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NEW LOWER BOUND TECHNIQUES FOR DYNAMIC PARTIAL
SUMS AND RELATED PROBLEMS*

THORE HUSFELDT! AND THEIS RAUHE#

Abstract. We study the complexity of the dynamic partial sum problem in the cell-probe model.
We give the model access to nondeterministic queries and prove that the problem remains hard. We
give the model access to the right answer +1 as an oracle and prove that the problem remains hard.
This suggests which kind of information is hard to maintain.

From these results, we derive a number of lower bounds for dynamic algorithms and data struc-
tures: We prove lower bounds for dynamic algorithms for existential range queries, reachability in
directed graphs, planarity testing, planar point location, incremental parsing, and fundamental data
structure problems like maintaining the majority of the prefixes of a string of bits. We prove a lower
bound for reachability in grid graphs in terms of the graph’s width. We characterize the complexity
of maintaining the value of any symmetric function on the prefixes of a bit string.
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1. Introduction. The partial sum problem is to maintain n bits x1,...,x, €
{0,1} that are subject to updates

update(i): change x; to 1 — x;

and compute queries about the partial sums x1 + - - - + z;.

It is easy to construct data structures that provide either very fast updates (by
computing the answer from scratch after each query) or very fast queries (by recom-
puting all partial sums after each update). However, in many partial sum problems—
and in many dynamic problems in general—we cannot have both. This trade-off
between update time and query time was established by Fredman and Saks [15], who
showed that, with the parity query

parity(i): return 1 + -+ +x; mod 2,

the partial sum problem requires time Q(logn/loglogn) per operation on the unit-
cost RAM with logarithmic cell size. In other words, even the least significant bits of
the partial sums are hard to maintain.

The motivation for the present paper is that the hardness of the problem depends
on the following query: If the parity query is replaced by

or(i): return “yes” iff 1 +--- + x; > 1 (equivalently, return z1 V- - V x;),
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then a Van Emde Boas tree provides an implementation in time O(loglogn) per
operation, which is exponentially faster.
We show which queries are hard in this sense.

General partial sum queries. Consider two other natural partial sum queries:

magority(i): return 1 iff @y + -+ + z; > [44],
equality(i): return 1 iff 1 + - +2; = [3i].

We can formulate these problems as database queries like “Did as many male as
female guests arrive before noon?” or “Are more French than English talks scheduled
between Tuesday and Friday?” Similarly, these problems can be viewed as natural
range query problems in computational geometry.

Proposition 3 of the present paper shows that both problems require time
Q(logn/loglogn) per operation, just as parity. We then extend our analysis of the
majority problem to the class of threshold functions and characterize the complexity
of the resulting partial sum problem in terms of the size of the threshold in Propo-
sition 4. This connects the majority problem, where the threshold is %i, and the or
problem above, where the threshold is 1. Finally, we generalize this to the entire class
of symmetric functions in Proposition 11.

Intriguingly, the resulting bounds closely resemble the corresponding results from
Boolean circuit complexity, where these problems have been studied intensively, hint-
ing at a connection between the dynamic and parallel realms.

Main contribution. Our main technical and conceptual contributions are lower
bounds for partial sum problems in very strong models of computation. All our other
results follow from these bounds.

The idea is to provide the query algorithm with well-defined parts of the answer
for free without reducing the problem’s complexity. We phrase the results for the
signed partial sum problem. The problem is to maintain a string z € {—1,0,+1}"
under the following operations:

update(i,a): change x; to a € {—1,0,+1},

query(i): return xy + -+ - +x; mod 2.

We prove two theorems about this problem.

Theorem 1 shows that, even in models with nondeterministic queries (defined and
discussed in section 2), the partial sum problem requires time Q(logn/loglogn) per
operation. It is known that this is also the deterministic complexity of the problem
[9, 15], so nondeterminism does not help.

Theorem 3 studies the same problem in a promise setting, where the (determin-
istic) query algorithm receives an almost correct answer for free. The updates are as
before, and the query is

i
Y
j=1
(otherwise, the behavior of the query algorithm is undefined).

parity (i, s): return x1 +--- +x; mod 2 provided that <1

We show that this problem still requires Q(logn/loglogn) per operation.
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Lower bounds for dynamic algorithms. We present some applications to
dynamic algorithms and data structure problems other than partial sums. Because
Theorems 1 and 3 hold in very strong models of computation, we can construct
powerful reductions.

We can show that the existential problem for orthogonal range queries in the plane
requires time Q(logl/ 2 n) per operation (Proposition 2). We also present bounds for
planar point location in monotone subdivisions [5, 26], reachability in upward planar
digraphs [28], and incremental parsing of balanced parentheses [11]. We show that
these problems require time (logn/loglogn) per operation (Propositions 5-8). It
is known [10, 14, 17, 23] that this is also a lower bound for reachability in grid
graphs. However, grid graphs of constant width allow a reachability algorithm in
time O(loglogn) per operation [4], an exponential improvement. We prove a lower
bound that is parameterized by the width w of the graph: Proposition 10 states
that dynamic reachability for grid graphs of width w = O(logn/loglogn) requires
time Q(w) per operation, bridging the gap between the two results.

Apart from the bound for the existential range query problem, for which the
authors recently proved a stronger bound using a different technique [3], all these
bounds are new and the best known.

