebAssem-
bly in the Chrome browser. This is done using a C cross compiler, Cheerp. Their results
show that for smaller program inputs, WebAssembly executes faster than JavaScript for all
benchmarks, but more than half of the benchmarks lag behind as the input size becomes
larger. The authors claim that this happens due to more aggressive JIT-optimizations on the
JavaScript side, which greatly improves JavaScript performance while having negligible im-
pact on WebAssembly. Furthermore, memory usage of WebAssembly is shown to be greater
than that of JavaScript, being explained through JavaScript’s garbage collection in contrast
to WebAssembly’s linear memory model which does not automatically reclaim memory.

81

6. Discussion and related work

Discussion
The authors claim that the sluggish nature of JavaScript on smaller input sizes can be at-
tributed to missing JIT-optimizations. While this is true, the input sizes in our work were
larger in general, with small differences in execution time between iterations for both We-
bAssembly and JavaScript. Furthermore, many of the algorithms that were tested in their
work are geared towards a more specialized domain- matrices. Although computationally
heavy algorithms, the data can be easily passed between the context and as such should result
in minimal data passing overhead. Furthermore, another difference between our work and
theirs is that they used the same C source code for both JavaScript and WebAssembly, using
Cheerp to cross-compile to the two languages, while our algorithms were manually coded for
both JavaScript and Rust.

The Cost of Speculation: Revisiting Overheads in the
V8 Engine
Summary
The authors study the impact of type speculation in JavaScript. Introducing optimizations
in the dynamically typed language comes with the price of requiring type information to be
checked during runtime in order to ensure that the optimizations are still valid. The authors
claim to contribute to the scientific community by studying the overhead that comes from
type speculation and deoptimization checks. The goal is to identify potential improvements
in how V8 handles deoptimization checks. To substantiate their research, the authors run the
JetStream2 JavaScript benchmark suite, consisting of 51 JavaScript benchmarks. The gener-
ated machine code is studied to find which deoptimization checks were performed and their
frequency. Their results show that when running the benchmark suite, 8% of all the gener-
ated instructions were deoptimization checks. The most common check is for Small Integers
(not-a-SMI), an optimization which makes the assumption that data types are integers and
not floats. Furthermore, the authors create an extension of the ARMv64 Instruction Set,
by adding new instructions to immediately coerce small ints to machine integers. By doing
this, a speedup of 3% is shown on average, with SMI heavy algorithms such as sparse matrix
multiplication and dot product performing with a 10% speedup.

Discussion
A significant difference between this paper and ours is the width and depth. The authors
have elected to focus on a very specific optimization problem at a low level in JavaScript,
and further narrows the scope as they implement a potential improvement for a certain type
of instruction. Meanwhile, our work captures a broader scope at a more shallow level, in-
stead focusing on analyzing reasons for discrepancies in performance of two solutions to the
same problem over multiple different problem domains. The contexts and purpose are differ-
ent as well, as their work is meant to analyze- and strengthen JavaScript and JIT-compilers,
while ours mainly study strengths and weaknesses in a contender to JavaScript, evaluating
its potential as a solution to keeping web pages responsive in the more complex web land-
scape. The results are not directly comparable to ours, as we did not gather information

82

6.5 Future work

about javascript execution on a low level. However, their results can be used as one of the
many possible reasons that JavaScript has worse algorithmic performance compared to We-
bAssembly, as WebAssembly does not have the additional runtime overhead that comes with
deoptimization checks.

6.5 Future work
During this work, there were a few concepts- and solutions that were not properly explored,
that could potentially address the same problem. This section will briefly present a few of
these.

As it currently stands, WebAssembly has no direct support for code instrumentation,
and requires a context switch to JavaScript in order to register timestamps for events. Fur-
thermore, this makes the process of instrumenting certain parts of the code less precise, as
the instrumentation has to be created at a higher level. An existing proposal to address this
is the introduction of instrumentation and tracing functionality in the language [47], which
could be an interesting development and its impact and proper usage could be a subject for
further studies.

A threat to the validity of our results was that there was a difference in overall execution
time for WebAssembly that is larger than the difference in JavaScript when the tests were
done on different computers. We did not have time to further investigate this but it points
out that the execution time of WebAssembly in the browser is more heavily affected by the
computer specs compared to JavaScript. This is an area that needs further investigation in
order to fully understand under what conditions WebAssembly should be used.

