
All exercises for dat119 (dat119-0)

Revision: 1.2

Exercises marked with P (for programming) ask you to write and/or run
computer programs. The other exercises can be solved with pen and paper only.
Some of the Java programs printed in the exercises have been typographically
enhanced to increase readability. The symbol � has been used to denote Java's
equality operator ==.

Exercises marked with y have appeared in previous exams (minor details
may have changed, and several bugs are removed). Square brackets surround
the number of points that were given for di�erent parts of the exercise, summing
to 10. These values do not necessarily reect the diÆculty of the question.

1. An ad hoc algorithm for shortest (simple) path might start at the source,
and at each vertex choose the shortest outgoing edge from which the sink can
be reached without touching the already constructed path.

a) Construct an instance where the ad hoc algorithm above �nds the shortest
path. Construct an instance where the same algorithm happens to �nd the
longest path.

b) What happens if we delete the part in italics from the above algorithm? Is
the new algorithm guaranteed to �nd a solution? If yes, prove this, if not,
construct an instance where it doesn't.

2. Exhibit an optimisation problem for which F is in�nite.

3. Consider the following de�nition:

A maximisation problem is a pair (F; c), where F is any set, the
domain of feasible points; c is the cost function, a mapping

c : F ! R:

The problem is to �nd an f 2 F for which

c(f) � c(y) for all y 2 F :

Formulate such a maximisation problem (F; c) as a minimisation problem ac-
cording to De�nition 1.1 in [PS]. What is the value of the optimal solution?

4. Formulate the following as an optimisation problem instance, giving the
domain of feasible functions F and the cost function c:

� Find the longest path between two nodes in a graph with edge weights
representing distance.

5. We will cast sorting as an optimisation problem. Recall that the input to
the sorting problem consists of n integers k1; : : : ; kn, for simplicity we assume
that they are all distinct. The problem is to �nd a reordering of the indices
s1; : : : ; sn such that ks1 > ks2 > � � � > ksn (note that we want to sort into
decreasing order, this makes things slightly simpler).

1

a) Formulate the sorting problem as an optimisation problem, i.e., de�ne the
set F of feasible solutions and a cost function c.

The 2-change neighbourhood N2 of a sequence s = hs1; : : : ; sni is de�ned as the
set of sequences that di�er from the original sequence on only 2 adjacent points.
More precisely, if t 2 N2(s) then there is a position i such that si = ti+1 and
si+1 = ti; on all other positions, s and t agree.

b) As an answer to the �rst question, Professor X| proposes the cost function
given by

c(s) =
��f i j ksi < ksi+1 g

��

Show that for this cost function, N2 is not exact.

c) Propose a di�erent cost function and show that N2 is exact for it.

Thus the 2-opt algorithm in Example 1.8 of [PS] �nds an optimal solution (read
`sequence' for `tour'). In other words, it is a sorting algorithm.

d) What is the running time of this sorting algorithm? And by what name is
it commonly known?

Your answers should be short and completely formal.

6. P Write a class for minimum spanning forests. Recall that the greedy algo-
rithm for this problem behaves as follows:

for all edges e f insert e into a priority queue g
while the queue is not empty

f e:= shortest edge in the queue
if e does not induce a cycle in F
insert e into F .

g

Your solution should extend the skeleton in Fig. 1. Run the program with

java MSF miles 128

the resulting forest should have size 16598 (the size is written in the �rst line of
output).

7.P Implement the cheapest insertion heuristic for TSP on a complete graph.
The heuristic extends a path node by node until the path is a Hamiltonian cycle.
At each stage, the next node to be inserted is the one closest to the path's head.

You must implement a method

public static Path cheapestInsertion(Graph G, Vertex w)

that constructs such a path, starting from vertex w.
Report the shortest path you can �nd in Miles(128), iterating over all start

vertices.

8.P Write a method that �nds a 1-tree lower bound on the TSP. Given a com-
plete graph G = (V;E) a 1-tree based on v 2 V is a spanning tree on the node
set V n fvg together with two edges incident on v. You must implement the
static method

2

import lu.cs.co.graph.*;
import lu.cs.co.util.PriorityQueue;
class MSF extends Forest
f
MSF(Graph G)
f super(G);
PriorityQueue Q= new PriorityQueue(G:m);
// Your code goes here!

g
public static void main(String[] args)
f Graph G= Graph:parseGraph(args);
MSF F= new MSF(G);
System:out:println(F);
new Viewer(F);

g
g

Figure 1: Code skeleton for ex. 6. The main method reads in a graph G from the
command line, calculates a minimum spanning forest F , writes it to standard
output, and starts a Viewer (from lu.cs.co.graph) to show F on screen.

public static int oneTreeBound(Graph G, Vertex v)

that returns the length of the cheapest 1-tree based on v { you may assume that
v's degree is at least 2. Also, implement the method

public static int oneTreeBound(Graph G)

�nds the best 1-tree bound by iterating over all v. (See [PS, Example 18.4] for
background and references on 1-trees).

9.P Extend the local search algorithm from Ex. 22 to start with a cheapest
insertion tour from Ex. 7.

10.P Perform a well-documented, small scale experiment on the upper and lower
bound heuristics constructed in Ex. 8 and 9. You should at least run them on
a number of instances of di�erent sizes (graphs with 10, 20, 30, : : : , nodes) and
present the resulting bounds as a table or curve.

11.P Write an algorithm to �nd a TSP tour in the graph constructed by Miles()
in lu.cs.co.graph. Your answer must consist of

1. the length of your tour

2. a string describing this tour, this string must pass the certi�cate checking
algorithm you wrote for Ex. 34.

3. your answer to Ex. 34.

4. a brief description of how you found the tour.

Otherwise there are no rules|you may use any programming language and any
algorithm you want, or solve the problem by hand.

12. P Write a class TSP with a static method

3

public static Path byTotalEnumeration(Graph G)

that �nds a travelling salesman tour in G by trying all possible Hamiltonian
cycles in G.

13.P Extend the class TSP from Ex. 12 with a static method

public static Path byBranchAndBound(Graph G)

that �nds a travelling salesman tour in G by branch-and-bound (see [PS, Fig-
ure 18-5] for a code skeleton). How much larger instances can you solve than
with total enumeration?

Comments:

1. for a good initial solution and upper bound take the tour constructed in
Ex. 7.