Related work. Fredman introduced the partial sum problem as a “toy problem
which is both tractable and surprisingly interesting” [13], and it has been the focal
point of many investigations of dynamic complexity in a variety of models [15, 31].
We reason within the cell-probe model of Fredman [12] and Yao [30] with some ex-
tensions to cope with our stronger modes of computation. The model can be viewed
as a nonuniform version of the random access computer with arbitrary register in-
structions. Lower bounds are especially valid on RAMs with unit-cost instructions
and logarithmic cell size. The success of this model is partly due to the validity of
these bounds in light of schemes like hashing, indirect addressing, bucketing, pointer
manipulation, or recent algorithms that exploit the parallelism inherent in unit-cost
instructions. For these reasons, the cell-probe model has arguably become the model
of choice for lower bounds for dynamic computation.

Theorems 1 and 3 are proved by extending the chronogram method, which was
introduced by Fredman and Saks [15] and got its name in [7].

The prefix parity problem was solved in [15], but no nontrivial lower bounds for
the majority or equality problems follow from that. The results from [6, 21, 22, 29]
can be seen to imply Q(loglogn/logloglogn) lower bounds using an entirely differ-
ent technique based on Ajtai’s result [2]; and [19] reports Q((logn/loglogn)'/?) for
equality and Q(logn/(loglogn)?) for the majority.

2. Nondeterminism in dynamic algorithms.

2.1. Example: Range queries. We can illustrate our concept of nondetermin-
istic queries using the existential range query problem. The object is to maintain a
set S C {1,...,n}? of points in the plane under the following operations:

update(x): add z € {1,...,n}% to S, or remove it if it is already there,

exists(y): return “yes” iff S contains a point z in the rectangle defined by the origin
and y, i.e., such that 1 < y; and x2 < yo.

With nondeterministic queries, the problem is very easy: guess a point and verify
that it is in S N R. This shows that positive instances of this problem have short,
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maintainable witnesses—the points themselves. On the other hand, it is known that,
for deterministic computation, this problem requires time Q(logn/loglogn) [3]; we
prove a somewhat weaker bound in Proposition 2. Thus the hardness of this problem
lies in maintaining precisely the kind of information that nondeterminism provides
for free.

However, this is not true for all problems; we shall show that queries about the
size |[R N S| remain hard even with nondeterminism. Thus we see that the hardness
of the two problems, both of which have the same deterministic complexity, hinges
on information of a fundamentally different kind.

Another example from computational geometry is dynamic convez hull, the prob-
lem of maintaining the convex hull of a set of points .S, where points are inserted and
removed. The query operation asks whether the query point ¢ lies inside or outside
the convex hull of S. Again, we can solve this problem with a trivial update algorithm
that simply stores S in a large table. (In the cell-probe model, we do not worry about
memory space; otherwise, we can use standard dictionaries.) The nondeterministic
query guesses three points from S and verifies that the query point lies in the triangle
spanned by these points—a well known result in plane geometry asserts that this is
necessary and sufficient.

Thus we have identified a class of dynamic problems, namely, those with fast
nondeterministic queries. Problems in this class have positive instances with short
witnesses, and these witnesses can be maintained by an efficient data structure. This
encompasses the class of problems where the outcome of each query depends on only
a small number of updates. Contrast this with the problems identified in [15], where
each update affects only a small number of queries, e.g., dictionary problems.

2.2. A model for nondeterministic query algorithms. We introduce a
model for nondeterministic query algorithms for dynamic decision problems, where
the query returns 0 or 1. We allow query algorithms to nondeterministically load
a value into a memory cell. The semantics are as usual: The value returned by a
nondeterministic query is 1 unless all nondeterministic choices return 0. For example,
the following program solves in constant time the existential range query problem,
storing all points from S in a two-dimensional array M:

update(x1,x2):
Mlzy,x2] :=1— M1, x2],

exists(y1, ya):
guess 1 <y and z2 < Yo
return Mz, xs].

We should mention that we have not defined the side-effects of a nondeterministic
query algorithm, i.e., the effect of its assignments to memory. This can be done in
a number of ways; for example, we might say that if there are computations (i.e.,
sequences of nondeterministic choices) that result in “1,” the algorithm will execute
one of these computations; otherwise, it will execute a computation leading to “0.”
Our lower bound is immune to precisely how these effects are defined, since the hard
operation sequence constructed in the proof needs only a single query, which happens
at the very end.

2.3. Signed partial sum. The signed partial sum problem is to maintain a
string of letters z € {—1,0,+1}", initially 0", under updates that change the letters
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of x and queries about the parity of the prefix sums of z:

update(i,a): change z; to a € {—1,0,+1},

query(i): return 7 +--- +x; mod 2.

The data structure of Dietz [9] solves this problem deterministically in time
O(logn/loglogn) per operation with logarithmic cell size. The next theorem states
that nondeterministic queries can do no better. We state this theorem as a trade-off
between update and query time.

THEOREM 1. FEvery nondeterministic algorithm for the signed partial sum prob-
lem with cell size b, update time t,, and query time tq must satisfy

logn
1 tq=Q ——— ).
(1) 4 <log(btu 1ogn))
Also, the lower bound holds even if the algorithm requires
logn
2 < .. i< | ——
2) Os@rt--+ais [log(btu logn)—‘

for all i after each update.

The proof is given in the next section.

Note that the query cannot distinguish +1 from —1 (since 1 = —1 mod 2), so
a data structure for the signed partial sum problem structure can treat —1 as +1.
The reason for introducing —1 in the problem is the balancing condition (2), which
continues previous work [19] on extending the chronogram method.