As a way of avoiding data passing the entire web application can be built using We-
bAssembly. Frameworks for developing such a web application using Rust as the targeting
language are Yew [48] and Seed [49]. It should be noted that using WebAssembly for the
entire web application is not yet the solution as it is still slower calling DOM APIs from
WebAssembly compared to JavaScript. With the Blazor framework [50], the entire .NET
application can be build by using C# and WebAssembly. In this thesis we decided to not
pursue the making of an application entirely developed in WebAssembly, but to fully grasp
the potential of WebAssembly such an application could be compared to another identical
application developed in JavaScript.

The newly added feature of SIMD-operations in WebAssembly was not tested in this
thesis. But from the research it can be argued that algorithms implemented with the goal of
utilizing this feature will execute faster in WebAssembly compared to JavaScript. But to see
the extent of improvement that this feature will bring, algorithms that can utilize the feature
should be tested.

Data exchange is a significant issue for certain algorithms, as the data from this thesis
shows. There is certain work ongoing to improve WebAssembly and JavaScript interoper-
ability. As previously mentioned, externref was briefly analyzed and tested with poor results.
It is unknown if the bad performance was due to missing optimizations, having to switch to
the JavaScript context more often, or some combination of both. As support for this feature
becomes available in wasm-opt and wasm-pack, a better evaluation of the concept would
be interesting. Furthermore, support for interface types is one current proposal to the lan-
guage, aimed to further improve the interoperability between the languages [51]. Research

83

6. Discussion and related work

into how these concepts could be used to remove the need of costly data exchanges would be
very interesting. Although WebAssembly currently has a specific use case in certain domains
which do not require large data exchange overheads, and a strict design goal of being mini-
malist, portable and deterministic in its execution, the appeal of the language could only be
strengthened by making it more useful in common algorithms.

84

Chapter 7

Conclusion

Using WebAssembly can drastically improve execution time performance in web applications
under the correct circumstances. The test result shows that WebAssembly performs the al-
gorithm phase of most algorithms faster compared to JavaScript. But passing “complex” data
between JavaScript and WebAssembly is complicated and can be detrimental since it relies
on JSON serialization and deserialization which is time consuming. This means that for
processes which pass trivial data such as integers or fixed-size typed arrays, where little to
no data exchange is needed, WebAssembly outperforms JavaScript with regards to execution
time. This is because of the difference in memory layout between the two contexts; JavaScript
objects may or may not structure fields or array indices in well-defined linear memory which
is expected in WebAssembly.

The machine learning benchmark shows that WebAssembly outperforms JavaScript at
the classification task. This can mainly be accredited to the deserialization step being less
computationally demanding than the iterative euclidean distance calculation of the algo-
rithm, together with the trivial classification output which has no serialization cost.

The canvas rendering benchmark shows that WebAssembly performs better at the im-
age generation task. Since the image data can be shared directly by the two contexts, no
deserialization or serialization is required between frame generation.

The QR-code generation benchmark shows that WebAssembly executes faster than JavaScript,
even though it relies on string input and output. Although the data passed is non-trivial, it
is fairly limited in size and as such, has a very small impact on performance.

Our benchmarks in the grouping, sorting and mapping tasks show that the algorithmic
part of JavaScript execution stays competitive, while WebAssembly has a large overhead for
passing data between the contexts. As such, common built-in functions for iteratively apply-
ing functions to, or organizing arbitrary data in JavaScript are preferable to their counterpart
in WebAssembly.

The bin packing benchmark shows that WebAssembly clearly executes the algorithmic
part faster but the serialization step is very expensive. The used algorithm is too naive and as
a result, too fast. As such, large program inputs were used, resulting in a large serialization

85

7. Conclusion

overhead. We speculate that if we had enough time to create a more sophisticated solution,
WebAssembly would come out on top regardless of the serialization overhead.

In conclusion, routines that fall into one of the following descriptions are expected to
perform better in WebAssembly than JavaScript.