2. for a good lower bound modify Ex. 8 to calculate the size of the cheapest
1-tree including a given path (see [PS, Example 18.4]).

14. A manufacturer uses resources of material (m) and labour (l) to make up
to four possible items (a to d). The requirements for these, and the resulting
pro�ts are given by the following table:
item resources needed pro�t
a 4m+ 2l $5
b m+ 5l $8
c 2m+ l $3
d 2m+ 3l $4
There are available up to 30 units of material and 50 units of labour per

day. Assuming that theses resources are fully used and neglecting integrality
constraints,

a) express the problem of �nding a manufacturing schedule for maximum pro�t
as an LP problem in standard form,

b) show that the policy of manufacturing only the two highest pro�t items
yields a bfs which is not optimal

c) evaluate the schedule in which equal amounts of each item are manufactured

d) �nd the optimal schedule

Source: [1].

15. Consider the linear program

minimise �4x1�2x2�2x3
subject to 3x1 +x2 +x3 = 12

x1 �x2 +x3= �8
x � 0:

Verify that the choice B(1) = 1; B(2) = 2 gives a bfs, and hence solve the
problem. Source: [1].

4

16. Consider the LP problem from the last exercise and replace the cost function
by

�4x1 � 2x3:

Show that the basic feasible solutions derived from the basis B(1) = 1; B(2) = 2
and fromB(1) = 2; B(2) = 3 are both optimal, and that any convex combination
of these solutions is also a feasible solution. Source: [1].

17. Sketch the set of feasible solutions of the following inequalities:

x1 + 2x2 � 4
�x1 + x2 � 1
x1 + x2 � 3

x � 0:

At which points of this set does the function x1 � 2x2 take (a) its maximum
and (b) its minimum value? Source: [1].

18. Consider the problem

maximise x2
subject to 2x1 + 3x2 � 9

jx1 � 2j � 1
x � 0:

a) Solve the problem graphically.

b) Formulate the problem as an LP problem in standard form.

Source: [1].

19. Use the tableau form of the simplex method to solve the LP problem

minimise 5x1 � 8x2 � 3x3
subject to 2x1 + 5x2 � x3 � 1

�3x1 � 8x2 + 2x3 � 4
�2x1 � 12x2 + 3x3 � 9

x � 0

after reducing it to standard form. Source: [1].

20. y Let � be a rational number and consider the following linear programme:

min �x1 � x2
x1 + 2x2 � 4;
6x1 + 2x2 � 9;
x1; x2 � 0:

a) [1] Write the above linear programme in standard form by introducing slack vari-
ables.

b) [2] Write the programme as a tableau and use the tableau to �nd the basic feasible
solution corresponding to the basis given by columns 1 and 2. (Hint: the correct
answer is (1; 3

2
).)

5

c) [4] Assume � = �1. Use the simplex method to decide if the basic feasible solution
from Question b is optimal.

d) [3] Prove that for all values of � in the range �3 < � < � 1

2
the optimum for our

linear programme is achieved at the same point.

Source: [1].

21. y Consider the following linear programme:

max x1 + 2x2 + 3x3 + 4x4
x1 + x2 + x3 + x4 = 1;
x1 + 2x3 � x4 = 1

2 ;
x1 ; x2 ; x3 ; x4 � 0:

a) [1] Formulate the above programme as an equivalent minimisation problem.

b) [1] Write the minimisation problem on tableau form.

There are 6 basic solutions to the above problem, corresponding to the 6
choices of basis fA1; A2g, fA1; A3g, fA1; A4g, fA2; A3g, fA2; A4g, and fA3; A4g,
where as usual Ai denotes the programme's ith column. Some friendly person
has already constructed the tableaux corresponding to 5 of these bases:

basis fA1; A2g :

3

2
0 0 �3 �1

1

2
0 1 �1 2

1

2
1 0 2 �1

basis fA1; A3g :

0 0 �3 0 7

� 1

2
0 �1 1 �2

3

2
1 2 0 3

basis fA1; A4g :

7

4
0 1

2
� 7

2
0

1

4
0 1

2
� 1

2
1

3

4
1 1

2

3

2
0

basis fA2; A3g :

9

4

3

2
0 0 � 5

2

3

4

1

2
1 0 3

2

1

4

1

2
0 1 � 1

2

basis fA2; A4g :

1 1 0 5 0

3

2
2 1 3 0

� 1

2
�1 0 �2 1

c) [2] Construct the tableau corresponding to the remaining basis fA3; A4g.

d) [1] List all basic solutions to the problem. Which of these are feasible?

e) [3] From basis fA1; A2g, on which elements can the simplex algorithm pivot? What
are the corresponding new bases after a single pivot?

The basic feasible solutions de�ne a digraph as follows: The vertices are the
basic feasible solutions. There is an arc (i.e., a directed edge) from a bfs x to
another bfs x0 if the simplex algorithm can pivot from x to x0. (This is the same
graph as the neighbourhood graph described in [PS. p. 62].)

f) [2] Draw this graph for our example programme. What is the worst case number
of pivot operations the simplex algorithm can execute for our programme before
it �nds the optimum?

6

Q:= P := some Hamiltonian cycle
do
for 1 � i 6= j � n do

exchange the ith and jth vertex in P
if P was improved then Q:= P .clone()
else change the vertices back

while there was an improvement
return Q

Figure 2: A local search algorithm for TSP

22.P Write a 2-OPT algorithm for the Traveling Salesman problem similar to
the algorithm sketched in Example 1.8 of [PS].

You should use the neighbourhood de�ned as follows. The set of feasible
solutions F is the set of Hamiltonian cycles in the graph (recall that a simple
path is a Hamiltonian cycle it is closed and contains all vertices exactly once).
If P is in F then the neighbours of P are given by N2(P) = fP 0 : P 0 2 F
and P 0 is obtained by exchanging two vertices on the cycle g. The Path class of
lu.cs.co.graph contains an exchange method that does exactly that.

Test your algorithm on the graph constructed by `Miles(i)'. What is the
shortest TSP you can �nd?

Comments:

1. You have to construct an initial element in F (that is, a Hamiltonian
cycle) to begin with, the constructor

Path(Graph G, int[], boolean)

in lu.cs.co.graph probably is the quickest way to do this.