In section 5.2, we state a further generalization of Theorem 1, relating the terms
in (1) and (2).

2.4. Lower bound for existential range queries. We give a lower bound of
size Q(logl/ 2 n) for the existential range query problem; we consider cell size b = logn
for concreteness. The value of this result lies in its simplicity; it provides a good
illustration of how to apply Theorem 1. Using a different technique [3], the authors
with Alstrup have since established 2(logn/log(bt,)), which is optimal. However,
before the present paper, no lower bound better than Q(loglogn/logloglogn) was
known for this problem (which is rather central—see the discussion by Agarwal [1]),
so the result provides an exponential yet, by now, outdated improvement.

Following [3], we start with the ezistential marked ancestor problem. Consider a
full rooted tree with nodes V', number of leaves n, height h, and arity d, where

(3) h=1log!?n, d=2"

Let 7(v) denote the nodes on the path from v to the root (including v). The problem
is to maintain a subset of marked nodes M C V under the following operations:

mark(v): insert v € V in M,
unmark(v): remove v € V from M,
exists(v): return “yes” iff any of v’s ancestors are marked, i.e., if 7(v) N M # 0.

The counting marked ancestors problem supports the same updates, and the query is

parity(v): return |M Nx(v)] mod 2, the parity of the number of marked ancestors
of v.
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The parity prefix sum problem is a special case of this problem, where the tree is
a path. We begin by showing that the problem is hard also for d-ary trees, where
d= logl/ Zn.

LEMMA 1. Every nondeterministic algorithm for counting marked ancestors in
trees with update time t, requires query time

logn )
ty =9 .
a <10g1/2 n + log(t, logn)

Proof. Let x be a length n instance to the signed partial sum problem. We
assume that logl/ % n is an integer. Consider a data structure for the counting marked
ancestor problem for a tree T' with parameters as in (3), and update and query time
ty and ty. The ith leaf v; of T' corresponds to z;. We will maintain that the parity of
the number of marked ancestors to v; is the parity of the ith prefix sum in z, i.e.,

|[T(v)) " M| =21+ +x; (mod 2).

Thus the time for a partial sum query is the same as the time for a marked ancestor
query, tq. To maintain the invariant whenever z; is changed (and thus the parity of
all prefix sums > i are changed), we change the marking of the root of a number
of disjoint subtrees in T, whose leaves correspond to x;, ..., x,. These roots are the
right siblings of m(v;_1), so there are at most dh updates. Thus the update time is at
most t,dh = O(210g1/2 "y logl/2 n). Now Theorem 1 implies the bound on the query
time. O

The proof of the next proposition contains the crucial application of nondeter-
minism to transform a counting problem into an existential one.

PROPOSITION 1. Euxistential Marked Ancestor requires time Q(logl/2 n) per op-
eration.

Proof. Consider an algorithm for the existential problem with update time ¢, and
query time tq, and let T" be an instance of the counting marked ancestor problem.
Construct 2" new instances T, indexed by bit strings w € {0,1}". We maintain that
the markings in the first instance Tyg...o are the same as in 7. In general, the ith bit
of w is cleared iff the markings in T}, on level ¢ are the same as in T'. More precisely,
if v is a node on level i, we have

(v marked in Ty,) = w; @ (v marked in T),

where & denotes exclusive or. The crucial observation is the following: Let v be a leaf.
Then w is the characteristic vector of w(v) N M iff the path 7(v) in T, is unmarked.

Whenever a node in T is marked or unmarked, we must update all 2" instances,
so the update time is 2"t,. For a query, we guess the characteristic vector of 7(v)N M
and verify that m(v) is unmarked in T,,. This takes time ¢, + O(1). We finish the
proof by applying the above lemma. ]

Finally, we present the application to range queries.

PROPOSITION 2. FEzistential Range Query requires time Q(logl/2 n) per opera-
tion.

Proof. Embed the tree from the marked ancestor problem in the first quadrant
of the plane, with the root in the origin and the nodes at depth i spread out evenly
on the diagonal y = —x + d"* — d"~*. The query rectangle has its upper-right corner
in the queried node. 1]
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2.5. Discussion. Analyzing the above proof, we see that the algorithm used
in the reduction actually solves the complement of the problem; we use it to verify
m(v)N M = (. Thus the proof also yields a bound on the nondeterministic complexity
of the emptiness problem (to return “yes” iff the query rectangle is empty). In other
words, there is no short, maintainable witness to the absence of points in the plane.

In contrast, the emptiness problem in one dimension does admit a fast nondeter-
ministic algorithm, since we can maintain a doubly linked list of the inserted points,
and the query can guess both the immediate predecessor and immediate successor of
a query interval and verify that they are neighbors in S. Using a Van Emde Boas tree,
this can be implemented in time O(loglogn) per update and constant query time.

3. Proof of Theorem 1. We consider a specific sequence of operations that
consists of a number of updates followed by a single query. The update sequence is
chosen at random from a set U defined in section 3.5.

3.1. Model of computation. The computational model is an extension of the
cell-probe model [12, 30]; since there is only a single query in the hard sequence of
operations constructed in our proof, which happens at the very end of the sequence,
we can model query algorithms by nondeterministic decision trees.

More precisely, a cell-probe algorithm consists of a family of trees, one for each
operation, and a memory M € {0,...,2" — 1}*. We refer to the elements of M as
cells, each of which can store a b-bit number. To each update we associate a decision-
assignment tree as in [15]. There are two types of nodes: Read nodes are 2°-ary and
labeled by a memory address, and computation proceeds to the child identified at
that address; write nodes are unary and labeled by a memory address and a b-bit
value, with the obvious semantics.

