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Abstract We introduce new models for dynamic computation based on
the cell probe model of Fredman and Yao. We give these models access to
nondeterministic queries or the right answer ±1 as an oracle. We prove that for
the dynamic partial sum problem, these new powers do not help, the problem
retains its lower bound of Ω(log n/ log log n).

From these results we easily derive a large number of lower bounds of
order Ω(log n/ log log n) for conventional dynamic models like the random ac-
cess machine. We prove lower bounds for dynamic algorithms for reachability
in directed graphs, planarity testing, planar point location, incremental pars-
ing, fundamental data structure problems like maintaining the majority of the
prefixes of a string of bits and range queries. We characterise the complexity
of maintaining the value of any symmetric function on the prefixes of a bit
string.

1 Introduction

Update versus query time. For dynamic problems, two trivial solutions are immediate:
Either the algorithm spends time after each update reorganising the data structure to
anticipate every future query, or the algorithm spends time after each query to read
the entire history of updates. However, a crucial property of many hard problems is
that these two cannot be optimised simultaneously. This tradeoff between update time
and query time was studied using the chronogram method by Fredman and Saks [13],
a result that has proved extremely useful for lower bounds for dynamic algorithm and
data structures.

The method of [13] is an information-theoretic argument formalising the idea that
not all relevant information about the updates can be passed on to a typical query.
The present paper takes a closer look at this information, asking what kind of infor-
mation is responsible for the hardness of the problem. Our approach is to provide the
query algorithm with well-defined aspects of the information for free, e.g., we consider
nondeterministic query algorithms.

Example: Range queries. We can illustrate our approach using range query problems.
The object is to maintain a set S ⊆ {1, . . . , n}2 of points in the plane, the updates insert
and remove points from S. An existential range query asks whether a given rectangle R
contains a point from S. This problem requires time Ω(log log n/ log log log n) [4, 20].
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ported by the ESPRIT Long Term Research Programme of the EU, project number
20244 (ALCOM-IT). The first author was partially supported by a grant from TFR.
BRICS (Basic Research in Computer Science) is a Centre of the Danish National
Research Foundation.



With nondeterministic queries, this problem becomes trivial: guess a point and verify
that it is in S ∩ R. In other words, the sole reason for the hardness of this problem
lies in maintaining precisely the kind of information that nondeterminism provides for
free. However, this is not true for all problems; our main result implies that reporting
the parity of |R ∩ S| remains just as hard as without nondeterminism, so the hardness
of this problem hinges on information of a fundamentally different kind.

Main contribution. We state our two main results in terms of the signed partial sum
problem. The problem is to maintain a string x ∈ {−1, 0, +1}n under updates that
change the letters of x and queries of the form

query(i): return x1 + · · ·+ xi mod 2.
We prove two theorems about this problem. Theorem 1 shows that even in models
with nondeterministic queries, the partial sum problem requires time Ω(log n/ log log)
per operation with logarithmic cell size. It is known that this is also the deterministic
complexity of the problem [7, 13], so nondeterminism does not help.

Our second main result studies the same problem in a promise setting, where the
query algorithm receives almost the correct answer for free. The updates are as before,
and the query is

parity(i, s): return x1 + · · · + xi mod 2 provided that |s −Pi
j=1 xj | ≤ 1 (otherwise

the behaviour of the query algorithm is undefined).
Theorem 2 shows that this problem still requires Ω(log n/ log log n) per operation.

We reason within the cell probe model of Fredman [10] and Yao [28], with some
extensions to cope with our stronger modes of computation. This can be viewed as a
nonuniform version of the random access computer with arbitrary register instructions.
Especially, our lower bounds are valid on random access machines with unit-cost in-
structions on logarithmic cell size. The success of this model is partly due to the validity
of these bound in light of schemes like hashing, indirect addressing, bucketing, pointer
manipulation, or recent algorithms that exploit the parallelism inherent in unit-cost
instructions. For these reasons the cell probe model has arguably become the model of
choice for lower bounds for dynamic computation.

Theorems 1 and 2 are proved by extending the chronogram method, which was in-
troduced by Fredman and Saks [13] and got its name in [5].

Lower bounds for dynamic algorithms. Our results suggest a new general technique
for proving lower bounds for dynamic algorithm and data structure problems. Because
Thms. 1 and 2 hold in very strong models of computation, we can exploit these strengths
in our reductions—this yields simple proofs. We support our claims about the versatility
of this technique by exhibiting a number of new lower bounds for well-studied problems,
including planar point location, reachability in upward planar digraphs and in grid
graphs, incremental parsing of balanced parentheses, and partial sum problems.