2. There is no need to follow the pseudocode in Example 1.8. Especially, you
may not want to write an improve procedure as suggested there. Figure 2
contains is a more eÆcient alternative and is easier to code.

3. While the algorithm is running, you can watch what happens. Construct a
new Viewer based on Q. Whenever Q is improved you update the Viewer
by calling its setSubgraph method with the new Q.

23. y The minimum graph bisection problem (MGB) is given a graph G = (V;E)
to �nd a partition of V into two equal sized sets A;B with A[B = V , A\B = ;,
and jAj = jBj such that the number of edges betweenA and B (so-called crossing
edges) is minimised.

In this exercise, we will write a partition as a list of length jV j of letters `A'
and `B'. The list [A,B,A,B] means that the �rst and third vertex of V are in A,
while the second and fourth vertex are in B. In the example graph

/.-,()*+1 /.-,()*+2
/.-,()*+3 /.-,()*+4

??
?

;

the number of crossing edges in the partition [A,B,A,B] is 3.

7

a) [2] List all feasible solutions to MGB for the above graph and �nd the optimal
solution.

The 2-exchange neighbourhood N2 for MGB is given as follows: The neigh-
bours of a partition (A;B) are constructed by moving one node from A to B
and moving one node from B to A. More formally, (A0; B0) is a neighbour of
(A;B) if and only if there exist a 2 A and b 2 B such that

A0 = A [fbg n fag; B0 = B [fag n fbg:

b) [4] Write a local search algorithm for MGB that �nds a local optimum with respect
to N2. The algorithm takes as input a graph and returns an array of characters
`A' and `B' describing a partition as de�ned above. (Your algorithm does not have
to be eÆcient.)

c) [4] Prove that N2 is not exact.

24. y The bin packing problem is de�ned as follows: We are given n objects of
size s1; : : : ; sn, the sizes satisfy 0 < si < 1. The object is to pack these objects
into as few bins as possible, each bin can hold a number of object whose total
size is at most 1.

More formally, the problem is to minimise k such that s1; : : : ; sn can be
partitioned into k sets B1; : : : ; Bk such that

X
si2Bj

si � 1

for all 1 � j � k. We will use size(Bj) to denote the left hand side of the above
expression.

For example, consider 5 objects 1 2 3 4 5 whose sizes are

s1 =
1
4 ; s2 =

1
2 ; s3 =

1
4 ; s4 =

1
2 ; s5 =

2
5 :

The following partition packs them into 4 bins:

B1 = fs1; s2g; B2 = fs3g; B3 = fs4g; B4 = fs5g; or
1

2

3
4 5

:

A better partition of the same elements, using only 3 bins, is given by

B1 = fs1; s2g; B2 = fs3; s4g; B3 = fs5g; or
1

2

3

4

5

:

Finally, an infeasible partition is given by

B1 = fs1; s2g; B2 = fs3; s4; s5g; or
1

2

3

4

5

;

which is small but illegal, since size(B2) =
1
4 +

1
2 +

2
5 > 1.

a) [1] Find an optimal bin packing for the above example.

b) [1] Describe (briey) an algorithm that always �nds an optimal solution and state
its running time. (Your algorithm need not be eÆcient).

8

In this exercise we consider local search algorithms for bin packing. To �x
some notation, we assume that our programming language supports operations
on sets like

adding an element: Bj := Bj [fsig adds element si to set Bj ,

removing an element: Bj := Bj n fsig removes element si from set Bj (if it
exists),

membership: si 2 Bj returns true if element si is in set Bj ,

cardinality: jBj j returns the number of elements of Bj .

total size: size(Bj) returns the total size of all elements in Bj ,

iteration: for si 2 Bj do runs through all elements in Bj in some order.

Consider the following scheme for local search:

1 [B1; : : : ; Bk]:= hsome initial partitioni;
2 while improve([B1; : : : ; Bk]) 6= null do
3 [B1; : : : ; Bk]:= improve([B1; : : : ; Bk]);
4 [A1; : : : ; Ar]:= [B1; : : : ; Bk] without the empty bins;
5 return [A1; : : : ; Ar];

(We are not very precise about how to implement the 4th line, which can be
done using standard list operations in time O(k).)

The idea is that improve produces a partition with more empty bins than
its input by moving a single element from one bucket to another. For example
we can improve

[f 14 ;
1
2g; f

1
4g; f

1
2g; f

1
2g] to [f 14 ;

1
2g; f

1
4 ;

1
2g; ;; f

1
2g]

by moving an element from the 3rd to the 2nd bucket, emptying the 3rd bucket.
In local search terminology, the cost of a partition is given by the number of
nonempty bins

c([B1; : : : ; Bk]) = jfBi 6= ; gj

and the neighbourhood N1 of [B1; : : : ; Bk] consists of all partitions of the form

[B1; : : : ; Bi [fsg; : : : ; Bj n fsg; : : : ; Bk]:

for some element s and bins Bi and Bj (1 � i � k and 1 � j � k).

c) [1] Complete line 1 of the above code by presenting a feasible initial partition.

d) [3] Write, in pseudocode, an algorithm for the function improve with respect to c
and N1 given above. State the running time.

e) [2] Is N1 exact? If yes, give a proof, if no, give a counterexample.

f) [2] Present a di�erent cost function than c. Your cost function should lead to the
optimum from partitions like [f 3

4
g; f 3

4
g; f 3

4
g; f 1

4
; 1
4
; 1
4
g], or generally

�n
n� 1

n

o
; : : : ;

n
n� 1

n

o
;
n 1
n
; : : : ;

1

n

o�
:

9

25. y
A colouring of the vertices of a graph is feasible if no two adjacent nodes have

the same colour. Consider for example a graph and two di�erent colourings, �
and �0:

 '!&"%#$ '!&"%#$

 '!&"%#$ '!&"%#$

12

3

������
4

�(1) = blue
�(2) = red
�(3) = blue
�(4) = yellow

�0(1) = blue
�0(2) = yellow
�0(3) = red
�0(4) = yellow

The colouring � is infeasible, since Vertex 1 and Vertex 3 are adjacent and both
blue. The colouring �0 is feasible and uses 3 colours.

We will view a colouring as a function

� : V ! Ck

where Ck is a set of k colours. In the example, both colourings � and �0 have
k = 3 and Ck = fblue; red; yellowg.