To each query we associate a nondeterministic decision tree of arity 2° whose
internal nodes are labeled by a memory address or by “Jd.” The leaves are labeled 0
or 1 to represent the possible answers to the query. We define the value ¢M € {0,1}
computed by a query tree ¢ on memory M to be 1 if there exists a path from the root
to a leaf with label 1. A witness of such an accepting computation is the description of
the choices for the 3 nodes. We let ¢; denote the query tree corresponding to query(i).
The query time t, is the height of the largest query tree, and the update time ¢, is
the height of the largest update tree. We account only for memory reads and writes
and for nondeterministic choices; all other computation is for free.

3.2. Updates and epochs. Each update sequence in U is described by a binary
string u € {0,1}*. Each bit represents an update update(j,a). The parameters for
these updates will be specified in section 3.5. The update sequences u € U are split
into d substrings each corresponding to an epoch. It turns out to be convenient that
time flows backward, so epoch 1 corresponds to the end of w. In general, the update
string is an element in U = UyUy_1 - -+ Uy, where U; = {0,1}e(t) and where e(t) is
the length of epoch t such that e(t) + --- + e(1) = [n*/?/d|. The length of the entire
update sequence is [n/d]. The size of d and hence the growth rate of e(t) are given
by

4 d— logn
@) N [log(btu logn)]

The goal is to establish that ¢, € Q(d).
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3.3. Time stamps and nondeterminism. To each cell we associate a time
stamp when it is written. A cell receives time stamp ¢ if some update during epoch ¢
writes to it, and none of the subsequent updates during epochs ¢t — 1 to 1 write to it.

For an update sequence u € U, let M* denote the memory resulting from these
updates (recall that updates are restricted to perform deterministically), starting with
some arbitrary initial contents corresponding to the initial instance 0™.

For index ¢ and update string u, let T'(¢, u) denote the set of time stamps that are
found on every accepting computation path of ¢; on M. If there are no accepting
computations, the set is empty. More formally, let w denote a witness for a com-
putation path of ¢; on M, and let A(i,u) denote the set of witnesses that leads to
accepting computations of ¢; on M™. Let for a moment 7'(¢,u,w) denote the set of
time stamps encountered by the computation of ¢; on M™ that is witnessed by w.
Then T'(i,u) = N {T (%, u,w) | w e A(i,u) } if A(¢,u) # 0, and T'(¢,u) = () otherwise.

The simple lemma below is the tool to identify a read of a cell with time stamp ¢
by nondeterministic queries.

LEMMA 2. If M"“ and MV differ only on cells with time stamp t, then q;M" #
qgiM"V implies t € T(i,u) UT(i,v).

Proof. Suppose, on the contrary, that ¢;M* # ¢;M" and ¢ ¢ T(i,u) U T(i,v).
Assume without loss of generality that ¢;M* = 1 and ¢;M? = 0. Since t ¢ T(i,u) and
q;M™ = 1, there is an accepting computation path that avoids cells with time stamp ¢.
However, this computation might as well be executed on M", by the premise. Hence
q; has an accepting computation on M" as well, contradicting ¢; M" = 0. 1]

3.4. Lower bound on query time. The update sequences are chosen such
that, even if two sequences differ only in a single epoch, they still result in very
different instances. To each update sequence u € U we associate the query vector
g = (@ M¥, g M"Y, ... ¢, M"*) € {0,1}". Update sequences that differ only in epoch ¢
are called t-different.

LEMMA 3. No Hamming ball of diameter én can contain more than |U;
vectors from t-different update sequences for large n.

The difficult part is constructing a set of update sequences for which the statement
is true, which we present in section 3.5. The proof itself is as in [15] and is provided
in section 3.5 for completeness.

Write Us, for Uy - - - Uy1, the set of update sequences prior to epoch ¢, and write
Uy for Ui_q - - - Uy, the set of update sequences in epoch t to epoch 1. Assume for the
rest of this section that t; = O(logn); else there is nothing to prove. The worst-case

19/10 query

query time tq is at least the average of |T'(¢,u)| over choices of i € {1,...,n} and
u € U, so
n d n
EIES S SIS 35 SED Db b ST )
uelU i=1 t=1 ueUs; weUy velU,; i=1

The next lemma tells us how many v € U, fail to make the last sum exceed %n

LEMMA 4. Fiz any epoch 1 <t < d and past and future updates x € Uy, y € Us;y.
For large n, at least half of the update sequences u € zUzy satisfy ‘{ 1<i<n|
teT(i,u)}| > 15n if tq = O(logn).

Proof. Consider the set V' C xU;y of updates after which fewer than 1—1671 queries
encounter time stamp ¢; i.e., zuy for u € Uy is in V if

{1<i<n|teT(,zuy)}| < 5n.
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We will bound the size of V' below %|Uy|.

To this end, partition V into equivalence classes such that v and v are in the
same class iff M™ and M agree on all cells except maybe those with time stamp t.
We first bound the number of such classes. Since all cells with time stamp greater
than ¢ have identical content (they depend only on the common prefix x), we need
only to analyze the amount of information distributed among cells with time stamps
t — 1 to 1. The number of cells written during the last ¢ — 1 epochs is at most
r =ty (e(t—1)+---+e(l)). Note that at most n2'a® different cells appear in the
entire forest of query trees. The number of different ways we can choose such r cells
and fix their content to some value in {0,...,2" — 1} is bounded by

5) (n2ta® - 2" < [T,

where the inequality uses (4). That is, |U;|°)) bounds the number of equivalence
classes of V.