Limitations of the chronogram method. A large number of hardness results for dynamic
problems employ the chronogram method, usually by constructing a reduction from
a partial sum problem. Our results imply in some precise sense that this method is
unable to distinguish deterministic from nondeterministic computation. In particular,
this method cannot prove lower bounds for a problem that are better than the best
nondeterministic algorithm. This is an important guide in the search for lower bounds
for a large class of problems, including for example existential range searching and
convex hull.

Outline of paper. Section 2 introduces dynamic algorithms with nondeterministic quer-
ies and contains the statement of Thm. 1; the proof of this result, which is the main



technical contribution of this paper, is sketched in Sect. 3. Our lower bounds for dy-
namic algorithms and partial sum problems are presented in Sect. 4. Finally, Sect. 5
introduces the notion of refinement and presents Thm. 2. Many proofs are omitted due
to space limitations, they can be found in the full version [15].

2 Nondeterminism in Dynamic Algorithms

2.1 Nondeterministic query algorithms. We now introduce our notion of nondetermin-
istic query algorithms for dynamic decision problems. We allow query algorithms to
nondeterministically load a value into a memory cell. The semantics is as usual: The
value returned by a nondeterministic query is 1 unless all nondeterministic choices re-
turn 0. For example, the following program solves the existential range query problem
from the introduction, storing all points from S in a two-dimensional array M :

update(i, j):
M [i, j] := ¬M [i, j]

query(R):
guess (i, j) ∈ R
return M [i, j]

We should mention that we have not defined the side-effects of a nondeterministic
query algorithm, i.e., the effect of its assignments to memory. This can be done in a
number of ways; for example we might say that if there are computations (i.e., sequences
of nondeterministic choices) that result in ‘1’, the algorithm will execute one of these
computations; otherwise it will execute a computation leading to ‘0’. We mention that
our lower bound is immune to precisely how these effects are defined, since the hard
operation sequence constructed in the proof needs only a single query, which happens
at the very end.

Nondeterministic queries are a powerful tool for a number of well-studied problems.
A good example from Computational Geometry is dynamic convex hull, the problem
of maintaining the convex hull of a set of points S, where points are inserted and
removed. The query operation asks whether the query point q lies inside or outside the
convex hull of S. Again, we can solve this problem with a trivial update algorithm that
simply stores S in a large table (in the cell probe model we do not worry about memory
space, otherwise we can use standard dictionaries). The nondeterministic query guesses
three points from S and verifies that the query point lies in the triangle spanned by
these points—a well known result in plane geometry asserts that this is necessary and
sufficient.

Note that the complement of this problem (answer ‘yes’ iff q lies outside the convex
hull) does not seem to allow such an algorithm. In contrast, the complement of the
existential range query problem in one dimension does, since we can maintain a doubly
linked list of the inserted points, and the query can guess both the immediate prede-
cessor and immediate successor of a query interval and verify that they are neighbours
is S.

In general, a problem is amenable to nondeterminism, if the outcome of each query
depends on only a bounded number of updates. Contrast this with the problems identi-
fied in [13], where each update affects only a bounded number of queries, e.g., dictionary
problems.

2.2 Signed partial sum. The signed partial sum problem is to maintain a string x ∈
{−1, 0, +1}n, initially 0n, under updates that change the letters of x and queries about
the parity of the prefix sums of x

update(i, a): change xi to a ∈ {−1, 0, +1},



query(i): return x1 + · · ·+ xi mod 2.
The data structure of Dietz [7] solves this problem, deterministically, in time O(log n/
log log n) per operation with logarithmic cell size. The next theorem states that nonde-
terministic queries can do no better. We state theorem as a trade-off between update
and query time.

Theorem 1 Every nondeterministic algorithm for the signed partial sum problem with
cell size b, update time tu, and query time tq must satisfy

tq = Ω
� log n

log(btu log n)

�
. (1)

The lower bound holds even if the algorithm requires

0 ≤ x1 + · · ·+ xi ≤
l log n

log(btu log n)

m
(2)

for all i after each update.

The balancing condition (2) continues previous work [16] on extending the chrono-
gram method, which is implicit in the constructions in the present paper. In Sect. 4.2
we state a further generalisation of Thm. 1, relating the terms in (1) and (2).

