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Subdivision surfaces are gaining more widespread use in the computer graphics community due to

their desirable properties, such as1) generating smooth surfaces from meshes with arbitrary topology,

2) avoiding cracks easily (also during animation),3) simplicity and elegance. However, algorithms for

efficient rendering of animated subdivision surfaces, where the vertices of the initial mesh can move freely

from frame-to-frame, seem to be non-existing. For such surfaces, all points of the final mesh are usually

recomputed for each frame.

We present our exploration of a simple heuristic technique that not only culls backfaces, but also avoids

computing a large number of points that do not contribute to any polygon that appears in the final image.

The basic idea is illustrated in 2D in figure 1, where we consider the backfacing line segmentA. Since both

its neighbors (B & C ) also are backfacing, we can prove1 that the subdivided line segmentsA 0 & A
0 0 also

will be backfacing, and thus we need not compute them.C
0 0 & B

0 are also provably backfacing, but they

are needed to properly subdivide their neighborsC
0 & B

0 0, which may become frontfacing. In the 3D case,
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Figure 1:2D example.
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Figure 2:Top: what normally happens. Bottom:

triangle orientation flip.

we concentrate on Loop’s subdivision scheme [2, 3]. Looking at a triangle� in a triangle mesh, we call

the triangles that share one edge with� e-neighbors, and the triangles that share only one vertex with�

1This obviously depends on which subdivision scheme is used. For this example, we used cubic uniform B-spline refinement.
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v-neighbors. The heuristic that we use is: If a triangle� and all of its neighbors (v & e) are backfacing, then

all new subdivided triangles “inside”� are also assumed to be backfacing. We call such trianglesstrongly

backfacing, and a triangle with all neighbors being strongly backfacing is calledtotally backfacing. This

two-level scheme of isolating the “irrelevant” back zone is needed because of the reach of the influence

of Loop’s subdivision scheme based on nearest neighbors. In each subdivision step we compute the status

(front, back, strong, totally back) of all triangles that have not yet been culled. Triangles that are totally

backfacing are excluded from all further computations. This conservative culling is necessary because part

of the invisible neighborhood of the front side is needed for correct subdivision, i.e., strongly backfacing

triangles must be subdivided because the first “row”of backfacing triangles need their neighbors.

An example of the algorithm in action is shown in figure 3. To get even better performance, we use

Figure 3: The camera that does backface culling is located in the upper right back.a) initial worm mesh (color codes:

white=totally back, blue=strong, green=back, red=front, yellow=totally front),b) after one subdivision step: the white triangles

from the previous step have been discarded,c) after two subdivision steps,d) after three subdivision steps (which is what we

send to the graphics pipeline),e) what normally is sent to the graphics pipeline without our technique.

the same idea for frontface determination, i.e., we label frontfacing triangles with all their neighbors front-

facing astotally frontfacing. The new subdivided triangles of a totally frontfacing triangle are all totally

frontfacing, and the status computation can be omitted.

Mathematically, there are no guarantees that meshes with grossly varying facet sizes cannot produce

“flipped” facets with orientations almost opposite to that of their neighbors (figure 2). Such sign reversals,
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if not present in the initial control mesh, are clearly unwanted artifacts that should be suppressed, and that

is exactly what our heuristic does.

Results: For a high enough degree of subdivision, e.g., when each resulting primitive must be smaller

than half a pixel [1], we have observed reductions in rendered polygon count close to the theoretical limit

of 50% and also total speed-ups of close to 100%. The memory overhead for status book-keeping is one

byte per triangle, which is typically negligible, and well worth it, since we now need to store only 50% of

the triangles. The code overhead is 5-10% of the total execution time.
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