It remains to bound the size of each class. Consider two query vectors ¢* and ¢
for 4 and v in the same equivalence class. Then

(6) l¢“ —¢"| < in

because %n entries of each vector depend only on cells with time stamps other than .
On these cells, the memories are indistinguishable and therefore yield the same result
by Lemma 2. By (6), all vectors from the same class end up in a Hamming ball
of diameter gn, so Lemma 3 tells us that there can be only |U,|16 of them. We
conclude that the size of V is bounded by |Uy| 1 - |Uy]|°™), which is less than 3|U| for
large n. O

By this lemma we obtain for large n

d
Ulntq 2 D Ust| - (Ut - 157 51U:| = ggnd|U|

t=1
and hence t4 > 3—12d as desired.

3.5. Update scheme. The technical part that remains is to exhibit a set of
update sequences U satisfying Lemma 3. There are a number of ways to do this; the
following construction is one which simultaneously anticipates our needs in section 6
and satisfies the balancing condition (2).

To alleviate notation, we assume that n/d is an integer. Consider the updates in
epoch ¢, and index them as uy - - - uey) € Up. If u; = 0, then nothing happens in the
ith update. Else it performs update(j, a), where the update position j is given below.
The new value is a = (—1)", where r = 1 + u3 + --- + u; mod 2, so the nonzero
updates in u alternate between —1 and +1, starting with +1. The position of the
affected letter is defined as follows. Write z as a table of dimension d x n/d like this:

T1  Td+1 Tp—d+1

Td T2d Tn

All updates in epoch t will affect only the letters in row ¢. The updates of an epoch
are spread out evenly from left to right across that row, so the distance between two
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of them is

)

In summary, the ith update in epoch t affects the letter in row ¢ and the column given
by (i —1)- [(n/d)/e(t)| + 1.

This update scheme satisfies the statement in Lemma 3.

Proof of Lemma 3. Let xU,y be any set of t-different update sequences. Pick
any u € U, and consider any Hamming ball of diameter %n that contains query
vector ¢**¥. We will bound the number of v € U? with query vector ¢**¥ ending up
in that Hamming ball.

Let w € Uy record the difference between u and vj; i.e., the ith letter of w is 1 iff
u and v differ on the ith letter. Now let w’ denote the string of prefix sum parities
of w, i.e.,

w;=wy +---+w; mod?2, 1<i<e(t).

It is easy to see that w’ records the difference between the query vectors resulting
from u and v. Indeed, each 1 in w’ yields an interval of indices where the vectors
differ, and the length of this interval is d times the distance given by (7). In other
words, each 1 in w’ contributes as many points to the Hamming distance between
the resulting query vectors. So, if we let |w’|; denote the number of 1’s in w’, the
Hamming distance between two query vectors is at least

© - | 28] = i s

where we have used that [a] > $a for a > 1.

By the triangle inequality, the maximum Hamming distance between two query
vectors in the same ball is £n. This bounds the number of 1’s in w’ to te(t) for
large n. Hence the number of choices for w’ is bounded by

Te(t)

9) > (V) <2mew

=0

for large n. This also bounds the number choices of v € Uy since there is a one-to-one
correspondence between v and w’. 0

The prefix sums of instances resulting from our scheme are small: Let x denote
an instance resulting from our scheme from the initial instance 0. Let 2 denote the
string resulting from only the updates in epoch ¢, and write = as z' + - - - + z%; this
works because no two epochs write in the same positions. Then

i d d

ij :ZZx§ :ZZzz €{0,...,d}

j=1t=1 t=1 j=1

because the prefix sum of every z! is 0 or 1 by construction. It can be checked that
the balancing bound (2) holds at all times.

Another important feature of this update scheme, which we will use to prove
Theorem 3, is that, if  and y result from t¢-different updates, then " = y" for r # ¢t
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and hence

(10) S oap =yl <1
j=1 j=1

for all 1.

4. Partial sum queries. The next result shows that the majority and equality
problems defined in the introduction are just as hard as the parity query from [15].
The proof is a simple application of Theorem 1.

PROPOSITION 3. The prefiz equality and prefix majority problems satisfy

logn
tq=Q ——— ).
4 <log(tub logn) )

Proof. We first give the proof for prefix equality. Let d = [logn/log(bt, logn)].
An instance x € {—1,0,+1}"™ of signed partial sum is encoded as the binary
string =’ by

—1~00, 0~—01, 41+~ 11.
We maintain d + 1 strings (@, ..., 3@ as
y = (00)!(01)% 2.

Let t, = ty(n) denote the update time of our prefix equality algorithm. Whenever x
is changed, we make at most 2d + 2 updates in the strings y(*); so the update time is
(2d+2) - ty(n+2d + 2).