• function input and output can be passed without conversion between the contexts

• function input and output requires conversion, but the conversion time is small in
relation to the algorithm time

• Data can be shared without conversion between contexts through memory buffers

86

References

[1] Izabella Bielecka. Ikea Sålde för 40 miljarder - nära 500 miljoner Kunder Online. 2021. url:
https://www.ehandel.se/ikea-salde-for-40-miljarder-nara-500-
miljoner-kunder-online (visited on June 5, 2022).

[2] Usage statistics of JavaScript as client-side programming language on websites. url: https:
//w3techs.com/technologies/details/cp-javascript/ (visited on June 9,
2022).

[3] V. Adve et al. “LLVA: a low-level virtual instruction set architecture”. In: Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.
2003, pp. 205–216. doi: 10.1109/MICRO.2003.1253196.

[4] S Sravani. How javascript was created? 2018. url: https://www.tutorialspoint.
com/How-JavaScript-was-created (visited on June 9, 2022).

[5] Amit Khonde. JavaScript internals - ignition and turbofan. 2021. url: https://dev.
to/amitkhonde/javascript- internals- ignition- and- turbofan- 48ef
(visited on June 9, 2022).

[6] Anthony Heddings. What is just-in-time (JIT) compilation? 2020. url: https://www.
howtogeek . com / devops / what - is - just - in - time - jit - compilation/
(visited on June 9, 2022).

[7] Joao De Macedo et al. “On the runtime and energy performance of WebAssembly: Is
webassembly superior to JavaScript yet?” In: 2021 36th IEEE/ACM International Con-
ference on Automated Software Engineering Workshops (ASEW) (2021). doi: 10 . 1109 /
asew52652.2021.00056. (Visited on June 9, 2022).

[8] Richard Artoul. Javascript Hidden Classes and Inline Caching in V8. url: https : / /
richardartoul.github.io/jekyll/update/2015/04/26/hidden-classes.
html (visited on June 9, 2022).

87

https://www.ehandel.se/ikea-salde-for-40-miljarder-nara-500-miljoner-kunder-online
https://www.ehandel.se/ikea-salde-for-40-miljarder-nara-500-miljoner-kunder-online
https://w3techs.com/technologies/details/cp-javascript/
https://w3techs.com/technologies/details/cp-javascript/
https://doi.org/10.1109/MICRO.2003.1253196
https://www.tutorialspoint.com/How-JavaScript-was-created
https://www.tutorialspoint.com/How-JavaScript-was-created
https://dev.to/amitkhonde/javascript-internals-ignition-and-turbofan-48ef
https://dev.to/amitkhonde/javascript-internals-ignition-and-turbofan-48ef
https://www.howtogeek.com/devops/what-is-just-in-time-jit-compilation/
https://www.howtogeek.com/devops/what-is-just-in-time-jit-compilation/
https://doi.org/10.1109/asew52652.2021.00056
https://doi.org/10.1109/asew52652.2021.00056
https://richardartoul.github.io/jekyll/update/2015/04/26/hidden-classes.html
https://richardartoul.github.io/jekyll/update/2015/04/26/hidden-classes.html
https://richardartoul.github.io/jekyll/update/2015/04/26/hidden-classes.html

REFERENCES

[9] Jiho Choi, Thomas Shull, and Josep Torrellas. “Reusable Inline Caching for JavaScript
Performance”. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI 2019. Phoenix, AZ, USA: Association for Com-
puting Machinery, 2019, 889–901. isbn: 9781450367127. doi: 10.1145/3314221.
3314587. url: https : / / doi . org / 10 . 1145 / 3314221 . 3314587 (visited on
June 9, 2022).

[10] Wonsun Ahn et al. “Improving JavaScript Performance by Deconstructing the Type
System”. In: SIGPLAN Not. 49.6 (2014), 496–507. issn: 0362-1340. doi: 10 . 1145 /
2666356 . 2594332. url: https : / / doi . org / 10 . 1145 / 2666356 . 2594332
(visited on June 9, 2022).

[11] Gabriel Southern and Jose Renau. “Overhead of deoptimization checks in the V8 javascript
engine”. In: 2016 IEEE International Symposium on Workload Characterization (IISWC).
2016, pp. 1–10. doi: 10.1109/IISWC.2016.7581268. (Visited on June 9, 2022).