The vertex colouring problem is to assign a minimal number of colours to
the vertices of a graph so that the resulting colouring is feasible:

Vertex colouring (evaluation)
Instance: An undirected graph G = (V;E), jV j = n.

Question: Minimise k such that there exists set Ck of size k
and a mapping � : V ! Ck such that

�(i) 6= �(j) for all [i; j] 2 E:

a) [1] Solve the vertex colouring problem for the 5- and 6-cycle, i.e., the graphs

�
�HHH

�vv
v

�
))
)

�
���

and �
�111�

�

�
11
1

�

and describe a minimal feasible colouring for each.

b) [1] Describe a linear time algorithm that �nds a feasible colouring for any graph
using n colours.

c) [1] Describe a graph that does not admit a feasible colouring with fewer than n

colours.

We now de�ne a neighbourhood N of a colouring. Two colourings are neigh-
bours if they assign the same colour to every vertex except for possibly one.
Formally, �0 2 N(�) if

��fv 2 V j �(v) 6= �0(v)g
�� � 1:

The cost of a colouring is the number of colours it uses,

c(�) =

����
[
v2V

�(v)

����:

d) [3] Write a local search algorithm for vertex colouring with respect to N and c.
(Your algorithm does not need to be eÆcient nor does it have to �nd the optimal
solution.)

10

e) [4] Is N exact? If yes, give a proof, if no, give a counterexample.

26. y This exercise studies the combinatorial optimisation problem de�ned in
Exercise 25, the vertex colouring problem.

The idea behind the greedy algorithm for vertex colouring is to colour the
vertices one by one, using a new colour whenever necessary:

for (i= 1; i � n; i= i+ 1)
f �(vi)= hcolour with lowest number that is not used by any neighbour of vii g

For example, if the colours are `colour 1,' `colour 2,' and so forth, then the
graph

 '!&"%#$ '!&"%#$

 '!&"%#$ '!&"%#$

12

3

�����
4

is coloured

�(1) = colour 1
�(2) = colour 2
�(3) = colour 3
�(4) = colour 2

;

which happens to be optimal.

a) [1] For which of the following graph does the greedy algorithm �nd an optimal
colouring:

 '!&"%#$

 '!&"%#$

 '!&"%#$

11111

1

2 3

1 '!&"%#$ '!&"%#$

 '!&"%#$

11

 '!&"%#$11
 '!&"%#$

 '!&"%#$
11

 '!&"%#$
11

2

34

5

6 7

 '!&"%#$

 '!&"%#$11
 '!&"%#$

 '!&"%#$

 '!&"%#$
11

 '!&"%#$

1

23

4

5 6

b) [2] Consider the bipartite graph Gn = (V;E) with jV j = n even given by

E = f [i; j] j i 6= j � 1; i = 1; 3; : : : ; n� 1; j = 2; 4; : : : n g

For example, G8 looks like this:

'&%$!"#1 '&%$!"#3 '&%$!"#5 '&%$!"#7

'&%$!"#2
��
��
�

ooo
ooo

ooo

jjjj
jjjj

jjjj
jj

'&%$!"#4
??

??
?

��
��
�

ooo
ooo

ooo

'&%$!"#6
OOO

OOO
OOO

??
??

?

��
��
�

'&%$!"#8
TTTT

TTTT
TTTT

TT

OOO
OOO

OOO

??
??

?

What is the size of the smallest feasible colouring for Gn?

c) [2] What is the size of the colouring for Gn found by the greedy algorithm?

d) [5] Show that the greedy algorithm is not an 1

5
n-approximation algorithm for vertex

colouring.

27. y This exercise studies the combinatorial optimisation problem de�ned in
Exercise 24, the bin packing problem.

A simple algorithm for the bin packing problem is given below, known as
the �rst-�t heuristic. The idea is to take each object in turn and place it into
the �rst bin that can accommodate it, using a new bin whenever necessary.

k=1
for i = 1 to n

f packed= false;
for j = 1 to k

11

if size(Bj)+si � 1 then f Bj= Bj [fsig; packed= true; g
if not packed then f k = k + 1; Bk = fsig; g

g
return B1; : : : ; Bk;

a) [1] Does the �rst-�t heuristic always �nd an optimal solution?

b) [2] What is the worst-case running time of �rst-�t?

We will now analyse the behaviour of �rst-�t as an approximation algorithm.
We say that the jth bin is less than half full if size(Bj)<

1
2 .

c) [2] How many bins are left less than half full by �rst �t in the worst case? Give
an example of this.

d) [2] Show that �rst-�t uses no more than d2te bins, where

t = s1 + � � �+ sn

denotes the total size of the inputs. (Hint : Use Question c)

e) [3] Using Question d, show that the approximation ratio of �rst-�t is 1. (Hint :
Can any algorithm use fewer than dte bins?)

Source: [2]

28. Recall that an s�t Hamiltonian path in G is a path from s to t that includes
every vertex of G exactly once. Let P be a path starting in s. Suggest an easily
computed lower bound on the length of the shortest s � t Hamiltonian path
extending P . Hint : a Hamiltonian path is a spanning tree.

29.P Write a branch-and-bound algorithm for �nding the shortest Hamiltonian
path between two nodes in a complete graph.

Comments:

1. You should extend the class lu.cs.co.util.BranchAndBoundSkeleton, which
implements the basic algorithm in [PS, Figure 18-5].

2. Study the example code in lu/cs/co/demo, which �nds a shortest path as
in [PS, Example 18.2]. You have to change the methods isCompleteSolu-
tion and bound.

3. For a lower bound on the length of the shortest Hamiltonian path extend-
ing a given path see Ex. 28.

4. Don't expect miracles from this nave exercise|your algorithm is probably
very, very ineÆcient. Run it on Miles(n) for moderate values of n.

How many spanning trees (as a function of the input size) are computed
before your algorithm �nds the �rst complete solution?

30. y Consider a class Path whose members P support the following methods:

clone() return a copy of P of class Path,

insert(e) extend P with the edge e,

12

head() return the last node on P ,

len() return the total length of the edges in P ,

card() return the number of nodes on P ,

contains(u) return `true' if and only if vertex u is on P .

The constructor new Path(u) yields a new path consisting only of the vertex u
We also consider a class PriorityQueue supporting:

insert(P) insert the path P ,

deleteMin() return the shortest path in the queue and remove it from the queue.