3 Proof of Theorem 1

We consider a specific sequence of operations that consists of a number of updates
followed by a single query. The update sequence is chosen at random from a set U
defined in Sect. 3.5.

3.1 Model of computation. The computational model is an extension of the cell-probe
model [10, 28]; since there is only a single query in the hard sequence of operations
constructed in our proof, which happens at the very end of the sequence, we can model
query algorithms by nondeterministic decision trees.

More precisely, a cell probe algorithm consists of a family of trees, one for each
operation, and a memory M ∈ {0, . . . , 2b − 1}∗. We refer to the elements of M as
cells, each of which can store a b-bit number. To each update we associate a decision–
assignment tree as in [13]. There are two types of nodes: Read nodes are 2b-ary and
labelled by a memory address, computation proceeds to the child identified at that
address; write nodes are unary and labelled by a memory address and a b-bit value,
with the obvious semantics.

To each query we associate a nondeterministic decision tree of arity 2b whose internal
nodes are labelled by a memory address or by ‘∃’. The leaves are labelled 0 or 1 to
represent the possible answers to the query. We define the value qM ∈ {0, 1} computed
by a query tree q on memory M to be 1 if there exists a path from the root to a
leaf with label 1. A witness of such an accepting computation is the description of the
choices for the ∃ nodes. We let qi denote the query tree corresponding to query(i). The
query time tq is the height of the largest query tree and the update time tu is the
height of the largest update tree; we account only for memory reads and writes and
for nondeterministic choices, all other computation is for free.

3.2 Updates and epochs. Each update sequence in U is described by a binary string
u ∈ {0, 1}∗. Each bit represents an update update(j, a). The parameters for these
updates will be specified in Sect. 3.5. The update sequences u ∈ U are split into
d substrings each corresponding to an epoch. It turns out to be convenient that time
flows backwards, so epoch 1 corresponds to the end of u. In general the update string is



an element in U = UdUd−1 · · ·U1 where Ut = {0, 1}e(t), and where e(t) is the length of
epoch t is such that e(t)+· · ·+e(1) =

�
nt/d/d

�
. The length of the entire update sequence

is bn/dc. The size of d and hence the growth rate of e(t) is d =
�
log n/ log(btu log n)

�
.

The goal is to establish that tq ∈ Ω(d).

3.3 Time stamps and nondeterminism. To each cell we associate a time stamp when
it is written. A cell receives time stamp t if some update during epoch t writes to it,
and none of the subsequent updates during epochs t− 1 to 1 write to it.

For an update sequence u ∈ U let Mu denote the memory resulting from these
updates (recall that updates are restricted to perform deterministically), starting with
some arbitrary initial contents corresponding to the initial instance 0n.

For index i and update string u let T (i, u) denote the set of time stamps that are
found on every accepting computation path of qi on Mu. If there are no accepting
computations, the set is empty. More formally, let w denote a witness for a computation
path of qi on Mu, and let A(i, u) denote the set of witnesses that lead to accepting
computations of qi on Mu. Let for a moment T (i, u, w) denote the set of time stamps
encountered by the computation of qi on Mu that is witnessed by w. Then T (i, u) =T{T (i, u, w) | w ∈ A(i, u) } if A(i, u) 6= ∅, and T (i, u) = ∅ otherwise.

The simple lemma below is the tool to identify a read of a cell with time stamp t by
nondeterministic queries.

Lemma 1 If Mu and Mv differ only on cells with time stamp t then qiM
u 6= qiM

v

implies t ∈ T (i, u) ∪ T (i, v).

3.4 Lower bound on query time. The update sequences are chosen such that even if
two sequences differ only in a single epoch, they still result in very different instances.
To each update sequence u ∈ U we associate the query vector qu = (q1M

u, q2M
u, . . . ,

qnMu) ∈ {0, 1}n. Update sequences that differ only in epoch t are called t-different.

Lemma 2 No Hamming ball of diameter 1
8
n can contain more than |Ut|9/10 query vec-

tors from t-different update sequences, for large n.

The difficult part is constructing a set of update sequences for which the statement
is true, which we present in Sect. 3.5. The proof itself is as in [13].