[12] Peter ‘the garbo’ Marshall. Trash talk: The orinoco garbage collector. 2019. url: https:
//v8.dev/blog/trash-talk (visited on June 9, 2022).

[13] mkuts12. Memory management in JavaScript. 2019. url: https : / / medium . com /
walkme-engineering/memory-management-in-javascript-2d193c78d125
(visited on June 9, 2022).

[14] Introduction. url: https : / / webassembly . github . io / spec / core / intro /
introduction.html#scope (visited on June 5, 2022).

[15] Abhinav Jangda et al. “Not So Fast: Analyzing the Performance of WebAssembly vs.
Native Code”. In: 2019 USENIX Annual Technical Conference (USENIX ATC 19). Ren-
ton, WA: USENIX Association, July 2019, pp. 107–120. isbn: 978-1-939133-03-8. url:
https://www.usenix.org/conference/atc19/presentation/jangda (vis-
ited on June 5, 2022).

[16] WebAssembly compilation pipeline.url: https://v8.dev/docs/wasm-compilation-
pipeline (visited on June 5, 2022).

[17] Weihang Wang. “Empowering Web Applications with WebAssembly: Are We There
Yet?” In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 2021, pp. 1301–1305. doi: 10.1109/ASE51524.2021.9678831. (Visited on
June 9, 2022).

[18] Yutian Yan et al. “Understanding the Performance of Webassembly Applications”. In:
Proceedings of the 21st ACM Internet Measurement Conference. IMC ’21. Virtual Event: As-
sociation for Computing Machinery, 2021, 533–549. isbn: 9781450391290. doi: 10.
1145/3487552.3487827. url: https://doi.org/10.1145/3487552.3487827
(visited on June 5, 2022).

[19] Alon Zakai. Why webassembly is faster than asm.js – mozilla hacks - the web developer blog.
2017. url: https://hacks.mozilla.org/2017/03/why-webassembly-is-
faster-than-asm-js/ (visited on June 5, 2022).

[20] Understanding the JS API. url: https://webassembly.org/getting-started/
js-api/ (visited on June 5, 2022).

88

https://doi.org/10.1145/3314221.3314587
https://doi.org/10.1145/3314221.3314587
https://doi.org/10.1145/3314221.3314587
https://doi.org/10.1145/2666356.2594332
https://doi.org/10.1145/2666356.2594332
https://doi.org/10.1145/2666356.2594332
https://doi.org/10.1109/IISWC.2016.7581268
https://v8.dev/blog/trash-talk
https://v8.dev/blog/trash-talk
https://medium.com/walkme-engineering/memory-management-in-javascript-2d193c78d125
https://medium.com/walkme-engineering/memory-management-in-javascript-2d193c78d125
https://webassembly.github.io/spec/core/intro/introduction.html#scope
https://webassembly.github.io/spec/core/intro/introduction.html#scope
https://www.usenix.org/conference/atc19/presentation/jangda
https://v8.dev/docs/wasm-compilation-pipeline
https://v8.dev/docs/wasm-compilation-pipeline
https://doi.org/10.1109/ASE51524.2021.9678831
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://doi.org/10.1145/3487552.3487827
https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-than-asm-js/
https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-than-asm-js/
https://webassembly.org/getting-started/js-api/
https://webassembly.org/getting-started/js-api/

REFERENCES

[21] WebAssembly. WebAssembly ES-Module Proposal.url: https://github.com/WebAssembly/
esm - integration / tree / main / proposals / esm - integration (visited on
June 5, 2022).

[22] Niko Mäkitalo et al. “Bringing WebAssembly up to Speed with Dynamic Linking”. In:
Proceedings of the 36th Annual ACM Symposium on Applied Computing. SAC ’21. Virtual
Event, Republic of Korea: Association for Computing Machinery, 2021, 1727–1735.
isbn: 9781450381048. doi: 10.1145/3412841.3442045. url: https://doi.org/
10.1145/3412841.3442045 (visited on June 5, 2022).

[23] WebAssembly Runtime structure. url: https://webassembly.github.io/spec/
core/exec/runtime.html (visited on June 5, 2022).