We let N(u) denote the nodes incident to u in E, i.e.,

N(u) = f v 2 V j [u; v] 2 E g:

The algorithm below �nds a Hamiltonian path from vertex s to vertex t in
a graph with n vertices.

1 PriorityQueue Q= new PriorityQueue();
2 Q.insert(new Path(s));
3 while (Q 6= ;) f Path P= Q.deleteMin();
4 Vertex u= P .head();
5 if (u = t ^ P:card() = n)
6 f print(P);
7 stop;
8 g
9 elseif (u 6= t ^ P:card() 6= n)
10 for (v 2 N(u))
11 if (!P .contains(v))
12 Q.insert(P .clone().insert([u; v]));
13 g

Consider the following example graph:

/.-,()*+a /.-,()*+b
/.-,()*+s /.-,()*+t

/.-,()*+c

1 ���

9 OOO
OOO

2

4
//
//
//

4

��
��
��

1??
?

5

oooooo

The order in which nodes are visited by the above algorithm is given by the
following search tree:

/.-,()*+t 12

/.-,()*+c7 /.-,()*+t
4

/.-,()*+b
9

/.-,()*+t 10

/.-,()*+b3 /.-,()*+c5

/.-,()*+a1 /.-,()*+c 9

/.-,()*+s 0

��
� //
/

//
/

��
�

??
??

��
��

JJJ
JJJ

ttt
ttt

Next to each node, we state the total length of the path corresponding to that
node.

13

a) [2] Modify the above algorithm such that it �nds the shortest Hamiltonian path.
(Your algorithm does not have to be eÆcient.)

b) [1] Draw the search tree corresponding to your algorithm.

We now restrict our attention to graphs without negative edge lengths (like
the example graph above). In that case, the total length of an intermediate
solution can never decrease by inserting more edges. Thus an intermediate
solution like /.-,()*+s /.-,()*+c /.-,()*+a (of length 13) need not be extended, if we already have
found a shorter, complete solution.

c) [5] Modify the above algorithm so that it uses branch-and-bound and present the
resulting search tree for the example graph.

d) [2] Show that the nonnegativity assumption is necessary by presenting a graph
with negative weights where your algorithm fails.

31. A subset of vertices C � V of a graph G = (V;E) is a clique if it is totally
connected, i.e., [u; v] 2 E for all u; v 2 C. Consider the following problem:

Maximum clique (evaluation)
Instance: An undirected graph G = (V;E),

Question: Find the size of the largest subset of nodes C � V
such that [u; v] 2 E for all u; v 2 C.

In this exercise we will refer the following example graph:

 '!&"%#$

 '!&"%#$MMM
MM

 '!&"%#$
qqq

qq

7

6

5 4 '!&"%#$

 '!&"%#$

 '!&"%#$qq '!&"%#$MM

3

2 1
QQQ

The following algorithm for the clique problem simply constructs all subsets
of V , starting with the one-element sets fv1g; fv2g; : : : ; fvng (which are cliques
of size 1) and adding vertices if possible. We use a stack S to keep track of all
the subsets:

S= ;;
max= 0;
for (v 2 V) f S:push(fvg); g
while (S 6= ;) f U= S:pop;

if (U:size > max) f max= U:size; g
for (v 2 V � U)
f if hv is connected to all vertices in Ui
f S:push(U [fvg); g

g
g

return max

14

When we run this algorithm on the example graph, the search tree describing
the evolution of S looks like this after a while:

;

f1g
jjjj

jjjj
j

f2g
ooo

oo

f3g
��
f4g f5g

??

f6g
OOO

OO

f7g
WWWWW

WWWWW
WW

f5;7g

��
f6;7g

??

f5;6;7g

a) [1] What is the size of the largest clique in the example graph?

b) [2] Finish the search tree describing the evolution of S.

c) [2] Let Æ(v) denote the degree (number of neighbours) of a vertex. Show that if
vertex v belongs to a clique C then jCj � Æ(v) + 1.

d) [4] Modify the above algorithm into a branch-and-bound algorithm using the lower
bound from the last question.

e) [1] Draw the entire search tree corresponding to your branch-and-bound algorithm.

32. Draw the entire tree of partial solutions enumerated by a total enumeration
algorithm (say, the one in lu.cs.co.demo.TotalEnumeration) on the instance in
[PS, Fig. 18{6(a)]. In general, give an upper bound on the size of such a tree
for a graph with n nodes.

33. Let P be a path in a directed graph G = (V;E) (recall that a path is a
sequence of vertices (P1; : : : ; Pk) such that (Pi; Pi+1) 2 E and no vertex appears
twice). We write e 2 P if edge e belongs to P in the sense that for e = (Pi; Pi+1)
for some i. Let len(P) denote the length of path P , i.e.,

len(P) =
X
e2P

len(e);

where len(e) denotes the length of edge e.
We will consider paths from s 2 V to t 2 V . Let P = (P1; : : : ; Pk) be

a path starting in s but not necessarily ending in t. Let S denote the set of
paths P 0 that extend P to reach t, i.e., if P 0 = (P 0

1; : : : ; P
0
r) we have Pi = P 0

i for
i = 1; : : : ; k and P 0

r = t.
We now derive an upper bound on the length of every path extending P :

for all P 0 2 S: len(P 0) � len(P) +
X
e2E0

len(e);

where

E0 = f (u; v) 2 E j u 6= t; u 6= Pi; v 6= Pi; (i = 1; : : : ; k � 1) g:

Give a completely formal proof of this fact.

34.PWrite a certi�cate checking algorithm for TSP. Your algorithm must consist
of a static method

public static boolean checkTSP(Graph G, String S, int l)

15

that checks if

1. the string S describes a Hamiltonian cycle in G

2. its total length is no larger than l.

You have to decide how your algorithm expects the cycle to be encoded. For
example if

G = 0 '!&"%#$ '!&"%#$

 '!&"%#$

111

 '!&"%#$111
 '!&"%#$

 '!&"%#$
11

1

 '!&"%#$
11

1

1

23

4

5 6

then a Hamiltonian cycle could be encoded by

S = "v4 v3 v2 v0 v1 v6 v5"

or by

S = "[4,3], [3,2], [2,0], [0,1], [1,6], [6,5], [5,4]"

Your answer must include

1. the implementation of the above method

2. a detailed description of the encoding expected by your algorithm

3. documentation for a number of tests

4. analysis of the running time of your algorithm.