Write U>t for Ud · · ·Ut+1, the set of updates sequences prior to epoch t, and U<t for
Ut−1 · · ·U1, the set of update sequences in epoch t to epoch 1. Assume for the rest of
this section that tq = O(log n), else there is nothing to prove. The worst-case query
time tq is at least the average of |T (i, u)| over choices of i ∈ {1, . . . , n} and u ∈ U , so

|U |ntq ≥
X
u∈U

nX
i=1

|T (i, u)| =
dX

t=1

X
u∈U>t

X
w∈U<t

X
v∈Ut

nX
i=1

�
t ∈ T (i, uvw)

�
.

The next lemma tells us how many v ∈ Ut fail to make the last sum exceed 1
16

n.

Lemma 3 Fix any epoch 1 ≤ t ≤ d and past and future updates x ∈ U<t, y ∈ U>t.
For large n, at least half of the update sequences u ∈ xUty satisfy

��{ 1 ≤ i ≤ n | t ∈
T (i, u) }�� ≥ 1

16
n, if tq = O(log n).

By this lemma we obtain for large n:

|U |ntq ≥
dX

t=1

|U>t| · |U<t| · 1
16

n · 1
2
|Ut| = 1

32
nd|U |,

and hence tq ≥ 1
32

d as desired.



3.5 Update scheme. The technical part that remains is to exhibit a set of update
sequences U satisfying Lem. 2. There are a number of ways to do this; the following
construction is one which simultaneously anticipates our needs in Sect. 5 and satisfies
the balancing condition (2).

To alleviate notation we assume that n/d is an integer. Consider the updates in
epoch t and index them as u1 · · · ue(t) ∈ Ut. If ui = 0 then nothing happens in the ith
update. Else it performs update(j, a), where the update position j is given below. The
new value is a = (−1)r, where r = 1+u1 + · · ·+ui mod 2, so the nonzero updates in u
alternate between −1 and +1, starting with +1. The position of the affected letter is
defined as follows. Write x as a table of dimension d× n/d like this:2

64
x1 xd+1 xn−d+1

...
... · · ·

...
xd x2d xn

3
75 .

All updates in epoch t will affect only the letters in row t. The updates of an epoch
are spread out evenly from left to right across that row, so the distance between two of
them is

�
(n/d)/e(t)

�
. In summary, the ith update in epoch t affects the letter in row t

and the column given by (i− 1) · �(n/d)/e(t)
�

+ 1.
This update scheme satisfies the statement in Lem. 2, we omit the proof. Also, the

prefix sums of instances resulting from our scheme are small: Let x denote an instance
resulting from our scheme from the initial instance 0n. Let xt denote the string resulting
from only the updates in epoch t and write x as x1 + · · · + xd; this works because no
two epochs write in the same positions. Then

iX
j=1

xj =
iX

j=1

dX
t=1

xt
j =

dX
t=1

iX
j=1

xt
j ∈ {0, . . . , d} ,

because the prefix sum of every xt is 0 or 1 by construction. It can be checked that the
balancing bound (2) holds at all times.

Another important feature of this update scheme, which is used to prove Thm. 2,
is that if x and y result from t-different updates then xr = yr for r 6= t and hence��Pi

j=1 xj −Pi
j=1 yj

�� ≤ 1 for all i.

4 Lower Bounds for Dynamic Algorithms and Partial Sum
Problems

Theorem 1 suggests a new approach for proving lower bounds by employing nondeter-
minism in the reduction from signed partial sum. We demonstrate this with a number
of examples in this section. The results are presented for cell size b = log n for con-
creteness. Some of the reductions extend previous work of the authors with Søren
Skyum [16].

4.1 Nested brackets. Consider the problem of maintaining a nested structure, i.e., a
string x with round and square brackets under the following operations:

change(i, a): change xi to a, where a is a round or square opening or closing bracket,
or whitespace.

balance: return ‘yes’ if and only if the brackets in x are properly nested.
This problem was studied in [9], where an algorithm with polylogarithmic update time
is presented.

Proposition 1 Maintaining a string of nested brackets requires time Ω(log n/ log log n)
per operation.