[24] David Loshin. High-Performance Business Intelligence. 2013.url: https://www.sciencedirect.
com/topics/computer-science/data-parallelism (visited on June 5, 2022).

[25] WebAssembly Core Specification. https://webassembly.github.io/spec/core/download/WebAssembly.pd f .
W3C, Dec. 5, 2019. url: https://www.w3.org/TR/wasm-core-1/ (visited on
June 5, 2022).

[26] Angela Pohl et al. “An Evaluation of Current SIMD Programming Models for C++”.
In: Proceedings of the 3rd Workshop on Programming Models for SIMD/Vector Processing.
WPMVP ’16. Barcelona, Spain: Association for Computing Machinery, 2016. isbn:
9781450340601. doi: 10 . 1145 / 2870650 . 2870653. url: https : / / doi . org /
10.1145/2870650.2870653 (visited on June 5, 2022).

[27] Understanding the JS API. url: https://webassembly.org/getting-started/
js-api/ (visited on June 5, 2022).

[28] WebAssembly. GC/overview. 2021. url: https://github.com/WebAssembly/gc/
blob/main/proposals/gc/Overview.md (visited on June 5, 2022).

[29] WebAssembly. STRINGREF.url: https://github.com/WebAssembly/stringref/
blob/main/proposals/stringref/Overview.md (visited on June 5, 2022).

[30] Crate Serde. url: https://docs.serde.rs/serde/ (visited on June 5, 2022).

[31] Qiang Yang et al. “Federated Machine Learning: Concept and Applications”. In: ACM
Trans. Intell. Syst. Technol. 10.2 (2019). issn: 2157-6904. doi: 10.1145/3298981. url:
https://doi.org/10.1145/3298981 (visited on June 5, 2022).

[32] Daniel Lehmann and Michael Pradel. “Wasabi: A Framework for Dynamically Analyz-
ing WebAssembly”. In: Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ASPLOS ’19. Provi-
dence, RI, USA: Association for Computing Machinery, 2019, 1045–1058. isbn: 9781450362405.
doi: 10.1145/3297858.3304068. url: https://doi.org/10.1145/3297858.
3304068 (visited on June 9, 2022).

[33] Koushik Sen et al. “Jalangi: A Tool Framework for Concolic Testing, Selective Record-
Replay, and Dynamic Analysis of JavaScript”. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ESEC/FSE 2013. Saint Petersburg, Russia: As-
sociation for Computing Machinery, 2013, 615–618. isbn: 9781450322379. doi: 10.
1145/2491411.2494598. url: https://doi.org/10.1145/2491411.2494598
(visited on June 9, 2022).

89

https://github.com/WebAssembly/esm-integration/tree/main/proposals/esm-integration
https://github.com/WebAssembly/esm-integration/tree/main/proposals/esm-integration
https://doi.org/10.1145/3412841.3442045
https://doi.org/10.1145/3412841.3442045
https://doi.org/10.1145/3412841.3442045
https://webassembly.github.io/spec/core/exec/runtime.html
https://webassembly.github.io/spec/core/exec/runtime.html
https://www.sciencedirect.com/topics/computer-science/data-parallelism
https://www.sciencedirect.com/topics/computer-science/data-parallelism
https://www.w3.org/TR/wasm-core-1/
https://doi.org/10.1145/2870650.2870653
https://doi.org/10.1145/2870650.2870653
https://doi.org/10.1145/2870650.2870653
https://webassembly.org/getting-started/js-api/
https://webassembly.org/getting-started/js-api/
https://github.com/WebAssembly/gc/blob/main/proposals/gc/Overview.md
https://github.com/WebAssembly/gc/blob/main/proposals/gc/Overview.md
https://github.com/WebAssembly/stringref/blob/main/proposals/stringref/Overview.md
https://github.com/WebAssembly/stringref/blob/main/proposals/stringref/Overview.md
https://docs.serde.rs/serde/
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/2491411.2494598
https://doi.org/10.1145/2491411.2494598
https://doi.org/10.1145/2491411.2494598

REFERENCES

[34] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. “SoK: In Search of Lost
Time: A Review of JavaScript Timers in Browsers”. In: 2021 IEEE European Symposium
on Security and Privacy (EuroSP). 2021, pp. 472–486. doi: 10.1109/EuroSP51992.
2021.00039. (Visited on June 9, 2022).