The aim of this exercise is to identify and implement all the necessary checks
yourself. For that reason you can not use the lu.cs.co.graph.Path class or the
methods therein.

35.P Write certi�cate checking algorithms for one or both of the following prob-
lems:

Clique Given a graph G and an integer l, does G have an l-clique [see PS,
Example 15.5]? Your algorithm must contain a static method

public static boolean checkClique(Graph G, String S, int l)

such that there is an input S for which the method returns true if and
only if there is a k-clique in G.

Evenclique Given a graph G, is the largest clique of G of even size? Your
algorithm must contain a static method

public static boolean evenClique(Graph G, String S)

such that there is an input S for which the method returns true if and
only if the largest clique in G has even size.

36. None, some, or all of the following problems are in NP. Decide which.

16

1. Given a complete graph G with weighted edges and an integer B. Does
G have a path from node 1 to node 2 of length less than B?

2. Given a complete graph G with weighted edges and an integer B. Does
G have a spanning tree total length less than B?

3. Given a complete graph G with weighted edges and an integer B. Does
G have a Hamiltonian path from node 1 to node 2 of length less than B?

4. Given a complete graph G with weighted edges and an integer B. Does
G have a Hamiltonian cycle (a TSP tour) of total length less than B?

5. Given a complete graph G with weighted edges and an integer B. Does
G have two di�erent Hamiltonian cycles of total length less than B?

6. Given a complete graph G with weighted edges and an integer B. Is the
number of Hamiltonian cycles of total length less than B in G even?

7. Given a complete graph G with weighted edges and an integer B. Do all
Hamiltonian cycles in G have total length less than B?

8. Given two complete graphs G1; G2 on the same set of nodes with weighted
edges and an integer B. Do G1 and G2 have a common Hamiltonian cycle
whose length is less than B in both graphs?

9. Given two complete graphs G1; G2 on the same set of nodes with weighted
edges and an integer B. Do all Hamiltonian cycles whose length is less
than B in G1 also have length less than B in G2?

37. Repeat the last exercise for P (the class of problems solvable in polynomial
time) and EXP (the class of problems solvable in exponential time)

38. A colouring with k colours of a graph G = (V;E) is a mapping:

� : V ! 1; 2; : : : ; k

such that [u; v] 2 E implies �(u) 6= �(v).
The graph colouring problem is: given a graph, what is the smallest number

of colours needed to colour it.

1. What is the smallest number of colours needed to colour the following
graphs:

/.-,()*+1 /.-,()*+2

/.-,()*+3
��
//

Same question for a complete graph? A bipartite graph? A cycle?

2. Assume the graph G is encoded in the alphabet

� = f0; 1; : : : ; 9; [;]; ,g;

by listing the number of nodes followed by a list of edge pairs. For example,
the above graph is represented by \3,[1,3],[2,3]". Suggest an encoding
for a colouring �.

17

3. Sketch an algorithm that solves the graph colouring problem (your algo-
rithm may take exponential time).

4. Formulate the recognition version of the graph colouring problem.

5. Show that graph colouring is in NP by constructing a certi�cate checking
algorithm for it.

39. y This exercise studies the combinatorial optimisation problem de�ned in
Exercise 25, the vertex colouring problem.

a) [2] Formulate the recognition version of the vertex colouring problem.

b) [4] Show that the recognition version of vertex colouring is in NP by presenting
a certi�cate checking algorithm for it. Be precise about what the inputs to the
algorithm are, how the certi�cate is encoded, and what its length is. State the
algorithm's running time.

Consider the 3-colouring problem:

Three-colouring
Instance: An undirected graph G = (V;E).

Question: Does G admit a feasible colouring with only three
colours?

c) [4] Show that the recognition version of vertex colouring is NP-complete. You may
use the fact that three-colouring is known to be NP-complete. Be precise about
what the inputs to your algorithm are.

40. Translate into Swedish the newspaper article presented in [PS] Exercise
15.19. Remove all errors and clarify all misunderstandings.

41. At the nearest beach, a computer scientist and a biologist are asked to
light a �re using wet drift-wood. The available tools are (i) a bucket, (ii) a
red herring and (iii) some matches. After a while, both succeed (the computer
scientist �nishes last, having examined all tools in order). In the next round,
the task again is to light a �re, but this time using dry branches from the nearby
forest. What happens?

42. Is there a winning strategy for the game of Noughts and Crosses (Three in
a Row)? How would you prove such a claim?

43. Nine cards 1 , 2 , up to 9 are placed face-up on the table. Alice and
Bob take turns picking cards. The winner is the player who can form the sum
15 with exactly three of his or her cards. For example, if Alice holds 1 5

6 and 9 she wins because 1+5+9=15.
Is there a winning strategy for this game?

44. The longest path problem is: given a graphG = (V;E) and a distance matrix
D where dij denotes the length of edge [i; j] 2 E, and two nodes s; t 2 V , �nd
the longest (simple) path from s to t in G. Formulate the recognition version of
this problem and show that it is NP-complete. (Hint: use Corollary 1 on p. 370
in [PS].)

18

45. y Two graphs G1 = (V;E1) and G2 = (V;E2) on the same set of nodes are
isomorphic if there exists a permutation � on V such that

E2 =
[

[u;v]2E1

f [�(u); �(v)] g:

In other words G1 is the same as G2 up to a renumbering of the nodes.
In this exercise we will write a permutation as a list of jV j numbers. For

example, the list [4; 1; 2; 3] stands for the permutation given by the following
table:

u 1 2 3 4
�(u) 4 1 2 3

The two graphs

/.-,()*+1 /.-,()*+2
/.-,()*+3

��
�
/.-,()*+4

and
/.-,()*+1 /.-,()*+2
/.-,()*+3

��
�
/.-,()*+4
??

?

are isomorphic because of the permutation [4; 1; 2; 3].
The graph isomorphism (GI) problem is, given two graphsG1 and G2 answer

`yes' if and only if G1 is isomorphic to G2.

a) [2] Draw two graphs with 4 vertices and 4 edges that are not isomorphic.

b) [4] Show that GI is in NP by writing a certi�cate checking algorithm for it. Be
precise about what the inputs to the algorithm are, and state its running time.

