Comments, hints, and some solutions for exam dat401 DM 020320

This is not a model solution!

- 1a Solution: 3 (not 5, which is the most popular wrong answer)
- 1b Note that the graph must be connected (less than one third got this one right).
- 1d The event 'diam(G(n, p)) = 1' is the same as the event ' $G(n, p) = K_n$.'
- 1e Solution: 1 p. Many students use a very long argument which involves counting the number of graphs with $d(v_1, v_2) > 1$. This is impressive but unnecessary: the distance is 1 if and only if the edge $\{v_1, v_2\}$ is present, which happens (by definition) with probability p.
- **1f** Solution: $(1-p^2)^{n-3}$.
- **1g** Hint: $p(\operatorname{diam}(G(n,p)) = 2) = 1 p(\operatorname{diam}(G(n,p)) = 1) p(\operatorname{diam}(G(n,p)) > 2)$. For the last expression use 1f and $P(A \cup B) \leq P(A) + P(B)$.
- **2a** There are 15. (Few students found them all).
- 2b Solution: Yes.
- 2c Solution: Yes.
- 2d The answer is yes. A 'formal proof' is an opportunity to show your familiarity with the language of maths — so please don't write nonsense like ' $a \wedge b \wedge c \in T_i$ ' when you mean ' $\{a, b, c\} \subseteq T_i$ '. Note also that you proof needs to use the disjointness of the T_i somewhere, otherwise it's incomplete.
- **2e** Many students' arguments would benefit from the phrase 'by the Sum Rule'. Here's the most popular argument (which is sufficient): "A partition of S places the elements into a number of subsets T_1, \ldots, T_k ; at least $k \ge 1$ (in which case $T_1 = S$) and at most $k \le n$ (in which case $T_i = \{i\}$). By the Sum Rule we can count the total number of partitions of S (of any size) by for each k ($1 \le k \le n$) counting the number of ways to partition S into exactly k subsets, which is given by ${n \atop k}^n$." Note that this answer is quite precise in explaining the bounds on the sum (k from 1 to n).
- **2f** Hint: Consider the set into which (n + 1) has been placed.
- **3a** Should take 26 moves.
- **3b** Solution: $T_n = 3T_{n-1} + 2$, $T_1 = 2$. Don't forget the T_1 case!

3d Many students solve this by induction, which is really cute! The solution I had in mind simply counts the number of different legal arrangements (*hint*: place all discs on the pegs, starting with the largest) and notes that this number is $1 + T_n$.