[35] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: 2019 IEEE
Symposium on Security and Privacy (SP). 2019, pp. 1–19. doi: 10.1109/SP.2019.
00002. (Visited on June 9, 2022).

[36] Allen D Malony and Daniel A Reed. “Models for performance perturbation analysis”.
In: ACM SIGPLAN Notices 26.12 (1991), pp. 15–25. (Visited on June 9, 2022).

[37] Benjamin Lannon. Bundling a rust library to webassembly with Webpack and Wasm-Pack.
2020. url: https://lannonbr.com/blog/2020-02-17-wasm-pack-webpack-
plugin (visited on June 9, 2022).

[38] The wasm-bindgen guide. url: https : / / rustwasm . github . io / docs / wasm -
bindgen/ (visited on June 5, 2022).

[39] What is the K-nearest neighbors algorithm? url: https://www.ibm.com/topics/knn
(visited on June 5, 2022).

[40] Cliff L Biffle. Making really tiny WebAssembly graphics demos. 2019. url: http : / /
cliffle.com/blog/bare-metal-wasm/ (visited on June 5, 2022).

[41] Project nayuki. 2021. url: https://www.nayuki.io/page/qr-code-generator-
library (visited on June 5, 2022).

[42] James MacAulay. A 3D bin packing algorithm in Rust. url: https://gist.github.
com/jamesmacaulay/471759553c2530a041fdfd6d78b9e836 (visited on June 5,
2022).

[43] Lin Clark. “Calls between JavaScript and WebAssembly are finally fast”. In: Mozilla
Hacks – the Web developer blog (2018). url: https://hacks.mozilla.org/2018/
10/calls-between-javascript-and-webassembly-are-finally-fast-
\%F0\%9F\%8E\%89/ (visited on June 9, 2022).

[44] Bernd Malle et al. The Need for Speed of AI Applications: Performance Comparison of Na-
tive vs. Browser-based Algorithm Implementations. 2018. arXiv: 1802.03707 [cs.AI].
(Visited on June 5, 2022).

[45] Micha Reiser and Luc Bläser. “Accelerate JavaScript Applications by Cross-Compiling
to WebAssembly”. In: Proceedings of the 9th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages. VMIL 2017. Vancouver, BC, Canada: Asso-
ciation for Computing Machinery, 2017, 10–17. isbn: 9781450355193. doi: 10.1145/
3141871.3141873. url: https://doi.org/10.1145/3141871.3141873 (vis-
ited on June 5, 2022).

[46] Alberto Parravicini and Rene Mueller. “The Cost of Speculation: Revisiting Overheads
in the V8 JavaScript Engine”. In: 2021 IEEE International Symposium on Workload Char-
acterization (IISWC). 2021, pp. 13–23. doi: 10 . 1109 / IISWC53511 . 2021 . 00013.
(Visited on June 5, 2022).

[47] Instrument-tracing in WebAssembly. url: https : / / github . com / WebAssembly /
instrument-tracing/blob/main/proposals/instrument-tracing/Overview.
md (visited on June 5, 2022).

90

https://doi.org/10.1109/EuroSP51992.2021.00039
https://doi.org/10.1109/EuroSP51992.2021.00039
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://lannonbr.com/blog/2020-02-17-wasm-pack-webpack-plugin
https://lannonbr.com/blog/2020-02-17-wasm-pack-webpack-plugin
https://rustwasm.github.io/docs/wasm-bindgen/
https://rustwasm.github.io/docs/wasm-bindgen/
https://www.ibm.com/topics/knn
http://cliffle.com/blog/bare-metal-wasm/
http://cliffle.com/blog/bare-metal-wasm/
https://www.nayuki.io/page/qr-code-generator-library
https://www.nayuki.io/page/qr-code-generator-library
https://gist.github.com/jamesmacaulay/471759553c2530a041fdfd6d78b9e836
https://gist.github.com/jamesmacaulay/471759553c2530a041fdfd6d78b9e836
https://hacks.mozilla.org/2018/10/calls-between-javascript-and-webassembly-are-finally-fast-\%F0\%9F\%8E\%89/
https://hacks.mozilla.org/2018/10/calls-between-javascript-and-webassembly-are-finally-fast-\%F0\%9F\%8E\%89/
https://hacks.mozilla.org/2018/10/calls-between-javascript-and-webassembly-are-finally-fast-\%F0\%9F\%8E\%89/
https://arxiv.org/abs/1802.03707
https://doi.org/10.1145/3141871.3141873
https://doi.org/10.1145/3141871.3141873
https://doi.org/10.1145/3141871.3141873
https://doi.org/10.1109/IISWC53511.2021.00013
https://github.com/WebAssembly/instrument-tracing/blob/main/proposals/instrument-tracing/Overview.md
https://github.com/WebAssembly/instrument-tracing/blob/main/proposals/instrument-tracing/Overview.md
https://github.com/WebAssembly/instrument-tracing/blob/main/proposals/instrument-tracing/Overview.md