Proof. Consider a deterministic algorithm for this problem and let x ∈ {0,−1, +1}n

be an instance to signed partial sum. Let bi be an encoding of xi given by:

+1 7→ ) )  , 0 7→ )   , −1 7→    ,

where ‘ ’ stands for space. Let c be the string ‘ (’. We maintain a balanced string of
brackets uvw, where u = c2n, v = b1 b2 . . . bn and w =)n−s s, where s = x1 + · · ·+xn.
It is easy to see that uvw balances and can be maintained by a constant number
of updates per update in x. For any prefix size i this construction enables efficient
verification of a nondeterministic guess g of the prefix sum x1 + · · ·+xi: Place a closing
square bracket on the last  of bi and an opening square bracket on the  of the first
c of suffix ci+g of u. This modification keeps uvw balanced iff g is the right guess of
prefix sum x1 + · · · + xi. Conclusion by Thm. 1.

4.2 Dynamic graph algorithms. Our techniques improve the lower bounds of a number
of well-studied graph problems considered in [16].

Tamassia and Preparata [26] present an algorithm for the class of upward planar
source–sink graphs that runs in time O(log n) per operation. These digraphs have have
a planar embedding where all edges point upward (meaning that their projection on
some fixed direction is positive) and where exactly one node has indegree 0 (the source)
and exactly one node has outdegree 0 (the sink). The updates are:

insert(u, v): insert an edge from u to v
delete(u, v): delete the edge from u to v if it exists
reachable(u, v): return ‘yes’ iff there is a path from u to v.

The updates have to preserve the topology of the graph, including the embedding.

Proposition 2 Dynamic reachability in upward planar source–sink graphs requires time
Ω(log n/ log log n) per operation.

Planarity testing is to maintain a planar graph where the query asks whether a new
edge violates the planarity of the graph. Italiano et al. [18] present an efficient algorithm
for a version of this problem, and a strong lower bound is exhibited by Henzinger and
Fredman [12]. Our lower bound holds also for upward planarity testing, where the
topology is further restricted to upward planar graphs. The updates insert and delete
edges as above, and the query is

planar(u, v): return ‘yes’ if and only if the graph remains upward planar after inser-
tion of edge (u, v).

This problem was studied by Tamassia [25], who found an O(log n) upper bound.

Proposition 3 Upward planarity testing requires time Ω(log n/ log log n) per operation.

A classical problem in Computational Geometry is planar point location: given a
subdivision of the plane, i.e., a partition into polygonal regions induced by the straight-
line embedding of a planar graph, determine the region of query point q ∈ R2. An
important restriction of the problem considers only monotone subdivisions, where the
subdivision consists of polygons that are monotone (so no horizontal line crosses any
polygon more than twice). In the dynamic version of this problem updates manipulate
the geometry of the subdivision. Preparata and Tamassia [24] give an algorithm that
runs in time O(log2 n) per operation, this was improved to query time O(log n) by
Baumgarten, Jung, and Mehlhorn [3]. The lower bound for this problem in [16] applies
only to algorithms returning the name of the region containing the queried point. The
techniques of the present paper extend this bound to work for simpler decision queries
like
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Fig. 1. Planar graphs corresponding to x = (0, 0, +1, +1, −1, 0, +1, 0). Left: grid
graph. Even grid points are marked •, odd grid points are marked ◦. Middle: upward
planar source–sink graph. Right: monotone planar subdivision.

query(x): return ‘yes’ if and only if x is in the same polygon as the origin.

Proposition 4 Planar point location requires time Ω(log n/ log log n) per operation, even
in monotone subdivisions.

Traditionally, lower bounds in Computational Geometry are proved in an algebraic,
comparison-based model (see [23] for a textbook account) that is broken by standard
RAM operations like indirect addressing, bucketing, hashing, etc. Cell probe lower
bounds for that field are lacking.

To explain our reduction we turn to the conceptually very simple class of grid graphs.
The vertices of a grid graph of width w and height h are integer points (i, j) in the
plane for 1 ≤ i ≤ w and 1 ≤ j ≤ h. All edges have length 1 and are parallel to the
axes. The dynamic reachability problem for these graphs is the following:

flip(x, y): add an edge between x ∈ [w]× [h] and y ∈ [w]× [h] or remove it if it exists,
reachable(x, y): return ‘yes’ if and only if there is a path from x to y.

There are several well-known constructions that prove a lower bound for this prob-
lem [8, 12, 14, 21], but our proof translates to the other problems in Props. 2 to 4. The
details in these constructions are omitted, Fig. 1 illustrates the structures arising in
the reductions.

Proposition 5 Dynamic reachability in grid graphs requires time Ω(log n/ log log n) per
operation.