Index the strings y*) from —2d to 2n — 1. We then have

2i—1 %
(11) Sy =d—t+i+d a,  0<t<d, 1<i<n
j=—2d j=1

Hence, in order to find the ith prefix sum of x, our algorithm can nondeterminis-
tically guess the sum s € {0,... ,d}; we can assume from the balancing condition (2)

in Theorem 1 that the sum is in that set and verify y(_sgd + yéj)_l = d + 1, which

is the case iff equality(2d + 2i) on y®) returns 1. The conclusion is by Theorem 1.
The same bound must hold for the majority problem since we can write

> [Li] AT+ 47 >[4,
where T; = 1 — z;, and these negated values are easily maintained. 0
To study this kind of problem in a general, let the threshold ¥ be an integer

function such that 9(i) € {0,...,[4i]}. The query in the prefiz threshold problem
for ¥ is

threshold(i): return “yes” iff 1 + -+ 4+ x; > 9(4).
Prefix majority is the special case 9(i) = [4i]; prefix-or is (i) = 1. Now, for our lower

bound, our assumption on ¥ is that there are integers p(1) < p(2) < --- <p(i) < ---
such that ¥(p(i)) = i. We call such functions nice for lack of a better word. It is
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reasonable to assume that 1 is monotonically increasing; the niceness assumption also
prevents it from skipping points.

PROPOSITION 4. Let t, = t,(n) and tq = tq(n) denote the update and query time
of any cell size b implementation of the prefix threshold problem for a nice threshold ¥.
Then tq = Q(log ¥/ log(t,blog 9)).

Proof. The proof is not difficult but is tedious. The idea is to stretch an instance
for a threshold problem, padding it with sufficiently many 0’s or 1’s to turn it into a
majority problem.

Let ¢ be a nice function, and let p(1),...,p(n) be such that ¥(p(i)) = i. Assume
we have an algorithm for the prefix problem for ¥ with the parameters given in the
statement of the theorem. We will construct an algorithm for the majority with
instance x € {0,1}™. Construct a bit string y as

y=0---0x1210--- 022220 --0xpx,,

where the letters of = are at positions p(1) — 1,p(1),p(2) — 1,p(2),...,p(n) — 1, p(n);
denote the length of y by m = p(n).

The string y can be maintained in time 2t,(m) for each update of z. For the
query, note that 2z 4+ -+ +2x; =y + -+ + Yp()s SO

so the majority function (left-hand side) can be expressed in terms of the threshold
function ¥ (right-hand side). Hence the query time is tq(m). However, from the
bound on the complexity of the majority function, we know that

B logn
tq(m) = Q(log(tu(m)b(m) log n))'

The stated bound follows by substituting ¥#(m) for n. |

To gauge the strength of this result, we mention that the problem can be solved on
the unit-cost RAM with logarithmic cell size in time O((log ¥/ loglog n)+loglogn) per
update (if 9(1),...,9(n) can be computed in the preprocessing stage of the algorithm).
The left term in the expression stems from a search tree, and the right term stems
from a priority queue, which vanishes for cell size b = Q(log2 n); details are omitted.
A comparison with Proposition 4 shows that the lower bound is tight for logarithmic
cell size and ¥ = Q(log'°81°8™ ). For smaller thresholds, the bounds leave a gap of
size O(loglogn).

We consider a more general class of query functions in section 6.2.

5. Applications to dynamic algorithms. Theorem 1 suggests a new approach
for proving lower bounds for dynamic algorithms by employing nondeterminism in the
reduction from signed partial sum. We demonstrate this with a number of examples
in this section. The results are presented for cell size b = log n for concreteness. Some
of the reductions extend previous work of the authors with Sgren Skyum [19].

5.1. Nested brackets. Consider the problem of maintaining a nested structure,
i.e., a string z with round and square brackets under the following operations:

change(i,a): change x; to a, where a is a round or square opening or a closing
bracket or whitespace.

4

balance: return “yes” iff the brackets in = are properly nested.
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This problem was studied in [11], where an algorithm with polylogarithmic update
time is presented.

PROPOSITION 5. Maintaining a string of nested brackets requires time (logn/
loglogn) per operation.

Proof. Consider a deterministic algorithm for this problem, and consider an in-
stance © € {0,—1,+1}" to signed partial sum. Let b; be an encoding of x; given
by

+1—=))u, O0—)uu, -l Lo,

“won

where “.)” stands for space. Let ¢ be the string “, (” consisting of a single space and

an opening bracket. We maintain a balanced string of brackets uvw, where u = ¢27,

v ="biby...b,, and w = )""°°, where s = x1 + --- + x,. It is easy to see that uvw
balances and can be maintained by a constant number of updates per update in x. For
any prefix size i, this construction enables efficient verification of a nondeterministic
guess g of the prefix sum x;, + --- 4+ x;: Place a closing square bracket on the last
of b; and an opening square bracket on the ., of the first ¢ of suffix ¢'t9 of u. This
modification keeps uvw balanced iff g is the right guess of prefix sum z1 + - - + z;.

The conclusion is by Theorem 1. |

5.2. Dynamic graph algorithms. Our techniques improve the lower bounds
of a number of well-studied graph problems considered in [19].

Tamassia and Preparata [28] present an algorithm for the class of upward planar
source-sink graphs that runs in time O(logn) per operation. These digraphs have
a planar embedding where all edges point upward (meaning that their projection
on some fixed direction is positive) and where exactly one node has indegree 0 (the
source) and exactly one node has outdegree 0 (the sink). The updates are

insert(u,v): insert an edge from u to v,
delete(u,v): delete the edge from u to v if it exists,

reachable(u,v): return “yes” iff there is a path from u to v.

The updates have to preserve the topology of the graph, including the embedding.

PROPOSITION 6. Dynamic reachability in upward planar source-sink graphs re-
quires time Q(logn/loglogn) per operation.