The subgraph isomorphism problem is, given two graphs G1 and G2 answer
`yes' if and only if G1 is isomorphic to some subgraph of G2. For example, given

/.-,()*+1 /.-,()*+2
/.-,()*+3

��
�
/.-,()*+4

and
/.-,()*+1 /.-,()*+2
/.-,()*+3

��
�
/.-,()*+4
??

?
;

the answer is `yes' because the left graph is isomorphic to a subgraph of the
right (delete [1; 3] and [3; 4] from the right graph).

c) [4] Prove that subgraph isomorphism is NP-complete. Hint: Use the fact that the
Hamiltonian path problem is NP-complete.

46. y This exercise studies the combinatorial optimisation problem de�ned in
Exercise 24, the bin packing problem.

In this exercise we consider the recognition version of bin packing: Given n
objects of size s1; : : : ; sn and an integer k, do the objects �t into k bins?

a) [4] Show that the recognition version of bin packing is in NP by presenting a
certi�cate checking algorithm for it. Be precise about what the inputs to the
algorithm are, how the certi�cate is encoded, and what its length is. State the
algorithm's running time.

The partition problem is de�ned as follows: given a set X = fx1; : : : ; xng of
positive integers, is there a subset S � X that adds up to exactly half the total
sum? For example, if the set is

X = f1; 3; 5; 6; 7; 10g

then the answer is `yes' because we can take S = f1; 3; 5; 7g, which sums to 16.

19

b) [1] What is the answer to the partition problem for X = f3; 4; 8; 11; 64; 78g?

Assume we have an algorithm for bin packing. To be precise, assume that
we have an eÆcient implementation for the function

boolean binPacking(rational[] S, int k)

that takes an array of rational numbers S and an integer k and returns true if
and only if S �ts into k bins.

c) [2] Write an eÆcient algorithm for partition using binPacking. To be precise, you
must implement the function

boolean partition(int[] X)

that takes as input an array X of integers and returns true if and only if X can
be partitioned into two equal size parts. You may (and should) use binPacking as
a subroutine.

d) [3] Show that bin packing is NP-complete. You may use the fact that partition is
NP-complete.

47. Consider the local improvement algorithm of [PS, example 1.8].

a) Show that the algorithm terminates (i.e., halts within a �nite number of
steps) if jF j <1.

b) Exhibit an optimisation problem for which the running is in�nite.

48. The knapsack problem is to pack some of n items into a knapsack such that
their total weight does not exceed the knapsack's capacity, and the value of the
items is maximised.

Table 1

Item weight value

Gold watch 3 10
Red book 3 2
Blue book 3 3
Sweater 5 1
Compass 2 2
Bicycle 14 10

For example, consider a knapsack of ca-
pacity 10 and the items in Table 1. An ex-
ample of a feasible solution (called a pack-
ing of the knapsack) contains the gold watch
and the sweater. A better packing contains
the gold watch and both books. The knap-
sack cannot hold the bicycle. We can for-
mulate the problem as an integer linear pro-
gram as follows:

maximise 10x1 + 2x2 + 3x3 + x4 + 2x5 + 10x6
such that 3x1 + 3x2 + 3x3 + 5x4 + 2x5 + 14x6 � 10

x1 ; x2 ; x3 ; x4 ; x5 ; x6 2 f0; 1g

More generally, the knapsack problem is given as follows:

20

Knapsack (optimisation)
Instance: Integers v1; : : : vn; w1; : : : ; wn;K � 0

Question:

maximise
nX
i=1

vixi

such that
nX
i=1

wixi � K

x1; : : : ; xn 2 f0; 1g

In this exercise we will consider a simple instance with only two items:
weight value

Item 1 5 3
Item 2 4 4

The capacity of our knapsack is 6.
All the following questions relate to this instance.

a) [1] Write down the instance as an integer programme.

b) [1] List all feasible solutions and identify the optimum.

c) [1] Rewrite the problem as a minimisation problem.

d) [3] By replacing the integrality constraints with inequalities and introducing slack
variables, write down the linear programming relaxation of the problem on stan-
dard form. Briey explain each newly introduced equation and variable. Hint :
The solution uses 5 variables.

e) [4] Use the simplex method to �nd the optimal solution to the LP relaxation. If
you haven't solved Exercise c, you may instead optimise the following programme:

minimise �4x1 � 3x2
6x1 + 7x2 + x3 + x4 + x5 = 3;
x1 + x4 = 1;

x2 + x5 = 1;
x1 x2 ; x3 ; x4 ; x5 � 0:

49. This exercise studies the same problem as Ex. 48, the knapsack problem.
A feasible solution to the knapsack problem will be represented by an array

x of booleans such that x[i] = true if an only if Item i is in the knapsack
(0 � i < n). For example, a function w to compute the weight of a solution x
looks as follows:

int w(boolean []x)
f int s= 0;
for (int i= 0; i < x:length; i= i+ 1) f if (x[i]) s= s+ wi; g
return s;

g

A function v to compute the value of a solution can be implemented similarly.
De�ne a solution's neighbourhood N(x) by y 2 N(x) if and only if

��� 1 � i � n j x[i] 6= y[i]
	�� = 1;

i.e., the arrays di�er in exactly one position.

21

a) [1] Compute jN(x)j, the neighbourhood's size.

b) [4] Is N exact? If yes, give a proof. If no, give a counterexample.

We now consider a local search algorithm with respect to N . Our strategy
is the following:

� if possible, add the most expensive item not already in the knapsack,

� otherwise, remove the cheapest item from the knapsack.

A quick way to implement this rule is to observe that the di�erence in value Æ
will be Æ = vi for adding Item i and Æ = �vi for removing Item i. Our local
search algorithm simply moves to the neighbour with largest Æ. To be quite
precise, our (not very useful) local search algorithm looks like this:

1 boolean []optimise()
2 f boolean []x= hinitial feasible solutioni;
3 boolean []x?= x:clone();
4 int counter= 100;
5 do f int i?= �1; int Æ= �1;
6 for (int i= 0; i < x:length; i= i+ 1)
7 f
8 if (x[i] ^ �vi > Æ); Want to remove Item i
9 f Æ= �vi; i?= i; g

10 if (:x[i] ^ vi > Æ ^ w(x) + wi � K) Want to add Item i
11 f Æ= vi; i

?= i; g
12 g
13 if (i? 6= �1) x[i?]= 1� x[i?]; Move to best neighbour
14 if (v(x) > v(x?)) x?= x:clone(); New optimum found
15 counter= counter � 1;
16 g
17 while (counter > 0);
18 return x?;
19 g

c) [1] Write code to implement Line 2.

d) [1] Run the algorithm on the following instance: The knapsack has capacity 2,
Item 1 has weight 2 and value 3, Items 2 and 3 both have weight 1 and value 2.