Proof. From an instance x ∈ {0,±1}n to signed partial sum we build a grid graph on
the points {0, . . . , 2w} × {0, . . . , 2n}, where w =

�
log n/ log log n

�
. We will exploit the

balancing constraint (2) of Thm. 1 to keep the instance within this width.
For every i and j, consider any point with even coordinates (2i, 2j − 2), drawn as •

in Fig. 1, and connect it to one of the three even grid points above it using •
◦◦
◦•

, •
◦
•
, or

•
◦◦

◦•
, depending on whether xj = +1, 0, or −1, respectively. The idea is that the path

from (0, 0) mimics the prefix sums of x in that it passes through (2s, 2j) if and only if



x1 + · · ·+xj equals s. Hence a guess of the sum can be verified by a single reachability
query in the graph.

It remains to note that the graph can be maintained efficiently. Any changed letter
in x incurs O(w) edges to be inserted or deleted. So if the update time of the graph
algorithm is polylogarithmic then the graph can be maintained in polylogarithmic time.
The bound follows from Thm. 1.

The width of the hard graph above is logarithmic in the height, while the graphs
constructed in [8, 12, 14, 21] are square. Hence narrow grid graphs are as hard as square
ones. However, this is not true for very narrow graphs: It is known that the reachability
problem for grid graphs of constant width can be solved in time O(log log n) by [2], an
exponential improvement. This leaves open the question of what happens for graphs
of sublogarithmic width. To answer this, we introduce a subtler statement of Thm. 1.

Theorem 1 (Parameterised) Let d = O
�
log n/ log(btu log n)

�
be an integer function.

Every nondeterministic algorithm for signed partial sum with cell size b, update time tu,
and query time tq must satisfy tq = Ω(d). The lower bound holds even if the algorithm
requires 0 ≤ x1 + · · · + xi ≤ d for all i after each update.

This result implies a lower bound for grid graphs that smoothly connects the two
extremes between linear and constant width. A similar parameterisation can be done
for all our problems.

Proposition 6 For every w = O(log n/ log log n), dynamic reachability in grid graphs of
width w requires time Ω(w) per operation.

4.3 Partial sum problems. The partial sum problem [11, 29] is to maintain a bit string
x ∈ {0, 1}n under the following operations

update(i): change xi to 1 − xi,
sum(i): return x1 + · · ·+ xi.

It was shown in [13] that the parity query
parity(i): return x1 + · · ·+ xi mod 2,

requires time Ω(log n/ log log n), so even the least significant bit is hard to maintain.
We turn to two other natural variants, prefix majority and prefix equality whose query
operations are

majority(i): return 1 iff x1 + · · ·+ xi ≥
�

1
2
n
�
,

equality(i): return 1 iff x1 + · · · + xi =
�

1
2
n
�
.

These problems arise in many data structures, e.g. when following paths towards heavy
subtrees in balanced search trees. We can also dress up these problems as database
queries like ‘did as many male as female guests arrive before noon?’ or ‘are more
French than English talks scheduled between Tuesday and Friday?’ Similarly, these
problems can be viewed as natural range query problems in Computational Geometry.

No nontrivial lower bounds for these two problems follow from [13]. The results
from [4, 19, 20, 27] can be seen to imply Ω(log log n/ log log log n) lower bounds using
an entirely different technique based on Ajtai’s result [1]; and [16] reports Ω((log n/
log log n)1/2) for equality and Ω(log n/(log log n)2) for the majority.

The next result shows that these problems are just as hard as the parity query
from [13]. The proof is again a simple application of Thm. 1.

Proposition 7 The prefix equality and prefix majority problems require time Ω(log n/
log log n) per operation.



There are other partial sum problems that are far easier. Consider the query
or(i): return ‘yes’ iff x1 + · · ·+ xi ≥ 1.

This problem, prefix-or, can be solved in time O(log log n) per operation by a van Emde
Boas tree. To study this kind of problem in a general, let the threshold ϑ be an integer
function such that ϑ(i) ∈ {0, . . . , d 1

2
ie}. The query in the prefix threshold problem for

ϑ is
threshold(i): return ‘yes’ iff x1 + · · · + xi ≥ ϑ(i).

Prefix majority is the special case ϑ(i) = d 1
2
ie, prefix-or is ϑ(i) = 1. Now for our lower

bound. Our assumption on ϑ is that there are integers p(1) < p(2) < · · · < p(i) < · · ·
such that ϑ(p(i)) = i. We call such functions nice for lack of a better word. It is
reasonable to assume that ϑ is monotonically increasing, the niceness assumption also
prevents it from skipping points.