Planarity testing is to maintain a planar graph where the query asks whether
a new edge violates the planarity of the graph. Italiano, Poutré, and Rauch [20]
present an efficient algorithm for a version of this problem, and a strong lower bound
is exhibited by Fredman and Henzinger [14]. Our lower bound also holds for upward
planarity testing, where the topology is further restricted to upward planar graphs.
The updates insert and delete edges as above, and the query is as follows:

planar(u,v): return “yes” iff the graph remains upward planar after insertion of
edge (u,v).

This problem was studied by Tamassia [27], who found an O(logn) upper bound.
PROPOSITION 7. Upward planarity testing requires time Q(logn/loglogn) per
operation.
A classical problem in computational geometry is planar point location: given
a subdivision of the plane, i.e., a partition into polygonal regions induced by the
straight-line embedding of a planar graph, determine the region of query point ¢ € R2.
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Fic. 1. Planar graphs corresponding to x = (0, 0, +1, +1, —1, 0, +1, 0). Left: Grid graph.
Even grid points are marked e; odd grid points are marked o. Middle: Upward planar source-sink
graph. Right: Monotone planar subdivision.

An important restriction of the problem considers only monotone subdivisions, where
the subdivision consists of polygons that are monotone (so no horizontal line crosses
any polygon more than twice). In the dynamic version of this problem, updates
manipulate the geometry of the subdivision. Preparata and Tamassia [26] give an
algorithm that runs in time O(log2 n) per operation; this was improved to query
time O(logn) by Baumgarten, Jung, and Mehlhorn [5]. The lower bound for this
problem in [19] applies only to algorithms returning the name of the region containing
the queried point. The techniques of the present paper extend this bound to work for
simpler decision queries like

query(x): return “yes” iff x is in the same polygon as the origin.

PROPOSITION 8. Planar point location requires time 2(logn/loglogn) per oper-
ation, even in monotone subdivisions.

Traditionally, lower bounds in computational geometry are proved in an algebraic,
comparison-based model (see [25] for a textbook account) that is broken by standard
RAM operations like indirect addressing, bucketing, hashing, etc. Cell-probe lower
bounds for that field are lacking.

To explain our reduction, we turn to the conceptually very simple class of grid
graphs. The vertices of a grid graph of width w and height h are integer points (4, 5)
in the plane for 1 <i <w and 1 < j < h. All edges have length 1 and are parallel to
the axes. The dynamic reachability problem for these graphs is the following:

flip(x,y): add an edge between x € [w] x [h] and y € [w] X [h] or remove it if it
exists,

4

reachable(z,y): return “yes” iff there is a path from z to y.

There are several well-known constructions that prove a lower bound for this problem
[10, 14, 17, 23], but our proof translates to the other problems in Propositions 6—
8. The details in these constructions are omitted; Figure 1 illustrates the structures
arising in the reductions.
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PROPOSITION 9. Dynamic reachability in grid graphs requires time Q(logn/
loglogn) per operation.

Proof. From an instance € {0, +1}" to signed partial sum, we build a grid graph
on the points {0,...,2w} x {0,...,2n}, where w = [logn/loglogn]. We will exploit
the balancing constraint (2) of Theorem 1 to keep the instance within this width.

For every i and j, consider any point with even coordinates (2i,2j — 2), drawn
as e in Figure 1, and connect it to one of the three even grid points above it using
g—g‘, %, or '73—3, depending on whether z; = +1, 0, or —1, respectively. The idea is that
the path from (0,0) mimics the prefix sums of = in that it passes through (2s,2j) iff
1+ --+x; equals s. Hence a guess of the sum can be verified by a single reachability
query in the graph.

It remains to note that the graph can be maintained efficiently. Any changed letter
in z incurs O(w) edges to be inserted or deleted. So, if the update time of the graph
algorithm is polylogarithmic, then the graph can be maintained in polylogarithmic
time. The bound follows from Theorem 1. O

The width of the hard graph above is logarithmic in the height, while the graphs
constructed in [10, 14, 17, 23] are square. Hence narrow grid graphs are as hard
as square ones. However, this is not true for wery narrow graphs: It is known
that the reachability problem for grid graphs of constant width can be solved in
time O(loglogn) by [4], an exponential improvement. This leaves open the question
of what happens for graphs of sublogarithmic width. To answer this, we introduce a
subtler statement of Theorem 1.

THEOREM 2. Let d = O(logn/log(bt,logn)) be an integer function. Every non-
deterministic algorithm for signed partial sum with cell size b, update time t,, and
query time tq must satisfy tq = Q(d). The lower bound holds even if the algorithm
requires 0 < x1 + -+ x; < d for all i after each update.

This result implies a lower bound for grid graphs that smoothly connects the two
extremes between linear and constant width. A similar parameterization can be done
for all our problems.

PROPOSITION 10. For every w = O(logn/loglogn), dynamic reachability in grid
graphs of width w requires time Q(w) per operation.

6. Refinement. We now take a somewhat subtler approach to our basic question
than we take in section 2. Instead of nondeterminism, we study the performance of
query algorithms in a promise setting. We assume that the query algorithm for signed
partial sum receives a value s that is promised to be close to (but not known to be
equal to) the right sum and then decides between right and wrong values.

The partial sum refinement problem can be phrased as follows: Maintain a string
x € {0,4+1}", initially 0™, under the following operations:

update(i,a): change x; to a € {—1,0,+1},

parity(i, s): return x1 +--- +a; mod 2 provided that |s — Z;Zl x| <1
(for other values of s, the behavior of the query algorithm is undefined).

