Comments, hints, and some solutions for exam dat401 DM 020320

This is not a model solution!
1a Solution: 3 (not 5, which is the most popular wrong answer)
1b Note that the graph must be connected (less than one third got this one right).

1d The event ' $\operatorname{diam}(G(n, p))=1$ ' is the same as the event ' $G(n, p)=K_{n}$.'
1e Solution: $1-p$. Many students use a very long argument which involves counting the number of graphs with $d\left(v_{1}, v_{2}\right)>1$. This is impressive but unnecessary: the distance is 1 if and only if the edge $\left\{v_{1}, v_{2}\right\}$ is present, which happens (by definition) with probability p.

1f Solution: $\left(1-p^{2}\right)^{n-3}$.
1g Hint: $p(\operatorname{diam}(G(n, p))=2)=1-p(\operatorname{diam}(G(n, p))=1)-p(\operatorname{diam}(G(n, p))>$ $2)$. For the last expression use 1f and $P(A \cup B) \leq P(A)+P(B)$.

2a There are 15. (Few students found them all).
2b Solution: Yes.
2c Solution: Yes.
2d The answer is yes. A 'formal proof' is an opportunity to show your familiarity with the language of maths - so please don't write nonsense like ' $a \wedge b \wedge c \in T_{i}$ ' when you mean ' $\{a, b, c\} \subseteq T_{i}$ '. Note also that you proof needs to use the disjointness of the T_{i} somewhere, otherwise it's incomplete.

2e Many students' arguments would benefit from the phrase 'by the Sum Rule'. Here's the most popular argument (which is sufficient): "A partition of S places the elements into a number of subsets T_{1}, \ldots, T_{k}; at least $k \geq 1$ (in which case $T_{1}=S$) and at most $k \leq n$ (in which case $T_{i}=\{i\}$). By the Sum Rule we can count the total number of partitions of S (of any size) by for each $k(1 \leq k \leq n)$ counting the number of ways to partition S into exactly k subsets, which is given by $\left\{\begin{array}{l}n \\ k\end{array}\right\}$." Note that this answer is quite precise in explaining the bounds on the sum (k from 1 to n).
$2 f$ Hint: Consider the set into which ' $n+1$ ' has been placed.
3a Should take 26 moves.
3b Solution: $T_{n}=3 T_{n-1}+2, T_{1}=2$. Don't forget the T_{1} case!

3d Many students solve this by induction, which is really cute! The solution I had in mind simply counts the number of different legal arrangements (hint: place all discs on the pegs, starting with the largest) and notes that this number is $1+T_{n}$.