REFERENCES

[48] What is Yew?: Yew. url: https://yew.rs/ (visited on June 5, 2022).

[49] Seed framework. 2020. url: https://seed-rs.org/.

[50] Host and deploy ASP.NET Core Blazor webassembly. 2022.url: https://docs.microsoft.
com/en-us/aspnet/core/blazor/host-and-deploy/webassembly?view=
aspnetcore-6.0 (visited on June 5, 2022).

[51] Lin Clark. WebAssembly interface types: Interoperate with all the things! 2019. url: https:
//hacks.mozilla.org/2019/08/webassembly-interface-types/ (visited
on June 5, 2022).

91

https://yew.rs/
https://seed-rs.org/
https://docs.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/webassembly?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/webassembly?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/blazor/host-and-deploy/webassembly?view=aspnetcore-6.0
https://hacks.mozilla.org/2019/08/webassembly-interface-types/
https://hacks.mozilla.org/2019/08/webassembly-interface-types/

REFERENCES

92

Appendices

93

Appendix A

Interview guide

When interviewing product owners and developers, they were first asked to demo their prod-
uct. This was done in order to provide insights into the general use of their product and to get
a scope of where there could be potential bottlenecks in performance, with regards to execu-
tion time. Later followed questions that were specific to each participant’s role. Questions
to product owners and engineering managers;

• What are future goals for your product(s)? (To product owners)

• What are future goals for your team(s) and IKEA? (To engineering managers)

• Is there something that prohibits you from reaching them?

• Do you know if there are any bottlenecks in your product that can slow down the web
page for users?

For the developers the focus of the questions were more on the actual usage of algorithms,
since they are the ones closest to the code implementation. Questions to web developers

• What are common algorithms that are used in the product you are developing?

• Is there any algorithm that creates a bottleneck?

• Does the product handle a lot of data?

• If the data is handled on the server-side, is it sensitive information?

95

	Introduction
	Overview
	Problem definition
	Purpose
	Limitations
	Thesis structure

	Background
	Context
	Method
	Theoretical fundament
	Compilers
	Web programming
	Advanced programming
	Concepts of Programming Languages
	Algorithms, data structures and complexity
	Evaluation of software systems

	Analysis
	Literature Study
	JavaScript
	WebAssembly

	Interviews
	About the interviews

	Creating the benchmarking framework
	Existing solutions
	Dynamic analysis frameworks
	Browser profilers
	Summary

	Approaches to measuring execution time
	Blackbox measuring
	Runtime instrumentation

	Requirements Specification
	Lessons learned

	Toolchains used
	JavaScript toolchain
	WebAssembly toolchain

	Running the benchmarks
	Benchmarking setup
	Setup
	Input sizes
	Metrics
	Plots
	Execution setup
	Machine specifications

	Benchmarking results
	General results
	Sorting
	Mapping
	Grouping
	Filtering
	Machine learning
	Image data generation
	QR code generation
	Bin packing algorithm

	WebAssembly startup times
	Results
	Discussion

	Cross-algorithm discussion
	Recommendations
	Areas of improvement

	Discussion and related work
	Reflection on our own work and method
	Analysis and interviews
	Creating the benchmarking framework and approach to instrumentation
	Running the benchmarks

	Threats to validity
	Generalizability
	Related work
	Future work

	Conclusion
	Appendix Interview guide