The problem gets its name from the following alternative definition, where the query
operation is replaced by

refine(i, s): return 1 if s = 22:1 xzj and 0 if s # 22:1 xj, provided that

|s — 23:1 x;| < 1. (For other values of s, the behavior of the query
algorithm is undefined.)



LOWER BOUNDS FOR DYNAMIC PARTIAL SUMS 751

The two problems are computationally equivalent.

THEOREM 3. Let d be an integer function such that d = O(logn/log(tyblogn)).
Every algorithm for partial sum refinement with cell size b, update time t,, and query
time tq must satisfy tq = Q(d). Moreover, this is true even for algorithms that require
0<x1+ - +x; <d for all i after each update.

6.1. Proof of Theorem 3. Most of the technical work for this result was already
done in section 3.5, where we found that the instances resulting from two ¢-different
updates have close prefix sums (10).

The query trees in our computational model are now deterministic decision trees
as in [15]. However, there are more of them: we associate a tree ¢f to each query
parity(i, s), yielding n(2n + 1) trees. (We could reduce this number to n(d + 1) by
the balancing constraint, but that does not improve the bounds.)

For update string u, we write g;* for the query tree ¢; corresponding to the “right
guess” s = x1 + -+ x;, where x is the instance resulting from updates u. The query
vector is (¢ M, ..., q* M), i.e., the responses yielded by guessing right every time. We
let T'(i,u) denote the time stamps encountered by ¢ on M™ and compare this with
the construction in section 3.3.

The next lemma corresponds to Lemma 2 and shows that our update scheme
constructs different instances whose prefix sums are so close that the query trees
cannot use the (almost correct) value given to them.

LEMMA 5. For t-different update sequence u,v € Uy, if M™ and M" differ only
on cells with time stamp t, then, for all i,

gt M™ # g M implies t € T'(i,u) UT(i,v).

Proof. Assume, to the contrary, for some such ¢, u, v, and i, that t ¢ T(i,v)
and g M*" # ¢/ M". Let z and y denote the input instances resulting from v and v,
respectively. Let s denote Z;zl zj. By (10) and without loss of generality, 23:1 Yj =
5+1. By correctness, g M* = qiSHM“. Since the computation path for qf“M” does
not, encounter time stamp ¢, this computation might as well be executed on M with
the same result; i.e., qf“Mu = qf“M” = ¢ M" = ¢ M". However, this contradicts
our assumption ¢*M"™ # ¢ MY = qf“M”. d

The rest of the proof can be reused almost ad verbatim.

6.2. The partial sum problem for symmetric functions. Theorem 3 acts as
an important ingredient in characterizing the dynamic complexity of all the symmetric
functions, generalizing the results for the threshold functions of the last section. A
Boolean function is symmetric if it depends only on the number of 1’s in the input
x = (x1,...,%,). The symmetric functions include some of the most well-studied
functions in complexity theory like parity, majority, and the threshold functions.

In general, we can describe every symmetric function f in n variables by its
spectrum, a string in {0,1}"*! whose ith letter is the value of f on inputs where
exactly i variables are 1. The boundary of a spectrum s is the smallest value
such that s|9) = s|9j41 = -+ = S|p—g|- For instance, the boundary of the parity
or majority functions is %n, and for the threshold functions with threshold ¥, the
boundary is min(d,n — 9).

Let (fn) = (f1,..., fn) be a sequence of symmetric Boolean functions where the
ith function f; takes ¢ variables. The dynamic prefiz problem for (f,) is to maintain
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a bit string « € {0,1}"™ under the following operations:

update(i): change x; to -z,

query(i): return f;(z1,...,2;).

For example, taking f; to be the parity function on ¢ variables, we have the prefix
parity problem of [15], and taking f; to be the threshold function for ¥(¢), we have
the problem from Proposition 4.

PROPOSITION 11. Let ¥ be a nice function, and let (f,) be a sequence of sym-
metric functions where fi: {0,1}* — {0,1} has boundary 9(i). Let t, and t, denote
the update and query time of any cell size b implementation of the dynamic prefix
problem for (fn). Then tq = Q(log ¥/ log(t,blog)).

Proof. First assume that f;’s boundary is in the middle, i.e., ¥(i) = %z Let
x € {+1,0,—1}" denote an instance to prefix refinement, and define d and maintain
d + 1 strings as in the proof for Proposition 3. Using the data structure for (f,), we
perform refine(i, g) as follows. Let s be the spectrum for fo;124. Since its boundary
is in the middle, it is the case that

Sd+4+i—18d+iSd+i+1 € {001, 010,011,100, 101, 110}.

We consider only the case 001 above—the other cases are treated similarly. Recall
that we can assume 1 4+ ---+x; € {g—1,9,9+ 1}. Let r_1, ro, and 71 denote the
answer of query(2d+2i) on 59~ 49 and 39D respectively. By (11) in the proof
of Proposition 3, if ¢ = 1 + --- + z;, then r_17ror41 = Sg+i—15d+iSd+i+1 = 001. If
instead g — 1 is the correct sum, then r_;ry = 01, and finally if g 4+ 1 is the correct
sum, then rgry; = 00. Hence these three cases for g can be distinguished by the
above three queries, and they hence determine the correct answer for refine(i, g). The
bound then follows from Theorem 3.

The rest of the proof is a padding argument that “stretches” the above to work
for smaller ¥ similarly to the proof of Proposition 3. We omit the details. O

Intriguingly, the bound in the proposition is precisely the same bound as for the
size-depth trade-off for Boolean circuits for these functions [16, 8, 24].
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