The idea behind taboo search is to prevent an algorithm to move from so-
lution x to solution y 2 N(x) if this move is taboo. We will modify the above
algorithm with this idea in mind, using the following rule:

� at item that has been removed cannot enter the knapsack in the next step.

e) [3] Rewrite the above algorithm to use the above rule. Run your algorithm on the
instance from question d.

50. This exercise studies the same problem as Ex. 48, the knapsack problem.

22

1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 0 0 0 2 2
3 10 10
4 10
5 12

A famous algorithm for knapsack uses
the dynamic programming idea. Let a ta-
ble T of dimension n � K be de�ned so
that T (w; i) is the largest value attainable
by choosing items among the �rst i such that
their total weight is at exactly w. For the
instance in Table 1 of Exercise 1, we show
part of T to the right. The entry (2; 4) is 0 because there is no way to choose
items among the �rst 4 to obtain weight 2. The entry (5; 6) is 12 because among
the 6 items we can choose the compass and the gold watch to obtain weight 5
and value 12.

To compute T (w; i+ 1) in general we can either

� not include Item (i+ 1), in which case T (w; i+ 1) = T (w; i), or

� include Item (i+1), in which case the value is that of the new item, vi+1,
plus T (w � wi+1; i), the optimal packing of the remaining space in the
knapsack.

In summary,

T (w; i+ 1) = maxfT (w; i); T (w � wi+1; i) + vi+1g:

a) [3] Use the above rule to write an algorithm for Knapsack that runs in time O(nK).

IfK is large (e.g.,K = 2n), the running time of the above algorithm becomes
unacceptable. The idea behind the following algorithm is to order the items with
respect to the ratio vi=wi and pack them in that order until the knapsack is full.
We give up as soon as we encounter an item that does not �t.

1 boolean []greedyKnapsack(int K; int []w; int []c)

2 f

order w and v so that

v[i]

w[i]
�

v[i+ 1]

w[i+ 1]
(0 � i < n� 1)

�

3 boolean []x= new boolean x[w:length];
4 for (int i= 0; i < x:length; i= i+ 1) x[i]= false;
5 boolean full= false;
6 int i= 0;
7 do f if (w(x) + w[i] � K) x[i]= true;
8 else full= true;
9 i= i+ 1;
10 g
11 while (:full);
12 return x;
13 g

The function w used in Line 7 was de�ned in Exercise 2.

b) [1] Run greedyKnapsack on the Instance from Table 1 in Exercise 1. How many
iterations are performed?

c) [2] Show that greedyKnapsack is a 1-approximation algorithm.

23

d) [1] Consider the following two-element instance: Item 1 has weight 1 and value K,
Item 2 has weight K and value K(K�1). Which solution does the algorithm �nd,
and what is the optimum?

e) [3] Use the above question to show that greedyKnapsack is not an �-approximation
algorithm for any � < 1.

51. This exercise studies the same problem as Ex. 48, the knapsack problem.
Below are two suggestions for a recognition version of the knapsack problem.

The instances are a knapsack problem and a bound B.

Knapsack (recognition) 1
Instance: Integers v1; : : : vn; w1; : : : ; wn;K;B � 0,

Question: Do all x1; : : : ; xn 2 f0; 1g such that
nX
i=1

wixi � K

satisfy the bound
nX
i=1

vixi � B

Knapsack (recognition) 2
Instance: As above.

Question: Does there exist x1; : : : ; xnf0; 1g such that
nX
i=1

wixi � K

that satis�es the bound
nX
i=1

vixi � B

a) [4] (At least) one of the above problems is in NP. Decide which and show that it is
in NP by presenting a certi�cate checking algorithm for it. Be precise about what
the inputs to the algorithm are, how the certi�cate is encoded, and what its length
is. State the algorithm's running time.

The partition problem is de�ned as follows: given a set S = fs1; : : : ; sng of
positive integers, is there a subset R � S that adds up to exactly half the total
sum? More formally,

Partition
Instance: Set of integers S = fs1; : : : ; sng.

Question: Is there a subset R � S such thatX
s2R

s = 1
2

X
s2S

s:

Assume that we have an algorithm for the recognition version of the Knap-
sack problem. To be precise, assume that we have an eÆcient implementation
for the function

boolean knapsack(int K; int []w; int []v; int B)

24

that takes a capacity, and two arrays of weights and values, respectively, and
returns true if and only if the items can be packed into the knapsack such that
their total value is at least B.

b) [3] Write an eÆcient algorithm for partition using knapsack. To be precise, you
must implement the function

boolean partition(int []S)

that takes as input an array S of integers and returns true if and only if S can
be partitioned into two equal size parts. You may (and should) use knapsack as a
subroutine. Hint : Construct items whose value is the same as their weight.

c) [3] Show that the recognition version of Knapsack is NP-complete. You may use
the fact that partition is NP-complete.

52. A basis B0 a neighbour of basis B if it is obtained from B by a single
pivoting step (see [PS, Thm. 2.7]). De�ne the neighbourhood N(x) of a bfs x
corresponding to B as the set of bfs x0 that correspond to neighbours B0 of B.
Show that N is not exact for linear programming.

Hint : Consider the LP given by c = (0; 0; 1; 12 ;
1
2 ;

1
2),

A =

0
@
1 0 0 1 1 0
0 1 1 0 1 0
1 0 1 0 0 1

1
A ; b =

0
@
1
1
1

1
A ;

and the bfs corresponding to fA4; A5; A6g.

References

[1] Fletcher: Practical methods of optimization, Wiley 1987. Most exercises
have been slightly modi�ed for notational consistency.

[2] Cormen, Leiserson, Rivest: Introduction to algorithms, MIT Press, 1989.

25