Proposition 8 Let tu = tu(n) and tq = tq(n) denote the update and query time of any
cell size b implementation of the prefix threshold problem for a nice threshold ϑ. Then
tq = Ω

�
log ϑ/ log(tub log ϑ)

�
.

The proof is not difficult but tedious. The idea is to stretch an instance for a threshold
problem, padding it with sufficiently many 0s or 1s to turn it into a majority problem.

To gauge the strength of this result we mention that the problem can be solved on
the unit-cost RAM with logarithmic cell-size in time O

�
(log ϑ/ log log n)+log log n

�
per

update (if ϑ(1), . . . , ϑ(n) can be computed in the preprocessing stage of the algorithm).
The left term in the expression stems from a search tree, the right term from a priority
queue, which vanishes for cell size b = Ω(log2 n); details are omitted. Comparison
with Prop. 8 shows that the lower bound is tight for logarithmic cell size and ϑ =
Ω(loglog log n n). For smaller thresholds, the bounds leave a gap of size O(log log n). We
consider a more general problem in Sect. 5.1.

5 Refinement

We now take a somewhat subtler approach to our basic question than in Sect. 2. Instead
of nondeterminism, we study the performance of query algorithms in a promise setting.
We assume that the query algorithm for signed partial sum receives a value s that is
promised to be close to (but not known to be equal to) the right sum and then decides
between right and wrong values.

The partial sum refinement problem can be phrased as follows: Maintain a string
x ∈ {0,±1}n, initially 0n, under the following operations:

update(i, a): change xi to a ∈ {−1, 0, +1},
parity(i, s): return x1 + · · · + xi mod 2 provided that |s −Pi

j=1 xj | ≤ 1 (otherwise
the behaviour of the query algorithm is undefined).

The problem gets its name from the following alternative definition, where the query
operation is replaced by

refine(i, s): return 1 if s =
Pi

j=1 xj and 0 if s 6= Pi
j=1 xj , provided that |s −Pi

j=1 xj | ≤ 1. For other values of s, the answer is undefined.
The two problems reduce to each other.

Theorem 2 Let d be an integer function such that d = O
�
log n/ log(tub log n)

�
. Every

algorithm for partial sum refinement with cell size b, update time tu and query time
tq must satisfy tq = Ω(d). Moreover, this is true even for algorithms that require
0 ≤ x1 + · · ·+ xi ≤ d for all i after each update.



5.1 The dynamic prefix problem for symmetric functions. Thm. 2 acts as an important
ingredient in characterising the dynamic complexity of all the symmetric functions,
generalising the results for the threshold functions of last section. A Boolean function
is symmetric if it depends only on the number of 1s in the input x = (x1, . . . , xn). The
symmetric functions include some of the most well-studied functions in complexity
theory, like parity, majority, and the threshold functions.

In general, we can describe every symmetric function f in n variables by its spectrum,
a string in {0, 1}n+1 whose ith letter is the value of f on inputs where exactly i variables
are 1. The boundary of a spectrum s is the smallest value ϑ such that sbϑc = sbϑc+1 =
· · · = sbn−ϑc. For instance the boundary of the parity or majority functions is 1

2
n, and

for the threshold functions with threshold ϑ, the boundary is min(ϑ,n − ϑ).
Let 〈fn〉 = (f1, . . . , fn) be a sequence of symmetric Boolean function where the ith

function fi takes i variables. The dynamic prefix problem for 〈fn〉 is to maintain a bit
string x ∈ {0, 1}n under the following operations:

update(i): change xi to ¬xi,
query(i): return fi(x1, . . . , xi).

For example, taking fi to be the parity function on i variables we have the prefix parity
problem of [13], and taking fi to be the threshold function for ϑ(i) we have the problem
from Prop. 8.

Proposition 9 Let ϑ be a nice function and let 〈fn〉 be a sequence of symmetric functions
where fi : {0, 1}i → {0, 1} has boundary ϑ(i). Let tu and tq denote the update and query
time of any cell size b implementation of the dynamic prefix problem for 〈fn〉. Then
tq = Ω

�
log ϑ/ log(tub log ϑ)

�
.

Intriguingly, the bound in the proposition is precisely the same bound as for the
size–depth trade-off for Boolean circuits for these functions [17, 6, 22].
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